Galois Connections in Orders, Logic, and Quantum Mechanics

Scott Wesley, MATH 5055, Winter 2022 Dalhousie University

Galois Connections in Order Theory

Sets With Partial Orderings

DEFINITION [1]: A **partially ordered set (poset)** is a set P together with a binary relation (\leq) \subseteq P×P such that the following properties are satisfied.

- 1. **Reflexivity**: for all $x \in P, x \le x$.
- 2. **Antisymmetry**: for all x, $y \in P$, if $x \le y$ and $y \le x$, then x = y.
- 3. **Transitivity**: for all x, y, $z \in P$, if $x \le y$ and $y \le z$, then $x \le z$.

EXAMPLE [1]: The following are partially ordered sets.

- 1. The real numbers ordered by the standard less-than-or-equal operation forms a poset (\mathbb{R} , \leq).
- 2. If X is an arbitrary set, then $(\mathcal{P}(X), \subseteq)$ forms a poset.

Posets With Lattice Structure

DEFINITION [2]: A complete lattice is a poset (P, \leq) such that every subset S \subseteq P has a least upper bound denoted \land S (the meet of S) and a greatest lower bound VS (the join of S).

EXAMPLE [2]: Do (\mathbb{R} , \leq) and ($\mathcal{P}(X)$, \subseteq) form complete lattices?

- 1. (Sketch). We know from analysis that every bounded set $S \subseteq \mathbb{R}$ has an infimum (a meet) and a supremum (a join). However, not all sets in \mathbb{R} are bounded. To correct this we require the extended reals $\mathbb{R} \cup \{-\infty,\infty\}$.
- 2. (Sketch). Let $S \in \mathcal{P}(X)$. Then ΛS is intersection and $\vee S$ is union. It follows from set theory that ΛS is a greatest lower bound and $\vee S$ is a least upper bound. This is well defined since $\emptyset \in \mathcal{P}(X)$ and $X \in \mathcal{P}(X)$.

DEFINITION [3]: Let (P, \leq) and (Q, \leq) be posets, f: $P \rightarrow Q$, and g: $P \rightarrow P$.

- 1. f is **isotone** if $x \le y \Rightarrow f(x) \le f(y)$ for all x, $y \in P$.
- 2. f is **antitone** if $x \le y \Rightarrow f(y) \le f(x)$ for all $x, y \in P$.
- 3. f is an (dual) **isomorphism of posets** if f is an isotone (resp. antitone) bijection with an isotone inverse.
- 4. g is **extensive** if $x \le g(x)$ for all $x \in P$.
- 5. g is **idempotent** if g(g(x)) = g(x) for all $x \in P$.

- 1. For every poset, its identity function is an isomorphism of posets.
- 2. The function f: $x \mapsto 2x$ is an isomorphism of posets between (\mathbb{Z}, \leq) and $(2\mathbb{Z}, \leq)$.
- 3. There exists posets (P, \leq) and (Q, \leq) with a non-isomorphic isotone bijection.

DEFINITION [3]: Let (P, \leq) and (Q, \leq) be posets, f: $P \rightarrow Q$, and g: $P \rightarrow P$.

- 1. f is **isotone** if $x \le y \Rightarrow f(x) \le f(y)$ for all x, $y \in P$.
- 2. f is **antitone** if $x \le y \Rightarrow f(y) \le f(x)$ for all $x, y \in P$.
- 3. f is an (dual) **isomorphism of posets** if f is an isotone (resp. antitone) bijection with an isotone inverse.
- 4. g is **extensive** if $x \le g(x)$ for all $x \in P$.
- 5. g is **idempotent** if g(g(x)) = g(x) for all $x \in P$.

- 1. For every poset, its identity function is an isomorphism of posets.
- 2. The function f: $x \mapsto 2x$ is an isomorphism of posets between (\mathbb{Z}, \leq) and $(2\mathbb{Z}, \leq)$.
- 3. There exists posets (P, \leq) and (Q, \leq) with a non-isomorphic isotone bijection.

DEFINITION [3]: Let (P, \leq) and (Q, \leq) be posets, f: $P \rightarrow Q$, and g: $P \rightarrow P$.

- 1. f is **isotone** if $x \le y \Rightarrow f(x) \le f(y)$ for all x, $y \in P$.
- 2. f is **antitone** if $x \le y \Rightarrow f(y) \le f(x)$ for all $x, y \in P$.
- 3. f is an (dual) **isomorphism of posets** if f is an isotone (resp. antitone) bijection with an isotone inverse.
- 4. g is **extensive** if $x \le g(x)$ for all $x \in P$.
- 5. g is **idempotent** if g(g(x)) = g(x) for all $x \in P$.

