
MATH 3032: Abstract Algebra

Assignment 2

Solutions

1. Let Z[
√
−5] denote the unital subring of C consisting of those complex numbers

a+bi such that a ∈ Z and b ∈
√

5Z. Said differently, Z[
√
−5] = {a+b

√
−5 s.t. a, b ∈ Z}.

(a) Describe the ideal (2) ⊂ Z[
√
−5]: for which integers a, b is a+ b

√
−5 ∈ (2)?

a+ b
√
−5 ∈ (2) if and only if a and b are both even.

(b) Describe the ideal (1 +
√
−5) ⊂ Z[

√
−5]: for which integers a, b is a + b

√
−5 ∈

(1 +
√
−5)?

By definition, (1 +
√
−5) consists of the complex numbers of the form (1 +

√
−5)(m +

n
√
−5) = (m−5n)+(m+n)

√
−5 for integers m,n. In other words, a+b

√
−5 ∈ (1+

√
−5)

if and only if the numbers m,n defined by

m =
a+ 5b

6
, n =

b− a
6

are integers. Note that n = b −m and b is definitionally an integer, so m is an integer
if and only if n is, and they are both integers if and only if a ≡ b mod 6.

Recall that the norm of a complex number z is N(z) = zz̄, i.e. N(a+ bi) = a2 + b2.
Recall also that that N(zw) = N(z)N(w) for all complex numbers z, w.

(c) Show N(z) ∈ Z whenever z ∈ Z[
√
−5]. Conclude that if N(w) = n, then

N(z) ∈ nZ for all elements of the principle ideal (w) ⊂ Z[
√
−5]. In particular,

conclude that N(z) ∈ 4Z whenever z ∈ (2) and that N(z) ∈ 6Z whenever
z ∈ (1 +

√
−5).

N(a+ b
√
−5) = a2 + 5b2 is obviously an integer whenever a, b are. The rest follows from

multiplicativity of N(−).

(d) Show that if z, w ∈ Z[
√
−5], then N(z+w) = N(z)+N(w) mod 2. Conclude that

the ideal (2, 1 +
√
−5) = (2) + (1 +

√
−5) is not the whole ring Z[

√
−5].

For the first statement, note that N(a + b
√
−5) = a2 + 5b2 ≡ a + b mod 2. For the

second statement, note that N(1) = 1 is odd.

(e) Show that there does not exist an element z ∈ Z[
√
−5] such that N(z) = 2.

Suppose that 2 = N(a + b
√
−5) = a2 + 5b2. If b 6= 0 is an integer, then b2 ≥ 1, so

a2 + 5b2 ≥ 5 (since a2 ≥ 0). So to get 2, we’d need b = 0. But there is no integer a such
that a2 = 2: 12 = 1 < 2, and 22 = 4 > 2.

(f) Explain this implies that the ideal (2, 1 +
√
−5) cannot be principal.

If the ideal (2, 1+
√
−5), then its generator would have to have norm dividing the norms

of all elements of (2, 1 +
√
−5). Since both 4 and 6 are such norms, the generator would

have to have norm 1 or 2. On the other hand, the generator has to have even norm by
part (d). And there are no elements of Z[

√
−5] of norm 2.
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(g) Show that there are ring isomorphisms

Z[
√
−5]/(1 +

√
−5) ∼= Z6, and Z[

√
−5]/(2, 1 +

√
−5) ∼= Z3.

Let Z2[ε]/(ε
2) denote the ring consisting of the four elements {0, 1, ε, 1+ε}, with

1+1 = 0 and ε2 = 0 (and of course 0 is the zero element, 1 is the multiplicative
unit, etc.). Show that there is a ring isomorphism

Z[
√
−5]/(2) ∼= Z2[ε]/(ε

2).

For the first isomorphism Z[
√
−5]/(1 +

√
−5) ∼= Z6, note that (1−

√
−5)(1 +

√
−5) = 6,

and so the class of a+b
√
−5 mod 1+

√
−5 depends only on a, b mod 6: you can adjust

a ; a − 6 by subtracting (1 −
√
−5)(1 +

√
−5), and you can adjust b ; b − 6 by

subtracting
√
−5(1 −

√
−5)(1 +

√
−5) = (5 −

√
−5)(1 +

√
−5). Moreover, the class of

a+ b
√
−5 mod 1 +

√
−5 manifestly depends only on a− b. We claim that the numbers

0, 1, 2, 3, 4, 5 are pairwise inequivalent mod 1 +
√
−5. To show this, it suffices to show

that none of their differences are divisible in Z[
√
−5] by 1 +

√
−5. But their differences

are 1, 2, 3, 4, 5, with norms N(1) = 1, N(2) = 4, N(3) = 9, N(4) = 16, and N(5) = 25,
none of which is divisible in Z by N(1 +

√
−5) = 6.

For the second isomorphism Z[
√
−5]/(2, 1 +

√
−5) ∼= Z3, we can use the first along with

one of the Isomorphism Theorems in the textbook.

