MATH 3032: Abstract Algebra

Assignment 2

Solutions

1. Let Z[\/—5] denote the unital subring of C consisting of those complex numbers
a+bi such that a € Z and b € /5Z. Said differently, Z[/—5] = {a+by/—5 s.t. a,b € Z}.

(a)
(b)

Describe the ideal (2) C Z[/—5|: for which integers a,b is a + by/—5 € (2)?

a + by/—=5 € (2) if and only if a and b are both even.

Describe the ideal (1 + v/—5) C Z[v/—5|: for which integers a,b is a + b\/=5 €
(1++V/=5)7

By definition, (1 4+ y/—5) consists of the complex numbers of the form (1 + /=5)(m +
ny/—5) = (m—>5n)+(m+n)y/=5 for integers m, n. In other words, a+by/—5 € (1++/—5)
if and only if the numbers m,n defined by

a + 5b b—a

) n =

6 6

are integers. Note that n = b — m and b is definitionally an integer, so m is an integer
if and only if n is, and they are both integers if and only if a = b mod 6.

Recall that the norm of a complex number z is N(z) = 2z, i.e. N(a + bi) = a? + b?.
Recall also that that N(zw) = N(z)N(w) for all complex numbers z,w.

()

Show N(z) € Z whenever 2z € Z[,/-5]. Conclude that if N(w) = n, then
N(z) € nZ for all elements of the principle ideal (w) C Z[v/—5]. In particular,
conclude that N(z) € 4Z whenever z € (2) and that N(z) € 6Z whenever
z € (14++/-5).

N(a+by/—=5) = a® +5b? is obviously an integer whenever a, b are. The rest follows from
multiplicativity of N(—).

Show that if z,w € Z[/-5], then N(z+w) = N(z)+N(w) mod 2. Conclude that
the ideal (2,14 v/=5) = (2) + (1 + v/=5) is not the whole ring Z[/—5].

For the first statement, note that N(a + by/—5) = a? + 56> = a + b mod 2. For the
second statement, note that N(1) =1 is odd.

Show that there does not exist an element z € Z[/—5] such that N(z) = 2.
Suppose that 2 = N(a + by/=5) = a? + 5b%. If b # 0 is an integer, then > > 1, so
a®? +5b% > 5 (since a® > 0). So to get 2, we’d need b = 0. But there is no integer a such
that > =2: 12 =1<2,and 22 =4 > 2,

Explain this implies that the ideal (2,1 + \/—5) cannot be principal.

If the ideal (2,1++/=5), then its generator would have to have norm dividing the norms
of all elements of (2,1+ 1/=5). Since both 4 and 6 are such norms, the generator would
have to have norm 1 or 2. On the other hand, the generator has to have even norm by
part (d). And there are no elements of Z[\/—5] of norm 2.



(g) Show that there are ring isomorphisms
ZIV-5]/(1+V=5)=2Zs, and Z[V-5]/(2,1+V—5)=Zs.

Let Zs[¢]/(c?) denote the ring consisting of the four elements {0, 1,¢,1+¢}, with
1+1 =0 and ¢ = 0 (and of course 0 is the zero element, 1 is the multiplicative
unit, etc.). Show that there is a ring isomorphism

ZIV=5]/(2) = Zafe] /(€%).

For the first isomorphism Z[v/—5]/(1++/=5) & Zg, note that (1 —+/=5)(1++/=5) = 6,
and so the class of a+by/—5 mod 1+ +/—5 depends only on a,b mod 6: you can adjust
a ~ a — 6 by subtracting (1 — v/=5)(1 + v/=5), and you can adjust b ~ b — 6 by
subtracting v/—=5(1 — v/=5)(1 + v/=5) = (5 — vV/=5)(1 + v/—5). Moreover, the class of
a +by/—5 mod 1+ /=5 manifestly depends only on a —b. We claim that the numbers
0,1,2,3,4,5 are pairwise inequivalent mod 1 + v/—5. To show this, it suffices to show
that none of their differences are divisible in Z[y/—5] by 1 + v/—5. But their differences
are 1,2,3,4,5, with norms N(1) =1, N(2) =4, N(3) =9, N(4) = 16, and N(5) = 25,
none of which is divisible in Z by N (1 + +/=5) = 6.

For the second isomorphism Z[v/—5]|/(2,1++/—5) = Z3, we can use the first along with
one of the Isomorphism Theorems in the textbook.

