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Galois Connections in Order Theory



Sets With Partial Orderings

DEFINITION [1]: A partially ordered set (poset) is a set P together with a binary relation (≤)⊆P×P such that the 
following properties are satisfied.

1. Reflexivity: for all x ∈ P, x ≤ x.
2. Antisymmetry: for all x, y ∈ P, if x ≤ y and y ≤ x, then x = y.
3. Transitivity: for all x, y, z ∈ P, if x ≤ y and y ≤ z, then x ≤ z.

EXAMPLE [1]: The following are partially ordered sets.

1. The real numbers ordered by the standard less-than-or-equal operation forms a poset (ℝ, ≤).
2. If X is an arbitrary set, then (P(X), ⊆) forms a poset.



Posets With Lattice Structure

DEFINITION [2]: A complete lattice is a poset (P, ≤) such that every subset S⊆P has a least upper bound 
denoted ΛS (the meet of S) and a greatest lower bound VS (the join of S).

EXAMPLE [2]: Do (ℝ, ≤) and (P(X), ⊆) form complete lattices?

1. (Sketch). We know from analysis that every bounded set S⊆ℝ has an infimum (a meet) and a supremum
(a join). However, not all sets in ℝ are bounded. To correct this we require the extended reals ℝ ∪ {-∞,∞}.

2. (Sketch). Let S ∈ P(X). Then ΛS is intersection and VS is union. It follows from set theory that ΛS is a 
greatest lower bound and VS is a least upper bound. This is well defined since ∅ ∈ P(X) and X ∈ P(X).



Order-Theoretic Functions on Posets

DEFINITION [3]: Let (P, ≤) and (Q, ⪯) be posets, f: P→Q, and g: P→P.

1. f is isotone if x ≤ y ⇒ f(x) ⪯ f(y) for all x, y ∈ P.
2. f is antitone if x ≤ y ⇒ f(y) ⪯ f(x) for all x, y ∈ P.
3. f is an (dual) isomorphism of posets if f is an isotone (resp. antitone) bijection with an isotone inverse.
4. g is extensive if x ≤ g(x) for all x ∈ P.
5. g is idempotent if g(g(x)) = g(x) for all x ∈ P.

EXAMPLE [3]: The following are examples of adjective-functions between posets.

1. For every poset, its identity function is an isomorphism of posets.
2. The function f: x ↦ 2x is an isomorphism of posets between (ℤ, ≤) and (2ℤ, ≤).
3. There exists posets (P, ≤) and (Q, ⪯) with a non-isomorphic isotone bijection.
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Order-Theoretic Functions on Lattices

The preceding adjectives also apply to functions on lattices. A (dual) isomorphism of lattices is a (dual) 
isomorphism of posets that also respects meets and joins. Formally, if (P, ≤) and (Q, ⪯) are lattices and f: P→Q, 
then f preserves meets if f(ΛS) = Λf(S) for all S ∈ P, and f preserves joins if f(VS) = Vf(S) for all S ∈ P.



Closure Operators in Order Theory

DEFINITION [4]: Let (P, ≤) be a poset. If f: P→P is an isotone, extensive, and idempotent function, then f is called 
a closure map on (P, ≤).

REMARK: Closure maps can be interpreted as equivalence relations.

REMARK: Closure maps are tied to the topology of a poset.

EXAMPLE [4]: The function g: (ℝ ∪ {-∞,∞})→(ℝ ∪ {-∞,∞}) such that g: x ↦ ⌈x⌉ is a closure map on (ℝ, ≤).



Galois Connections Define Closure Maps

DEFINITION [5]: (Recall) A Galois Connection between a poset (P, ≤) and a poset (Q, ⪯) is a pair of of antitone 
functions f: P→Q and g: Q→P such that x ≤ (g ∘ f)(x) for all x ∈ P and y ⪯ (f ∘ g)(y) for all y ∈ Q.

LEMMA [1]: If ⟨f,g⟩ forms a Galois Connection between a poset (P, ≤) and a poset (Q, ⪯), then (g ∘ f) is a closure 
map on (P, ≤) and (f ∘ g) is a closure relation on (Q, ⪯).

THEOREM [1]: If ⟨f,g⟩ forms a Galois Connection between a complete lattices (P, ≤) and (Q, ⪯), then ((g ∘ f)(P), ≤) 
and ((f ∘ g)(Q), ⪯) are complete lattices with dual isomorphisms f and g.
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A Toy Galois Connection Between ℝ and ℤ

Proving Theorem 1 in beyond the scope of this presentation. Instead an example of Theorem 1 is presented.