- 1. For every poset, its identity function is an isomorphism of posets.
- 2. The function f: $x \mapsto 2x$ is an isomorphism of posets between (\mathbb{Z}, \leq) and $(2\mathbb{Z}, \leq)$.
- 3. There exists posets (P, \leq) and (Q, \leq) with a non-isomorphic isotone bijection.

DEFINITION [3]: Let (P, \leq) and (Q, \leq) be posets, f: $P \rightarrow Q$, and g: $P \rightarrow P$.

- 1. f is **isotone** if $x \le y \Rightarrow f(x) \le f(y)$ for all x, $y \in P$.
- 2. f is **antitone** if $x \le y \Rightarrow f(y) \le f(x)$ for all $x, y \in P$.
- 3. f is an (duel) **isomorphism of posets** if f is an isotone (resp. antitone) bijection with an isotone inverse.
- 4. g is **extensive** if $x \le g(x)$ for all $x \in P$.
- 5. g is **idempotent** if g(g(x)) = g(x) for all $x \in P$.

- 1. For every poset, its identity function is an isomorphism of posets.
- 2. The function f: $x \mapsto 2x$ is an isomorphism of posets between (\mathbb{Z}, \leq) and $(2\mathbb{Z}, \leq)$.
- 3. There exists posets (P, \leq) and (Q, \leq) with a non-isomorphic isotone bijection.

Order-Theoretic Functions on Lattices

The preceding adjectives also apply to functions on lattices. A (dual) **isomorphism of lattices** is a (dual) isomorphism of posets that also respects meets and joins. Formally, if (P, \leq) and (Q, \leq) are lattices and f: $P \rightarrow Q$, then f preserves meets if $f(\Lambda S) = \Lambda f(S)$ for all $S \in P$, and f preserves joins if f(VS) = Vf(S) for all $S \in P$.

Closure Operators in Order Theory

DEFINITION [4]: Let (P, \leq) be a poset. If f: $P \rightarrow P$ is an isotone, extensive, and idempotent function, then f is called a **closure map** on (P, \leq) .

REMARK: Closure maps can be interpreted as equivalence relations.

REMARK: Closure maps are tied to the topology of a poset.

EXAMPLE [4]: The function g: $(\mathbb{R} \cup \{-\infty,\infty\}) \rightarrow (\mathbb{R} \cup \{-\infty,\infty\})$ such that g: $x \mapsto \lceil x \rceil$ is a closure map on (\mathbb{R}, \leq) .

Galois Connections Define Closure Maps

DEFINITION [5]: (*Recall*) A **Galois Connection** between a poset (P, \leq) and a poset (Q, \leq) is a pair of of antitone functions f: P \rightarrow Q and g: Q \rightarrow P such that x \leq (g \circ f)(x) for all x \in P and y \leq (f \circ g)(y) for all y \in Q.

LEMMA [1]: If $\langle f,g \rangle$ forms a Galois Connection between a poset (P, \leq) and a poset (Q, \leq), then (g \circ f) is a closure map on (P, \leq) and (f \circ g) is a closure relation on (Q, \leq).

THEOREM [1]: If $\langle f,g \rangle$ forms a Galois Connection between a complete lattices (P, \leq) and (Q, \leq), then ((g \circ f)(P), \leq) and ((f \circ g)(Q), \leq) are complete lattices with dual isomorphisms f and g.

Galois Connections Define Closure Maps

DEFINITION [5]: (*Recall*) A **Galois Connection** between a poset (P, \leq) and a poset (Q, \leq) is a pair of of antitone functions f: P \rightarrow Q and g: Q \rightarrow P such that x \leq (g \circ f)(x) for all x \in P and y \leq (f \circ g)(y) for all y \in Q.

LEMMA [1]: If $\langle f,g \rangle$ forms a Galois Connection between a poset (P, \leq) and a poset (Q, \leq), then (g \circ f) is a closure map on (P, \leq) and (f \circ g) is a closure relation on (Q, \leq).

THEOREM [1]: If $\langle f,g \rangle$ forms a Galois Connection between a complete lattices (P, \leq) and (Q, \leq), then ((g \circ f)(P), \leq) and ((f \circ g)(Q), \leq) are complete lattices with dual isomorphisms f and g.

