MATH 3032: Abstract Algebra

Assignment 3 Solutions

1. Let R be a *finite* unital ring. Show that every element of R is either a unit or a left zero-divisor, an element $a \in R$ such that there exists $b \neq 0$ such that ab = 0 [if R is noncommutative, then this might be different from being a right zero-divisor]. Explain why an element cannot be both a unit and a left zero-divisor except for one possible ring R [which one?]. Explain why the main statement implies that in a *finite* unital ring, the set of left zero-divisors is equal to the set of right zero-divisors.

Hint: Explain that if $r \in R$ is *not* a left zero-divisor if and only if left-multiplication by r is injective. Now use finiteness of R.

Suppose that ab = 0 and that a is invertible. Then $b = 1b = a^{-1}ab = a^{-1}0 = 0$. So a left zero-divisor cannot be a unit. Note: there is an error in the question.

Now suppose that R is finite. Then multiplication $a \times (-) : R \to R$ is a map from R to itself. The distributive law says that this is a map of additive groups. The b for which ab = 0 are precisely the kernel of $a \times (-)$, so a is a zero-divisor iff this map has a nontrivial kernel iff this map is not injective. But this is a map on a *finite* set, so it is injective iff it is surjective (pigeon hole!) iff it is bijective. But if it is bijective, then we can find a preimage of 1, which will be a right-inverse of a, so let's tentatively call it a^{-1} . So the function $a^{-1} \times (-) : R \to R$ is a right-inverse to the function $a \times (-)$. But this function was invertible, so its right-inverse is also its left-inverse. So $a^{-1}a \times (-) = \mathrm{id}$, and evaluating at 1 gives that a^{-1} is also a left-inverse to a, so that $a \in R$ is invertible.

- 2. (a) Does $\mathbb{Z}_4[x]$ contain a non-constant polynomial which is a unit? Either give an example of one or prove that none exists.
 - Yes. 1 + 2x is an example. Indeed, $(1 + 2x)^2 = 1 + 4x + 4x^2 \equiv 1 \pmod{4}$.
 - (b) Does $\mathbb{Z}_6[x]$ contain a non-constant polynomial which is a unit? Either give an example of one or prove that none exists.

No. A fast way to show this is to reduce further, working mod 2 and mod 3. So suppose that $f(x) \in \mathbb{Z}_6[x]$ is invertible. Then $(f \mod 2)$ is invertible in $\mathbb{Z}_2[x]$, and so a constant (namely the constant 1), so all the coefficients of f other that the constant value are even. But $(f \mod 3)$ is invertible in $\mathbb{Z}_3[x]$, so all the coefficients of f other than the constant value are divisible by 3. But a number which is even and divisible by 3 is divisible by 6. So $f(x) \in \mathbb{Z}_6[x]$ is a constant.

- 3. Define the *formal derivative* $\partial_x : R[x] \to R[x]$ to be the operation $\sum_n a_n x^n \mapsto \sum_n n a_n x^{n-1} = \sum_n (n+1) a_{n+1} x^n$.
 - (a) Is ∂_x a homomorphism of additive groups? Is ∂ a homomorphism of rings? ∂_x is a homomorphism of additive groups, since addition in R[x] is done coefficient-by-coefficient and for each n, and for every additive group A, the function $a \mapsto na$ is a

homomorphism of additive groups. ∂_x is not a homomorphism of rings: $\partial_x(x^2) = 2x \neq (\partial_x x)^2 = 1$.

(b) What is the kernel of $\partial_x : \mathbb{Z}[x] \to \mathbb{Z}[x]$?

If $a_n \neq 0$ for some $n \geq 0$, then $\partial_x \sum a_n x^n$ will contain a term like $na_n x^{n-1} \neq 0$. So the kernel consists just of the constant polynomials. We have used that a polynomial is zero iff all of its coefficients are.

(c) What is the kernel of $\partial_x : \mathbb{Z}_p[x] \to \mathbb{Z}_p[x]$?

Working mod p, there is a kernel: $\partial_x x^{mp} = mpx^{mp-1} = 0$. This is the only kernel: if n is not divisible by p, then it is invertible mod p, so $na_n x^{n-1} = 0$ would imply $a_n = 0$. In other words, $\ker(\partial_x : \mathbb{Z}_p[x] \to \mathbb{Z}_p[x]) = \mathbb{Z}_p[x^p]$.

(d) What is its image of $\partial_x : \mathbb{Z}_p[x] \to \mathbb{Z}_p[x]$?

From the previous analysis, we see that x^k can be produced by ∂_x if $k+1 \neq mp$, but not when k+1=mp. So the image is the set of polynomials of the form

$$\sum_{n \not\equiv -1 \pmod{p}} a_n x^n.$$

- 4. For each of the following pairs $f, g \in R[x]$, use long division to write f = qg + r with $\deg r < \deg g$. You should do the work by hand and show your work, but you do not need to write any words of explanation.
 - (a) $f(x) = x^6 + 3x^5 + 4x^2 3x + 2$ and $g(x) = x^2 + 2x 3$ in $\mathbb{Z}[x]$

So $q = x^4 + x^3 + x^2 + x + 5$ and r = -10x + 17.

(b) $f(x) = x^6 + 3x^5 + 4x^2 - 3x + 2$ and $g(x) = 3x^2 + 2x - 3$ in $\mathbb{Z}_7[x]$. Note: $3^{-1} = 5$ in \mathbb{Z}_7 .

So $q = 5x^4 + 5x^2 - x$ and r = x + 2.