For the third isomorphism Z[v/—5]/(2) & Zsle]/(e?), we first note that the class of
a+by/—5 mod (2) depends only on a and b mod 2, so that the elements 0,1, /=5, and
1 + /=5 represent a complete list of classes in Z[y/—5]/(2). Either by direct analysis
or considering norms, it is easy to see that there are no further relations. Moreover,
(1++/-5)2 = —4+2y/-5 =0 mod (2). So sending 1 + /=5 + e and /=5 1 +¢
supplies the desired isomorphism.

2. The Hurwitz quaternions are H := {a+bit+cj+dk € H s.t. all a,b,¢,d € Z or all a,b,c,d €
7 + %} For example, i — 2j and % + %i — %j — %k are elements of H but %i is not.

(a) Show that H is a (noncommutative!) unital subring of the quaternions H.

It is easy to see that H is an additive subgroup of H. The nontrivial statement is that
H is closed under multiplication. Let us say that an element x = a+bi+c¢j+dk € H
is integral if a,b, c,d € 7., and half-integral if a,b,c,d € 7, + % We want to show that if
x,y € H, then zy € H.

Since multiplication is distributive, it suffices to select a set that generates H under
addition, and then show that xy € H for any z,y € our selected set. An example of
such a set is the set {1,1i,],k, %(1 +1i+j+k)}. Clearly any product of the first four is
in H. Also if you multiply any of the first four against (14 i+ j+ k), you will get
%(:I:l + i+ j+ k). The most interesting case is (%(1 +i+j+ k))2 = %(—1 +i+j+k),
which is in H.

Recall that the norm of a quaternion z is N(z) = 2z, i.e. N(a + bi + ¢j + dk) =
a? +b? +? + d2.
(b) Show that N(zw) = N(2)N(w) for all z,w € H.

By definition, N(zw) = (z2w)(zw), where of course a + bi + ¢j + dk = a — bi — ¢j — dk.

Note that zw = wz, i.e. (—) reverses the order of multiplication. So N(zw) = zwwz =




zN(w)z. But N(w) € R, so it commutes with z, and so N(zw) = 2N (w)z = 22N (w) =
N(z)N(w).

Show that N(z) € Z for all z € H.

This is obvious when z = a + bi + ¢j + dk with a,b,c,d € Z. What about when
a,b,e,d € Z + %? Then N(z) is a sum of four squares of elements of Z + % Well, pick
n+3%€Z+3 Then (n+3)?=n>+2-n-1+(3)?=n?+n+ 1. So we have a sum of
four terms each of which is % more than an integer, so the sum is an integer.
Conclude that an element z € H is invertible if and only if N(z) = 1. Describe
the group of units H*. In particular, what are its elements, and how many
are there?

If 2 € H has inverse 2~ € H, then we must have 1 = N(1) = N(zz71) = N(2)N(z1),
which is a product of two (nonnegative!) integers, and so this is only possible if N(z)
(and N(z71)) is 1.

For the converse, recall that every nonzero element z € H is invertible in H with inverse
271 = %Z If z € H, then z € H. Thus for 27! to be in H, it suffices for N(z) = 1.

The group H* consists of the elements of H of norm 1. Suppose that a+bi+cj+dk € H
with a, b, c,d € Z. Then the only way for N(a + bi + ¢j + dk) = a® + b* + ¢ + d? to be
1 is if one of a,b,c,d = £1 and the rest are 0. So that gives a subset of H* of order 8,
consisting of the elements {£1, +i, +j, +£k}. This is the famous “quaternion group” Qs.

Now suppose that a,b,c,d € Z + % and a® + b + ¢ + d2 = 1. The smallest value of
n? for n € Z + % is n? = i, which occurs only for n = i%. So the smallest value of
a?+ b2+ +d%is i + % + i + % = 1, which occurs only when a,b,c,d = j:%. This gives
16 elements in H*.

All together, we find that H* has order 8 + 16 = 24.

This would suffice to answer the homework exercise, but we can if we want continue
on our analysis. By Cauchy’s theorem, H* contains an element w of order 3. Let’s
see if we can find it. It must be of the form J(£1 & i+ j + k), since the elements
of Qs = {+£1,+i,+j, £k} have order (1 or 2 or) 4. It is not too hard to compute
%(:tl +i4j+k)3, tracking all the signs carefully, but even easier to compute the square.
Why is the square helpful? Because if we are going to have w? = 1, then we will have
w? = w™!, but every element of H* solves w™! = @. And upon computing, we find that
%(il +itj+k)?= %(—1 +...) — the real part is always negative. If this is going to
be w, then w itself had better have a negative real part.