For the third isomorphism Z[
√
−5]/(2) ∼= Z2[ε]/(ε

2), we first note that the class of
a+ b

√
−5 mod (2) depends only on a and b mod 2, so that the elements 0, 1,

√
−5, and

1 +
√
−5 represent a complete list of classes in Z[

√
−5]/(2). Either by direct analysis

or considering norms, it is easy to see that there are no further relations. Moreover,
(1 +

√
−5)2 = −4 + 2

√
−5 = 0 mod (2). So sending 1 +

√
−5 7→ ε and

√
−5 7→ 1 + ε

supplies the desired isomorphism.

2. The Hurwitz quaternions are H := {a+bi+cj+dk ∈ H s.t. all a, b, c, d ∈ Z or all a, b, c, d ∈
Z+ 1

2}. For example, i− 2j and 1
2 + 3

2 i− 7
2 j− 5

2k are elements of H but 3
2 i is not.

(a) Show that H is a (noncommutative!) unital subring of the quaternions H.

It is easy to see that H is an additive subgroup of H. The nontrivial statement is that
H is closed under multiplication. Let us say that an element x = a + bi + cj + dk ∈ H
is integral if a, b, c, d ∈ Z, and half-integral if a, b, c, d ∈ Z+ 1

2 . We want to show that if
x, y ∈ H, then xy ∈ H.

Since multiplication is distributive, it suffices to select a set that generates H under
addition, and then show that xy ∈ H for any x, y ∈ our selected set. An example of
such a set is the set {1, i, j,k, 12(1 + i + j + k)}. Clearly any product of the first four is
in H. Also if you multiply any of the first four against 1

2(1 + i + j + k), you will get
1
2(±1± i± j± k). The most interesting case is

(
1
2(1 + i + j + k)

)2
= 1

2(−1 + i + j + k),
which is in H.

Recall that the norm of a quaternion z is N(z) = zz̄, i.e. N(a + bi + cj + dk) =
a2 + b2 + c2 + d2.

(b) Show that N(zw) = N(z)N(w) for all z, w ∈ H.

By definition, N(zw) = (zw)(zw), where of course a+ bi + cj + dk = a − bi − cj − dk.
Note that zw = w̄z̄, i.e. (−) reverses the order of multiplication. So N(zw) = zww̄z̄ =
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zN(w)z̄. But N(w) ∈ R, so it commutes with z, and so N(zw) = zN(w)z̄ = zz̄N(w) =
N(z)N(w).

(c) Show that N(z) ∈ Z for all z ∈ H.

This is obvious when z = a + bi + cj + dk with a, b, c, d ∈ Z. What about when
a, b, c, d ∈ Z+ 1

2? Then N(z) is a sum of four squares of elements of Z+ 1
2 . Well, pick

n+ 1
2 ∈ Z+ 1

2 . Then (n+ 1
2)2 = n2 + 2 · n · 12 + (12)2 = n2 + n+ 1

4 . So we have a sum of
four terms each of which is 1

4 more than an integer, so the sum is an integer.

(d) Conclude that an element z ∈ H is invertible if and only if N(z) = 1. Describe
the group of units H×. In particular, what are its elements, and how many
are there?

If z ∈ H has inverse z−1 ∈ H, then we must have 1 = N(1) = N(zz−1) = N(z)N(z−1),
which is a product of two (nonnegative!) integers, and so this is only possible if N(z)
(and N(z−1)) is 1.

For the converse, recall that every nonzero element z ∈ H is invertible in H with inverse
z−1 = 1

N(z) z̄. If z ∈ H, then z̄ ∈ H. Thus for z−1 to be in H, it suffices for N(z) = 1.

The group H× consists of the elements of H of norm 1. Suppose that a+bi+cj+dk ∈ H
with a, b, c, d ∈ Z. Then the only way for N(a+ bi + cj + dk) = a2 + b2 + c2 + d2 to be
1 is if one of a, b, c, d = ±1 and the rest are 0. So that gives a subset of H× of order 8,
consisting of the elements {±1,±i,±j,±k}. This is the famous “quaternion group” Q8.

Now suppose that a, b, c, d ∈ Z + 1
2 and a2 + b2 + c2 + d2 = 1. The smallest value of

n2 for n ∈ Z + 1
2 is n2 = 1

4 , which occurs only for n = ±1
2 . So the smallest value of

a2 + b2 + c2 + d2 is 1
4 + 1

4 + 1
4 + 1

4 = 1, which occurs only when a, b, c, d = ±1
2 . This gives

16 elements in H×.

All together, we find that H× has order 8 + 16 = 24.

This would suffice to answer the homework exercise, but we can if we want continue
on our analysis. By Cauchy’s theorem, H× contains an element ω of order 3. Let’s
see if we can find it. It must be of the form 1

2(±1 ± i ± j ± k), since the elements
of Q8 = {±1,±i,±j,±k} have order (1 or 2 or) 4. It is not too hard to compute
1
2(±1± i± j±k)3, tracking all the signs carefully, but even easier to compute the square.
Why is the square helpful? Because if we are going to have ω3 = 1, then we will have
ω2 = ω−1, but every element of H× solves ω−1 = ω̄. And upon computing, we find that
1
2(±1± i± j± k)2 = 1

2(−1± . . . ) — the real part is always negative. If this is going to
be ω̄, then ω itself had better have a negative real part.