A Toy Galois Connection Between \mathbb{R} and \mathbb{Z}

Proving Theorem 1 in beyond the scope of this presentation. Instead an example of Theorem 1 is presented.

EXAMPLE [5]. The functions h: $\mathbb{R} \to \mathbb{Z}$ and k: $\mathbb{Z} \to \mathbb{R}$ such that h: $x \mapsto -\lceil x \rceil$ and k: $x \mapsto -x$ form a Galois Connection between the complete lattices ($\mathbb{R} \cup \{-\infty,\infty\}, \leq$) and ($\mathbb{Z} \cup \{-\infty,\infty\}, \leq$). The closure operators are ($k \circ h$)(x) = $\lceil x \rceil$ and ($h \circ k$)(x) = x. The induced lattices are both isomorphic to ($\mathbb{Z} \cup \{-\infty,\infty\}, \leq$).

REMARK: The lattices induced by Galois connections are analogous to quotients by equivalence relations.

QUESTION: How do we find Galois Connections on lattices?

A Toy Galois Connection Between \mathbb{R} and \mathbb{Z}

Proving Theorem 1 in beyond the scope of this presentation. Instead an example of Theorem 1 is presented.

EXAMPLE [5]. The functions h: $\mathbb{R} \to \mathbb{Z}$ and k: $\mathbb{Z} \to \mathbb{R}$ such that h: $x \mapsto -\lceil x \rceil$ and k: $x \mapsto -x$ form a Galois Connection between the complete lattices ($\mathbb{R} \cup \{-\infty,\infty\}, \leq$) and ($\mathbb{Z} \cup \{-\infty,\infty\}, \leq$). The closure operators are ($k \circ h$)(x) = $\lceil x \rceil$ and ($h \circ k$)(x) = x. The induced lattices are both isomorphic to ($\mathbb{Z} \cup \{-\infty,\infty\}, \leq$).

REMARK: The lattices induced by Galois connections are analogous to quotients by equivalence relations.

QUESTION: How do we find Galois Connections on lattices?

A Toy Galois Connection Between \mathbb{R} and \mathbb{Z}

Proving Theorem 1 in beyond the scope of this presentation. Instead an example of Theorem 1 is presented.

EXAMPLE [5]. The functions h: $\mathbb{R} \to \mathbb{Z}$ and k: $\mathbb{Z} \to \mathbb{R}$ such that h: $x \mapsto -\lceil x \rceil$ and k: $x \mapsto -x$ form a Galois Connection between the complete lattices ($\mathbb{R} \cup \{-\infty,\infty\}, \leq$) and ($\mathbb{Z} \cup \{-\infty,\infty\}, \leq$). The closure operators are ($k \circ h$)(x) = $\lceil x \rceil$ and ($h \circ k$)(x) = x. The induced lattices are both isomorphic to ($\mathbb{Z} \cup \{-\infty,\infty\}, \leq$).

REMARK: The lattices induced by Galois connections are analogous to quotients by equivalence relations.

QUESTION: How do we find Galois Connections on lattices?

Relations on Sets and Their Lattices

DEFINITION [6]: Let X and Y be sets. A **relation** between X and Y is a subset R of X×Y. The **opposite relation** to R is a subset R^{op} of Y×X such that (x, y) $\in R$ if and only if (y, x) $\in R^{op}$.

REMARK: Every relation R between X and Y induces a unique function f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$. In particular, $f(\emptyset) = X$.

- 1. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is induced by R and A $\in \mathcal{P}(X)$, then f(A) is the set of all common multiples of A.
- 2. If g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is induced by \mathbb{R}^{op} and $\mathbb{B} \in \mathcal{P}(Y)$, then g(B) is the set of all common divisors of B.
- 3. Furthermore, $(g \circ f)(A)$ contains the elements of A together with the divisors common to all elements of A.

DEFINITION [6]: Let X and Y be sets. A **relation** between X and Y is a subset R of X×Y. The **opposite relation** to R is a subset R^{op} of Y×X such that $(x, y) \in R$ if and only if $(y, x) \in R^{op}$.

REMARK: Every relation R between X and Y induces a unique function f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$. In particular, $f(\emptyset) = X$.

- 1. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is induced by R and A $\in \mathcal{P}(X)$, then f(A) is the set of all common multiples of A.
- 2. If g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is induced by \mathbb{R}^{op} and $\mathbb{B} \in \mathcal{P}(Y)$, then g(B) is the set of all common divisors of B.
- 3. Furthermore, $(g \circ f)(A)$ contains the elements of A together with the divisors common to all elements of A.