Solet’s try w = (—1+i+j+k). Then direct computation shows w? = 1(—1—i—j—k) =
w, and so we have succeeded.

How does this w relate to the elements of QQg? Of course, +1 are central, and there is

a symmetry between i, j, k. Direct computation shows wi = %(—i — 1+ k — j) whereas
iw = %(—i —1—k+j). From these and the same for j, k, we see that
wiv Tt =j, wjwl=k wkw!l=1i

This implies that the subgroup Qg C H* is normal, and that the whole group is a
semidirect product
H* = Qg »x C3

with the Cs-subgroup generated by w and acting on Qg by the cyclic permutation i —
jrk—i



(e)

Show that the subset J C H defined by
J:={a+bi+cj+dk € Hs.t. all a,b,c,d € Z and a+b+c+d € 2Z}

is a two-sided ideal.

We consider it obvious that J C H is an additive subgroup. We wish to show that J
absorbs multiplication from both sides: if x € H and y € J, then xy and yz are in J.
As in part (a), we will do this by letting x range just over a set that generates H as an
additive group. An example of such a set is {1,1,j,k,w}.

Multiplication of y = a+bi+cj+dk on either side by i, j, k has the effect of rearranging the
coefficients a, b, ¢, d and switching some of their signs. This will not change whether they
are all in Z, and assuming they are in Z, then it won’t change the parity (=remainder
mod 2) of their sum (since if n € Z, and n and —n have the same parity).

The interesting question is to show that yw and wy are in J if y is. We can do this
by repeating the trick, now choosing a set that generates J as an additive group. An
example of such a set is {2,1+1,1+ j, 1+ k}. Indeed, integer combinations of the last
three can supply any element of the form (b+ c+d) + bi+ ¢j+ dk with b, c,d € Z. Then
as long as a+b+c+d € 27, we can add some integer multiple of 2 to get a+ bi+ cj+ dk.
So we want to show that if y € {2,1+1,1+ j,1+ k}, then yw and wy are in J. Well,
2w =w2 = —-141i+j+k, which is in J since =1+ 1+ 141 = 2 € 2Z. The other
products are all essentially the same, so we will report one of them:

(I+iw=-1+jeJ

Calculate the quotient ring H/J. Hint: Show that |H/J| = 4. Show that H/J
has characteristic 2. Show that H/J contains an element w # 1 such that
w3 = 1. Conclude that H/J is the finite field F, = {0, 1,w,©}.

We first note that since 2 € J, H/J definitely has characteristic 2. Second, we have at
various times chosen an additive generating set for H. For any such choice, its image in
H/J will again be an additive generating set. For example, H/J is additively generated
by the cosets 1 + J,i+ J,j+ J,k+ J,w+ J. Note that the first four of these cosets are
equal, and not the trivial coset J: they are all the set

{a+bi+cj+dkst. st.alabedeZanda+b+c+de22Z+ 1}.

On the other hand, w+ J # J and w+ J # 1 + J.

So H/J consists of the integer combinations of 1+ .J and w + J. Since H/J has charac-
teristic 2, the coefficients in these combinations are just 0 and 1. Thus a complete list
of cosets is H/J ={0+ J,1+ Jw+ J, 1+ w+ J}.

One can also see that H/J has order 4 without having earlier found the element w.
Indeed, it is not hard to show that the following is a complete list of cosets:

J={a+bi+cj+dkst. st. alabc,deZanda+b+c+de2Z},

{a+bi+cj+dkst. st alabecdeZanda+b+c+de2Z+ 1},

{a+bi+cj+dkst. st allabedeZ+35anda+b+c+de 27},
{a +bi+cj+ dk s.t. s.t. alla,b,c,dGZ—i—%anda+b+c+d€2Z+1}.

Even without finding w, we can still invoke Cauchy’s theorem to know that H does
contain some element w # 1 € H such that w® = 1. The image of this element must be



some element of H/.J of order three, unless its image is (the class of) 1. Can the latter
be the case? Well, 1 4+ J N H* consists of elements with integer coefficients, and those
all have order (1 or 2 or) 4. So no, it cannot be.