So let’s try ω = 1
2(−1+i+j+k). Then direct computation shows ω2 = 1

2(−1−i−j−k) =
ω̄, and so we have succeeded.

How does this ω relate to the elements of Q8? Of course, ±1 are central, and there is
a symmetry between i, j,k. Direct computation shows ωi = 1

2(−i − 1 + k − j) whereas
iω = 1

2(−i− 1− k + j). From these and the same for j,k, we see that

ωiω−1 = j, ωjω−1 = k, ωkω−1 = i.

This implies that the subgroup Q8 ⊂ H× is normal, and that the whole group is a
semidirect product

H× = Q8 o C3

with the C3-subgroup generated by ω and acting on Q8 by the cyclic permutation i 7→
j 7→ k 7→ i.
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(e) Show that the subset J ⊂ H defined by

J := {a+ bi + cj + dk ∈ H s.t. all a, b, c, d ∈ Z and a+ b+ c+ d ∈ 2Z}

is a two-sided ideal.

We consider it obvious that J ⊂ H is an additive subgroup. We wish to show that J
absorbs multiplication from both sides: if x ∈ H and y ∈ J , then xy and yx are in J .
As in part (a), we will do this by letting x range just over a set that generates H as an
additive group. An example of such a set is {1, i, j,k, ω}.
Multiplication of y = a+bi+cj+dk on either side by i, j,k has the effect of rearranging the
coefficients a, b, c, d and switching some of their signs. This will not change whether they
are all in Z, and assuming they are in Z, then it won’t change the parity (=remainder
mod 2) of their sum (since if n ∈ Z, and n and −n have the same parity).

The interesting question is to show that yω and ωy are in J if y is. We can do this
by repeating the trick, now choosing a set that generates J as an additive group. An
example of such a set is {2, 1 + i, 1 + j, 1 + k}. Indeed, integer combinations of the last
three can supply any element of the form (b+ c+ d) + bi + cj + dk with b, c, d ∈ Z. Then
as long as a+b+c+d ∈ 2Z, we can add some integer multiple of 2 to get a+bi+cj+dk.
So we want to show that if y ∈ {2, 1 + i, 1 + j, 1 + k}, then yω and ωy are in J . Well,
2ω = ω2 = −1 + i + j + k, which is in J since −1 + 1 + 1 + 1 = 2 ∈ 2Z. The other
products are all essentially the same, so we will report one of them:

(1 + i)ω = −1 + j ∈ J.

(f) Calculate the quotient ring H/J . Hint: Show that |H/J | = 4. Show that H/J
has characteristic 2. Show that H/J contains an element ω 6= 1 such that
ω3 = 1. Conclude that H/J is the finite field F4 = {0, 1, ω, ω̄}.
We first note that since 2 ∈ J , H/J definitely has characteristic 2. Second, we have at
various times chosen an additive generating set for H. For any such choice, its image in
H/J will again be an additive generating set. For example, H/J is additively generated
by the cosets 1 + J, i + J, j + J,k + J, ω + J . Note that the first four of these cosets are
equal, and not the trivial coset J : they are all the set

{a+ bi + cj + dk s.t. s.t. all a, b, c, d ∈ Z and a+ b+ c+ d ∈ 2Z+ 1}.

On the other hand, ω + J 6= J and ω + J 6= 1 + J .

So H/J consists of the integer combinations of 1 + J and ω+ J . Since H/J has charac-
teristic 2, the coefficients in these combinations are just 0 and 1. Thus a complete list
of cosets is H/J = {0 + J, 1 + J, ω + J, 1 + ω + J}.
One can also see that H/J has order 4 without having earlier found the element ω.
Indeed, it is not hard to show that the following is a complete list of cosets:

J = {a+ bi + cj + dk s.t. s.t. all a, b, c, d ∈ Z and a+ b+ c+ d ∈ 2Z},
{a+ bi + cj + dk s.t. s.t. all a, b, c, d ∈ Z and a+ b+ c+ d ∈ 2Z+ 1},
{a+ bi + cj + dk s.t. s.t. all a, b, c, d ∈ Z+ 1

2 and a+ b+ c+ d ∈ 2Z},
{a+ bi + cj + dk s.t. s.t. all a, b, c, d ∈ Z+ 1

2 and a+ b+ c+ d ∈ 2Z+ 1}.

Even without finding ω, we can still invoke Cauchy’s theorem to know that H does
contain some element ω 6= 1 ∈ H such that ω3 = 1. The image of this element must be
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some element of H/J of order three, unless its image is (the class of) 1. Can the latter
be the case? Well, 1 + J ∩H× consists of elements with integer coefficients, and those
all have order (1 or 2 or) 4. So no, it cannot be.
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