DEFINITION [6]: Let X and Y be sets. A **relation** between X and Y is a subset R of X×Y. The **opposite relation** to R is a subset R^{op} of Y×X such that $(x, y) \in R$ if and only if $(y, x) \in R^{op}$.

REMARK: Every relation R between X and Y induces a unique function f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$. In particular, $f(\emptyset) = X$.

- 1. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is induced by R and A $\in \mathcal{P}(X)$, then f(A) is the set of all common multiples of A.
- 2. If g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is induced by \mathbb{R}^{op} and $\mathbb{B} \in \mathcal{P}(Y)$, then g(B) is the set of all common divisors of B.
- 3. Furthermore, $(g \circ f)(A)$ contains the elements of A together with the divisors common to all elements of A.

DEFINITION [6]: Let X and Y be sets. A **relation** between X and Y is a subset R of X×Y. The **opposite relation** to R is a subset R^{op} of Y×X such that (x, y) $\in R$ if and only if (y, x) $\in R^{op}$.

REMARK: Every relation R between X and Y induces a unique function f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$. In particular, $f(\emptyset) = X$.

- 1. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is induced by R and A $\in \mathcal{P}(X)$, then f(A) is the set of all common multiples of A.
- 2. If g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is induced by \mathbb{R}^{op} and $\mathbb{B} \in \mathcal{P}(Y)$, then g(B) is the set of all common divisors of B.
- 3. Furthermore, $(g \circ f)(A)$ contains the elements of A together with the divisors common to all elements of A.

Relations Induce Closures and Connections

THEOREM [2]: Let R be a relation between X and Y. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is the function induced by R and g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is the function induced by R^{op}, then $\langle f,g \rangle$ forms a Galois Connection between ($\mathcal{P}(X), \subseteq$) and ($\mathcal{P}(Y), \subseteq$).

THEOREM [3]: Let R be a relation between X and Y. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is the function induced by R and g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is the function induced by R^{op}, then (g \circ f) is a closure map for the lattice ($\mathcal{P}(X)$, \subseteq) and (f \circ g) is a closure map for the lattice ($\mathcal{P}(X)$, \subseteq).

Closure Maps	Galois Connections
An isotone, extensive, and idempotent mapping of posets.	A pair of of antitone maps f: $P \rightarrow Q$ and g: $Q \rightarrow P$ such that $id_P \leq g \circ f$ and $id_Q \leq f \circ g$.

EXAMPLE [7]. The functions f and g from **EXAMPLE** [6] form a Galois Connection.

Relations Induce Closures and Connections

THEOREM [2]: Let R be a relation between X and Y. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is the function induced by R and g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is the function induced by \mathbb{R}^{op} , then $\langle f,g \rangle$ forms a Galois Connection between $(\mathcal{P}(X), \subseteq)$ and $(\mathcal{P}(Y), \subseteq)$.

THEOREM [3]: Let R be a relation between X and Y. If f: $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ is the function induced by R and g: $\mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ is the function induced by R^{op}, then (g \circ f) is a closure map for the lattice ($\mathcal{P}(X)$, \subseteq) and (f \circ g) is a closure map for the lattice ($\mathcal{P}(X)$, \subseteq).

Closure Maps	Galois Connections
An isotone, extensive, and idempotent mapping of posets.	A pair of of antitone maps f: $P \rightarrow Q$ and g: $Q \rightarrow P$ such that $id_P \leq g \circ f$ and $id_Q \leq f \circ g$.

EXAMPLE [7]. The functions f and g from **EXAMPLE** [6] form a Galois Connection.

Do These Constructions Commute?

COROLLARY [1]: Let R be a relation between X and Y. If $\langle f,g \rangle$ is the Galois Connection induced by R, then the closure map induced by R is the closure map induced by $\langle f,g \rangle$.

An Order-Theoretic View of Logic

Boolean Algebras Are Lattices

Boolean algebras are equivalent to **complemented distributive** lattices. A lattice is distributive if meet and join satisfy the following distributive laws:

 $X \land (Y \lor Z) = (X \land Y) \lor (X \land Z)$

 $X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z)$

A lattice is complemented if every element x has a **complement** x' such that $x \land x' = 0$ and $x \lor x' = 1$.

One can prove that complemented distributive lattices satisfy the following properties (see Roman, pp. 127).

- 1. 0' = 1, 1' = 0, and a'' = a.
- 2. $(a \land b)' = a' \lor b'$, $(a \lor b)' = a' \land b'$.
- 3. $a \le b$ if and only if a' V b = 1.

