MATH 3032: Abstract Algebra

Assignment 1

Solutions

1. Let R be a ring, and $n \in \mathbb{Z}$ an integer. Recall that, for every $x \in R$, there is a well-defined element " $n \cdot x$," defined in terms of the additive group structure on R.

For a positive integer n, we say that R has *characteristic* n if $n \cdot x = 0$ for all $x \in R$ and n is the smallest positive integer with this property. If there does not exist a positive integer n such that $n \cdot x = 0$ for all $x \in R$, then we say that R has *characteristic* 0.

(a) Show that \mathbb{Z}_n has characteristic *n*.

Indeed, pick $m \in \mathbb{Z}_n$, and let $\tilde{m} \in \mathbb{Z}$ be a representative. The product $n \cdot m \in \mathbb{Z}_n$ is the residue mod n of the integer $n\tilde{m}$, which is obviously divisible by n. This shows that the "for all" part of the definition is satisfied. To show that n is the minimal positive number with the stated property, note that if n' < n is also positive, then n does not divide n', and so $n' \cdot 1 \neq 0$ in \mathbb{Z}_n .

(b) Show that the zero ring is the unique unital ring of characteristic 1.

We need to confirm that the zero ring does have characteristic 1. But if $x \in \{0\}$, then x = 0, so $1 \cdot x = 1 \cdot 0 = 0$. So n = 1 satisfies the conditions of the definition, and there are no smaller positive integers than 1 full stop (satisfing the condition of not).

(c) Give an example of a nonunital ring of characteristic 1 other than the zero ring.

The statement is obviously wrong. Indeed, $1 \cdot x = x$. So if x = 0 for all $x \in R$, then R contains only one element, and is the zero ring.

(d) Suppose that R is unital, with unit 1_R . Show that R has characteristic n if and only $n \cdot 1_R = 0$.

If R is unital of characteristic n, then certainly $n \cdot 1_R = 0$, since $1_R \in R$ is an example of an element. It suffices to show the converse. But the distributive law shows that for any elements $x, y \in R$ in any ring, $n \cdot (xy) = (n \cdot x)y$. Specializing x to 1_R , we see that, for every $y \in R$, $n \cdot y = n \cdot (1_R y) = (n \cdot 1_R)y = 0y = 0$.

The exercise has a missing statement: the conditions in the exercise are not enough to guarantee that n is minimal. The exercise should add that n is the minimal value for which $n \cdot 1_R = 0$. Then certainly there cannot be a smaller n' for which $n' \cdot x = 0 \forall x$.

- 2. Recall that a ring R is called *Boolean* if for every $x \in R$, $x^2 = x$.
 - (a) Show that every Boolean ring is commutative.

Let R be Boolean and $x, y \in R$. We want to show that xy = yx. Consider the element x + y. By using the Boolean axioms three times, together with distributivity, we find:

 $x + y = (x + y)^{2} = (x + y)(x + y) = x^{2} + yx + xy + y^{2} = x + yx + xy + y.$

We can now subtract to conclude

$$xy = -yx.$$

On the other hand, by the next question, for any $z \in R$, z = -z, and so in particular -yx = yx.

- (b) Show that every Boolean ring has characteristic (1 or) 2. Let R be a Boolean ring. We want to show that 2x = 0 for all x. But, since R is Boolean, (2x)² = 2x, whereas whether R was Boolean or not we would have (2x)² = 4x. Using x² = x, we then find 2x = 4x. Subtracting 2x from both sides gives the final answer.
- 3. The following notion is not normally covered in undergraduate textbooks, but is quite important to some research applications. (For example, it came up in my current research.)

Let R be a ring. Then R is called *von Neumann regular* (vN regular) if for every $x \in R$, there exists a $y \in R$ such that xyx = x.

(a) Show that every division ring is vN regular.

Suppose R is a division ring and $x \in R$. If x = 0, then taking y = 0 obviously fulfills the condition. If $x \neq 0$, then taking $y = x^{-1}$ obviously fulfills the condition.

(b) Show that every Boolean ring is vN regular.

If R is Boolean and $x \in R$, then taking y = x obviously works.

- (c) Is the zero ring vN regular? Yes. $0^3 = 0$.
- (d) Is \mathbb{Z} vN regular?

No. Take, for example, x = 2. Then for any $y \in \mathbb{Z}$, xyx = 4y is divisible by 4. Since 2 is not divisible by 4, this will never equal 2.

(e) Is \mathbb{Z}_{10} vN regular?

Yes, somewhat remarkably. One way to demonstrate this is simply to go through all classes mod 10 and check. Here is a more general approach.

Let n = pq with $p \neq q$ both prime. (In the case at hand, n = 10, p = 2, and q = 5.) Let $x \in \mathbb{Z}_n$. By the Chinese Remainder Theorem, we can find a, b such that x = aq + bp, and the classes of $a \mod p$ and of $b \mod q$ are uniquely determined by x. Since p is prime, if $a \neq 0 \mod p$, then we can find a' such that $aa' = 1 \mod p$; similarly, if $b \neq 0 \mod q$, then we can find b' such that $bb' = 1 \mod q$. If $a = 0 \mod p$, then set a' = 0, and if $b = 0 \mod q$, then set b' = 0. Finally, set y = a'q + b'p. Then

$$xy = (aq + bp)(a'q + b'p) = aa'q + bb'p + (ab' + a'b)qp = aa'q + bb'p \mod n.$$

Similarly,

$$xyx = a^2a'q + b^2b'p \mod n$$

Now, if $a = 0 \mod p$, then $a^2 a' q = 0 \mod pq$, whereas if $a \neq 0 \mod p$, then $a^2 a' = a \mod p$, so $a^2 a' q = a \mod pq$. Ditto for the bs, and so xyx = x.

