
MATH 3032: Abstract Algebra

Assignment 1

Solutions

1. Let R be a ring, and n ∈ Z an integer. Recall that, for every x ∈ R, there is a
well-defined element “n · x,” defined in terms of the additive group structure on
R.

For a positive integer n, we say that R has characteristic n if n · x = 0 for all
x ∈ R and n is the smallest positive integer with this property. If there does not
exist a positive integer n such that n · x = 0 for all x ∈ R, then we say that R has
characteristic 0.

(a) Show that Zn has characteristic n.

Indeed, pick m ∈ Zn, and let m̃ ∈ Z be a representative. The product n ·m ∈ Zn is
the residue mod n of the integer nm̃, which is obviously divisible by n. This shows that
the “for all” part of the definition is satisfied. To show that n is the minimal positive
number with the stated property, note that if n′ < n is also positive, then n does not
divide n′, and so n′ · 1 6= 0 in Zn.

(b) Show that the zero ring is the unique unital ring of characteristic 1.

We need to confirm that the zero ring does have charateristic 1. But if x ∈ {0}, then
x = 0, so 1 · x = 1 · 0 = 0. So n = 1 satisfies the conditions of the definition, and there
are no smaller positive integers than 1 full stop (satisfing the condition of not).

(c) Give an example of a nonunital ring of characteristic 1 other than the zero
ring.

The statement is obviously wrong. Indeed, 1 · x = x. So if x = 0 for all x ∈ R, then R
contains only one element, and is the zero ring.

(d) Suppose that R is unital, with unit 1R. Show that R has characteristic n if
and only n · 1R = 0.

If R is unital of characteristic n, then certainly n · 1R = 0, since 1R ∈ R is an example
of an element. It suffices to show the converse. But the distributive law shows that for
any elements x, y ∈ R in any ring, n · (xy) = (n · x)y. Specializing x to 1R, we see that,
for every y ∈ R, n · y = n · (1Ry) = (n · 1R)y = 0y = 0.

The exercise has a missing statement: the conditions in the exercise are not enough to
guarantee that n is minimal. The exercise should add that n is the minimal value for
which n · 1R = 0. Then certainly there cannot be a smaller n′ for which n′ · x = 0∀x.

2. Recall that a ring R is called Boolean if for every x ∈ R, x2 = x.

(a) Show that every Boolean ring is commutative.
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Let R be Boolean and x, y ∈ R. We want to show that xy = yx. Consider the element
x + y. By using the Boolean axioms three times, together with distributivity, we find:

x + y = (x + y)2 = (x + y)(x + y) = x2 + yx + xy + y2 = x + yx + xy + y.

We can now subtract to conclude
xy = −yx.

On the other hand, by the next question, for any z ∈ R, z = −z, and so in particular
−yx = yx.

(b) Show that every Boolean ring has characteristic (1 or) 2.

Let R be a Boolean ring. We want to show that 2x = 0 for all x. But, since R is Boolean,
(2x)2 = 2x, whereas whether R was Boolean or not we would have (2x)2 = 4x. Using
x2 = x, we then find 2x = 4x. Subtracting 2x from both sides gives the final answer.

3. The following notion is not normally covered in undergraduate textbooks, but is
quite important to some research applications. (For example, it came up in my
current research.)

Let R be a ring. Then R is called von Neumann regular (vN regular) if for every
x ∈ R, there exists a y ∈ R such that xyx = x.

(a) Show that every division ring is vN regular.

Suppose R is a division ring and x ∈ R. If x = 0, then taking y = 0 obviously fulfills
the condition. If x 6= 0, then taking y = x−1 obviously fulfills the condition.

(b) Show that every Boolean ring is vN regular.

If R is Boolean and x ∈ R, then taking y = x obviously works.

(c) Is the zero ring vN regular?

Yes. 03 = 0.

(d) Is Z vN regular?

No. Take, for example, x = 2. Then for any y ∈ Z, xyx = 4y is divisible by 4. Since 2
is not divisible by 4, this will never equal 2.

(e) Is Z10 vN regular?

Yes, somewhat remarkably. One way to demonstrate this is simply to go through all
classes mod 10 and check. Here is a more general approach.

Let n = pq with p 6= q both prime. (In the case at hand, n = 10, p = 2, and q = 5.) Let
x ∈ Zn. By the Chinese Remainder Theorem, we can find a, b such that x = aq + bp,
and the classes of a mod p and of b mod q are uniquely determined by x. Since p is
prime, if a 6= 0 mod p, then we can find a′ such that aa′ = 1 mod p; similarly, if b 6= 0
mod q, then we can find b′ such that bb′ = 1 mod q. If a = 0 mod p, then set a′ = 0,
and if b = 0 mod q, then set b′ = 0. Finally, set y = a′q + b′p. Then

xy = (aq + bp)(a′q + b′p) = aa′q + bb′p + (ab′ + a′b)qp = aa′q + bb′p mod n.

Similarly,
xyx = a2a′q + b2b′p mod n.