EXAMPLE [5]. The functions h: ℝ→ℤ and k: ℤ→ℝ such that h: x ↦ -⌈x⌉ and k: x ↦ -x form a Galois Connection 
between the complete lattices (ℝ ∪ {-∞,∞}, ≤) and (ℤ ∪ {-∞,∞}, ≤). The closure operators are (k ∘ h)(x) = ⌈x⌉ and 
(h ∘ k)(x) = x. The induced lattices are both isomorphic to (ℤ ∪ {-∞,∞}, ≤).

REMARK: The lattices induced by Galois connections are analogous to quotients by equivalence relations.

QUESTION: How do we find Galois Connections on lattices?

((ℝ ∪ {-∞,∞})(k ∘ h), ≤) :

((ℤ ∪ {-∞,∞})(h ∘ k), ≤) :
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Relations on Sets and Their Lattices



Relations on Sets Extend to Functions on Sets

DEFINITION [6]: Let X and Y be sets. A relation between X and Y is a subset R of X×Y. The opposite relation to 
R is a subset Rop of Y×X such that (x, y) ∈ R if and only if (y, x) ∈ Rop.

REMARK: Every relation R between X and Y induces a unique function f: P(X)→P(Y). In particular, f(∅) = X.

EXAMPLE [6]: Consider the relation R between ℕ and ℕ such that xRy if and only if x | y.

1. If f: P(X)→P(Y) is induced by R and A ∈ P(X), then f(A) is the set of all common multiples of A.
2. If g: P(Y)→P(X) is induced by Rop and B ∈ P(Y), then g(B) is the set of all common divisors of B.
3. Furthermore, (g ∘ f)(A) contains the elements of A together with the divisors common to all elements of A.
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Relations Induce Closures and Connections
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the lattice (P(X), ⊆).

EXAMPLE [7]. The functions f and g from EXAMPLE [6] form a Galois Connection. 

Closure Maps Galois Connections

An isotone, extensive, and idempotent mapping 
of posets.

A pair of of antitone maps f: P→Q and g: Q→P 
such that idP ≤ g ∘ f and idQ ⪯ f ∘ g.
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Do These Constructions Commute?

COROLLARY [1]: Let R be a relation between X and Y. If ⟨f,g⟩ is the Galois Connection induced by R, then the 
closure map induced by R is the closure map induced by ⟨f,g⟩.



An Order-Theoretic View of Logic



Boolean Algebras Are Lattices

Boolean algebras are equivalent to complemented distributive lattices. A lattice is distributive if meet and join 
satisfy the following distributive laws:

X Λ (Y V Z) = (X Λ Y) V (X Λ Z) X V (Y Λ Z) = (X V Y) Λ (X V Z)

A lattice is complemented if every element x has a complement x’ such that x Λ x’ = 0 and x V x’ = 1.

One can prove that complemented distributive lattices satisfy the following properties (see Roman, pp. 127).

1. 0’ = 1, 1’ = 0, and a’’ = a.

2. (a Λ b)’ = a’ V b’, (a V b)’ = a’ Λ b’.

3. a ≤ b if and only if a’ V b = 1.
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Power Set Lattices As 2N-Valued Logic

Classical Logic Reasoning with Contradictory Data Reasoning under Uncertainty



Quantum Logic and Lattices

In quantum logic we consider a complete lattice (L, ≤) of observable events and a set S ⊆ [0, 1]L of (typically 
pure) states. Then (P(S), ⊆) is a lattice of mixed states and (P(L), ⊆) is a lattice of conjunctions of events.

The relation R from S to L such that σRa if and only if σ(a) = 1 is used to determine observations that are made 
certain by σ. The closure map induced by R is related to superposition, and is be used to study inaccessibility.

At the time that [Butterfield and Melia 1993] was written, there was question as to the utility of Birkhoff-von 
Neumann quantum logic. This paper looked to decompose quantum logic into a hierarchy of assumptions, and 
to determined (through Galois Connections) what could be deduced under each collection of assumptions.

Birkhoff-von Neumann quantum logic has since been abandoned for a new account logical account of quantum 
mechanics based upon *-autonomous categories (i.e., linear logic).



Conclusion and Summary

● Galois correspondences generalize to order-theory and induce topological structures on the lattices.
● In the special case of power set lattices, relations give rise to both Galois Connections and closures
● Logic and logical relations can be understood as lattices with special structure
● Problems in quantum logic can be reframed as constructing Galois Connections between lattices.

1. 0’ = 1, 1’ = 0, and a’’ = a.

2. (a Λ b)’ = a’ V b’, (a V b)’ = a’ Λ b’.

3. a ≤ b if and only if a’ V b.

1. ¬⊥ = ⊤, ¬⊤ = ⊥, and ¬(¬a) = a.

2. ¬(a Λ b) = ¬a V ¬b, ¬(a V b) = ¬a Λ ¬b.

3. a ⇒ b if and only if ¬a V b.
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