(f) Is \mathbb{Z}_8 vN regular?

No. An element of \mathbb{Z}_8 has a well-defined modulus mod 4, and 2 is not divisible by 4 in \mathbb{Z}_8 . So we can repeat the answer from item (c).

(g) [Bonus problem — hard!] Is the ring $C(\mathbb{R})$ of continuous functions $\mathbb{R} \to \mathbb{R}$ vN regular?

No, suppose that $f \in C(\mathbb{R})$ is sometimes 0 and sometimes not 0. Suppose further that there was some g for which fgf = f. Then, at any $x \in \mathbb{R}$ for which $f(x) \neq 0$, we'd have to have f(x)g(x)f(x) = f(x), and dividing by f(x) gives $g(x) = f(x)^{-1}$ for those values. Now, because f is sometimes zero and sometimes non-zero, we can find a convergent sequence x_1, x_2, \ldots in \mathbb{R} such that $f(x_n) \neq 0$ for all x_n , whereas $f(\lim_{n \to \infty} x_n) = 0$. But then the sequence $g(x_n)$ cannot have a limit, so the putative g would not be continuous.

4. Recall that an *idempotent* in a ring R is an element $p \in R$ such that $p^2 = p$. For example, 0 is an idempotent, and if R is unital, then 1 is also an idempotent. An idempotent other than 0 or 1 is called a *nontrivial idempotent*.

(a) Show that, if R is a division ring, then all idempotents are trivial.

Suppose that R is a division ring and that $p \in R$ is idempotent. If p = 0 then p is trivial. Otherwise p is invertible, and so dividing both sides of the equation $p^2 = p$ by p gives p = 1, so p is trivial.

(b) Show that, in \mathbb{Z} , all idempotents are trivial.

The argument in part (a) only required that multiplication be cancelative.

(c) Find a nontrivial idempotent in \mathbb{Z}_{15} . (There are two of them.)

We can try all cases, or use the Chinese Remainder Theorem. The latter says that p is idempotent mod 15 if and only if it is idempotent mod 3 and mod 5. Modulo a prime, part (a) shows that all idempotents are trivial. If p is going to be nontrivial overall, then we want a number which is 1 mod 3 but 0 mod 5, or a number which is 0 mod 3 but 1 mod 5. In other words: p = 10 and p = 6 work. Let's check this: $10^2 = 100 = 90 + 10 = 6 \times 15 + 10 = 10 \mod 15$; $6^2 = 36 = 30 + 6 = 2 \times 15 + 6 = 6 \mod 15$.

(d) Suppose that R is commutative and that $p \in R$ is an idempotent. Define subsets $ker(p) \subset R$ and $im(p) \subset R$ as follows:

$$\ker(p) := \{x \in R \text{ s.t. } xp = 0\}, \quad \operatorname{im}(p) := \{x \in R \text{ s.t. } xp = x\}.$$

Show that every element $z \in R$ is uniquely expressible as z = x + y with $x \in \ker(p)$ and $y \in \operatorname{im}(p)$.

Suppose we can find z = x + y with $x \in \ker(p)$ and $y \in \operatorname{im}(p)$, i.e. with xp = 0 and yp = y. Then multiplying by p gives

$$zp = xp + yp = 0 + y$$

and so

$$y = zp, \qquad x = z - zp.$$

This shows uniqueness of x, y. It also shows existence, because for these choices of x, y,

$$yp = (zp)p = zp^2 = zp = y,$$
 $xp = (z-zp)p = zp-zp^2 = zp-zp = 0,$ $z = (z-zp)+zp$

- (e) Show that ker(p) and im(p) are subrings of R.
 - We consider obvious the fact that these are abelian subgroups, as this just follows from the fact that, for fixed p, the equations xp = 0 and xp = x are linear in x. The interesting part is that ker(p) and im(p) are closed under multiplication in R. But they are in fact ideals: if $y \in R$ is arbitrary and x solves xp = 0, then (yx)p = y(xp) = y0 = 0; if $y \in R$ is arbitrary and x solves xp = x, then (yx)p = y(xp) = yx.
- (f) Show that im(p) is unital as a ring. Show that, if R is unital, then ker(p) is unital as a ring. But show that if p is nontrivial, then neither im(p) nor ker(p) is a unital subring of R.

The unit in im(p) is p itself. Indeed, $p \in im(p)$, from the defining equation $p^2 = p$, and if $x \in im(p)$, then certainly xp = x.

If R is moreover unital, then $1 - p \in \ker(p)$ because $(1 - p)p = p - p^2 = 0$, and 1 - p is the unit in $\ker(p)$ because x(1 - p) = x - xp = 0 if $x \in \ker(p)$.

If $p \neq 0, 1$, then neither p nor 1 - p is equal to 1. So these are not unital subrings.

(g) Show that the function $R \to im(p)$ sending $x \mapsto xp$ is a ring homomorphism, and that it is a unital ring homomorphism if R is unital.

We first show that $x \mapsto xp$ does define a function $R \to \operatorname{im}(p)$: $(xp)p = xp^2 = xp$, so the image is in $\operatorname{im}(p)$. If R is unital, then this function manifestly sends $1 \mapsto p$, so it is a unital function. We must check that it is a multiplicative map. But, using commutativity,

$$(xp)(yp) = xyp^2 = (xy)p$$

for all $x, y \in R$.