Boolean Algebras Are Lattices

Boolean algebras are equivalent to **complemented distributive** lattices. A lattice is distributive if meet and join satisfy the following distributive laws:

 $X \land (Y \lor Z) = (X \land Y) \lor (X \land Z)$

 $X \lor (Y \land Z) = (X \lor Y) \land (X \lor Z)$

A lattice is complemented if every element x has a **complement** x' such that $x \land x' = 0$ and $x \lor x' = 1$.

One can prove that complemented distributive lattices satisfy the following properties (see Roman, pp. 127).

- 1. 0' = 1, 1' = 0, and a'' = a.
- 2. $(a \land b)' = a' \lor b'$, $(a \lor b)' = a' \land b'$.
- 3. $a \le b$ if and only if a' V b = 1.

1. $\neg \bot = \neg, \neg \top = \bot$, and $\neg(\neg a) = a$.

2.
$$\neg(a \land b) = \neg a \lor \neg b, \neg(a \lor b) = \neg a \land \neg b.$$

3.
$$a \Rightarrow b$$
 if and only if $\neg a \lor b = \top$.

Power Set Lattices As 2^N-Valued Logic

Reasoning under Uncertainty

Quantum Logic and Lattices

In quantum logic we consider a complete lattice (L, \leq) of **observable events** and a set S \subseteq [0, 1]^L of (typically pure) **states**. Then ($\mathcal{P}(S)$, \subseteq) is a lattice of mixed states and ($\mathcal{P}(L)$, \subseteq) is a lattice of conjunctions of events.

The relation R from S to L such that σ Ra if and only if $\sigma(a) = 1$ is used to determine observations that are made certain by σ . The closure map induced by R is related to **superposition**, and is be used to study **inaccessibility**.

At the time that [*Butterfield and Melia 1993*] was written, there was question as to the utility of **Birkhoff-von Neumann quantum logic**. This paper looked to decompose quantum logic into a hierarchy of assumptions, and to determined (through Galois Connections) what could be deduced under each collection of assumptions.

Birkhoff-von Neumann quantum logic has since been abandoned for a new account logical account of quantum mechanics based upon *-autonomous categories (i.e., linear logic).

Conclusion and Summary

- Galois correspondences generalize to order-theory and induce topological structures on the lattices.
- In the special case of power set lattices, relations give rise to both Galois Connections and closures
- Logic and logical relations can be understood as lattices with special structure
- Problems in quantum logic can be reframed as constructing Galois Connections between lattices.

1.	0' = 1, 1' = 0, and a'' = a.
2.	$(a \land b)' = a' \lor b'$, $(a \lor b)' = a' \land b'$.
3.	$a \le b$ if and only if a' V b.
1.	¬⊥ = ⊤, ¬⊤ = ⊥, and ¬(¬a) = a.
1. 2.	ר ⊥ = ⊤, ¬⊤ = ⊥, and ר(¬a) = a. ר(a ∧ b) = רa ∨ רb, ר(a ∨ b) = רa ∧ רb.
1. 2. 3.	ר ⊥ = ⊤, ¬⊤ = ⊥, and ¬(¬a) = a. ¬(a ∧ b) = ¬a ∨ ¬b, ¬(a ∨ b) = ¬a ∧ ¬b. a ⇒ b if and only if ¬a ∨ b.

References

References

Butterfield, Jeremy, and Joseph Melia. "A Galois Connection Approach to Superposition and Inaccessibility." International Journal of Theoretical Physics, vol. 32, no. 12, 1993, pp. 2305-21. Plenum.

Belnap, Nuel. "A Useful Four-Valued Logic." *Modern Uses of Multiple-Valued Logic*, edited by J. Michael Dunn and George Epstein. Springer, 1997, 5-37.

Closure Operator, nLab, <u>https://ncatlab.org/nlab/show/closure+operator</u>. Accessed 2 Mar 2022.

Galois Connection, nLab, https://ncatlab.org/nlab/show/Galois+connection. Accessed 2 Mar 2022.

Quantum Logic, nLab, <u>https://ncatlab.org/nlab/show/quantum+logic</u>. Accessed 7 Mar 2022.

Roman, Steven. Lattices and Ordered Sets. 2008. Springer.

Zaitsev, Dmitry. "*A Few More Useful 8-valued Logics for Reasoning with Tetralattice EIGHT 4*." Studia Logica, vol. 92, Springer, 2009, 265-280.