Now, if a = 0 mod p, then a2a′q = 0 mod pq, whereas if a 6= 0 mod p, then a2a′ = a
mod p, so a2a′q = a mod pq. Ditto for the bs, and so xyx = x.
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(f) Is Z8 vN regular?

No. An element of Z8 has a well-defined modulus mod 4, and 2 is not divisible by 4 in
Z8. So we can repeat the answer from item (c).

(g) [Bonus problem — hard!] Is the ring C(R) of continuous functions R → R vN
regular?

No, suppose that f ∈ C(R) is sometimes 0 and sometimes not 0. Suppose further that
there was some g for which fgf = f . Then, at any x ∈ R for which f(x) 6= 0, we’d have
to have f(x)g(x)f(x) = f(x), and dividing by f(x) gives g(x) = f(x)−1 for those values.
Now, because f is sometimes zero and sometimes non-zero, we can find a convergent
sequence x1, x2, . . . in R such that f(xn) 6= 0 for all xn, whereas f(limn→∞ xn) = 0. But
then the sequence g(xn) cannot have a limit, so the putative g would not be continuous.

4. Recall that an idempotent in a ring R is an element p ∈ R such that p2 = p. For
example, 0 is an idempotent, and if R is unital, then 1 is also an idempotent. An
idempotent other than 0 or 1 is called a nontrivial idempotent.

(a) Show that, if R is a division ring, then all idempotents are trivial.

Suppose that R is a division ring and that p ∈ R is idempotent. If p = 0 then p is trivial.
Otherwise p is invertible, and so dividing both sides of the equation p2 = p by p gives
p = 1, so p is trivial.

(b) Show that, in Z, all idempotents are trivial.

The argument in part (a) only required that multiplication be cancelative.

(c) Find a nontrivial idempotent in Z15. (There are two of them.)

We can try all cases, or use the Chinese Remainder Theorem. The latter says that
p is idempotent mod 15 if and only if it is idempotent mod 3 and mod 5. Modulo a
prime, part (a) shows that all idempotents are trivial. If p is going to be nontrivial
overall, then we want a number which is 1 mod 3 but 0 mod 5, or a number which
is 0 mod 3 but 1 mod 5. In other words: p = 10 and p = 6 work. Let’s check this:
102 = 100 = 90 + 10 = 6 × 15 + 10 = 10 mod 15; 62 = 36 = 30 + 6 = 2 × 15 + 6 = 6
mod 15.

(d) Suppose that R is commutative and that p ∈ R is an idempotent. Define
subsets ker(p) ⊂ R and im(p) ⊂ R as follows:

ker(p) := {x ∈ R s.t. xp = 0}, im(p) := {x ∈ R s.t. xp = x}.

Show that every element z ∈ R is uniquely expressible as z = x + y with
x ∈ ker(p) and y ∈ im(p).

Suppose we can find z = x + y with x ∈ ker(p) and y ∈ im(p), i.e. with xp = 0 and
yp = y. Then multiplying by p gives

zp = xp + yp = 0 + y

and so
y = zp, x = z − zp.

This shows uniqueness of x, y. It also shows existence, because for these choices of x, y,

yp = (zp)p = zp2 = zp = y, xp = (z−zp)p = zp−zp2 = zp−zp = 0, z = (z−zp)+zp.
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(e) Show that ker(p) and im(p) are subrings of R.

We consider obvious the fact that these are abelian subgroups, as this just follows from
the fact that, for fixed p, the equations xp = 0 and xp = x are linear in x. The interesting
part is that ker(p) and im(p) are closed under multiplication in R. But they are in fact
ideals: if y ∈ R is arbitrary and x solves xp = 0, then (yx)p = y(xp) = y0 = 0; if y ∈ R
is arbitrary and x solves xp = x, then (yx)p = y(xp) = yx.

(f) Show that im(p) is unital as a ring. Show that, if R is unital, then ker(p) is
unital as a ring. But show that if p is nontrivial, then neither im(p) nor ker(p)
is a unital subring of R.

The unit in im(p) is p itself. Indeed, p ∈ im(p), from the defining equation p2 = p, and
if x ∈ im(p), then certainly xp = x.

If R is moreover unital, then 1− p ∈ ker(p) because (1− p)p = p− p2 = 0, and 1− p is
the unit in ker(p) because x(1− p) = x− xp = 0 if x ∈ ker(p).

If p 6= 0, 1, then neither p nor 1− p is equal to 1. So these are not unital subrings.

(g) Show that the function R → im(p) sending x 7→ xp is a ring homomorphism,
and that it is a unital ring homomorphism if R is unital.

We first show that x 7→ xp does define a function R → im(p): (xp)p = xp2 = xp,
so the image is in im(p). If R is unital, then this function manifestly sends 1 7→ p,
so it is a unital function. We must check that it is a multiplicative map. But, using
commutativity,

(xp)(yp) = xyp2 = (xy)p

for all x, y ∈ R.

4


