
Math 3032: Abstract Algebra

Assignment 7

due April 11, 2023

Recall that the power set P(N) = {subsets of N} is a Boolean ring, with addition and multi-
plication defined by

A+B := (A ∪B) r (A ∩B), A ·B = A ∩B.

Pick once and for all a non-principal maximal ideal m ⊂ P(N). Let’s refer to the elements of m as
minorities and the elements of P(N)rm as majorities. Here are a few facts that you should think
through, but you don’t need to write any justification if you don’t want to:

• The multiplicative unit “1” in P(N) is N itself. For any element A ∈ P(N), its complement
is ¬A := NrA = 1 +A.

• The requirement that m is an ideal is equivalent to the requirements that: (i) if you expand a
majority, then it remains a majority; (ii) the intersection of two majorities is again a majority.

• The requirement that m is maximal is equivalent to the requirement that, for every element
A ∈ P(N), either A or ¬A is in m, but not both.

• The requirement that m is non-principal is equivalent to the requirement that if A ⊂ N is
finite, then A is a minority.

Now consider the ring RN of all functions N→ R. We’ll equivalently think of a function a : N→ R

as the sequence (a(0), a(1), a(2), . . . ). Addition and multiplication are defined pointwise (using the
addition and multiplication in R):

(a+ b)(n) := a(n) + b(n), (a · b)(n) := a(n) · b(n).

Let Jm ⊂ RN denote the set of sequences for which a majority of its entries are 0. (Note that this
depends on the choice of m.)

1. Show that Jm is an ideal. Define ∗R := RN/Jm to be the quotient ring. Thus, an element
of ∗R is represented by a sequence f : N → R. Explain that two sequences represent the
same element iff they agree on a majority of entries. Explain that if you want to describe
an element of ∗R, you don’t have to describe all values of a representing sequence: just
describing a majority of its entries suffices. The ring ∗R is called the ring of hyperreal numbers.
(Warning: different choices of m can give non-isomorphic rings, so it really should be called
the “m-hyperreal numbers.”)

2. Show that ∗R is a field. Hint: For any sequence, either a majority of its entries are 0, or a
majority of its entries are invertible.

1



3. Show that, if x ∈ ∗R, then exactly one of the following is true: x is 0, or x is a nonzero
square, or −x is a nonzero square. Let’s call x positive if x is a nonzero square, and negative
if −x is a nonzero square. Hint: for any sequence, either a majority of its entries are zero, or
a majority of its entries are positive, or a majority of its entries are negative.

4. Show that the relation “x < y if y − x is positive” is a total ordering on ∗R. Hint: the thing
you need to prove is that the sum of two positive elements is positive (why?). Hint: use the
fact that the intersection in N of majorities is again a majority.

5. The map R→ RN → ∗R that takes each real number r to the constant sequence (r, r, r, r, . . . )
is a homomorphism (why?). Hence it is an injection (why?). Let’s call this homomorphism
r 7→ ∗r. Let’s call those hyperreals in the image of this map standard.

Let’s say that a hyperreal x ∈ ∗R is positive infinite if it is greater than every standard real
number. Show that positive infinite hyperreals exist. Hint: consider an unbounded increasing
sequence, for example 1, 2, 3, 4, . . . .

Let’s say that a hyperreal x is infinite if x or −x is positive infinite. Let’s say that a hyperreal
is finite if it is not infinite.

6. Show that the set ∗R<∞ of finite hyperreals is a ring.

7. Let’s say that a hyperreal x is infinitesimal if for every positive real number r ∈ R>0, x < r
and −x < r. For example, 0 is infinitesimal. Show that nonzero infinitesimals exist. Hint:
consider a sequence that converges to 0, but never gets there.

8. Show that the set ∗R≈0 of infinitesimal hyperreals is an ideal in the ring of finite hyperreals.
Let’s say that two finite hyperreals are approximately equal if their difference is infinitesimal.
Since ∗R≈0 is an ideal, approximate equality is an equivalence relation, and two finite hyperre-
als are approximately equal iff they represent the same class in the quotient ring ∗R<∞/

∗R≈0.
For a finite hyperreal x, the set of all hyperreals approximately equal to x is called its halo.

9. Show that if r, s are standard, then ∗r ≈ ∗s if and only if r = s. Hard (requires real analysis):
Show that every finite hyperreal x is approximately equal to some standard real ∗r. This
standard number r is called the body of x, and x− body(x) is called the soul of x.

Conclude that the quotient ring ∗R<∞/
∗R≈0 is isomorphic to R.

Hyperreals were invented in the 1960s by Abraham Robinson, and described in detail in his
book Nonstandard analysis (1966). His idea was that a lot of real analysis can be done without ever
using limits and ε-δ proofs and keeping track of bounds and errors. For example, if you have some
function f : R → R, then you can extend it to RN pointwise (in other words, f(a0, a1, a2, . . . ) =
(f(a0), f(a1), f(a2), . . . )). Now, if sequences a and b agree at a majority of entries, then certainly
f(a) and f(b) also agree at a majority of entries. So f defines a function ∗f : ∗R → ∗R. Now,
suppose that f has some analytic behaviour you care about. For example, maybe f is bounded, i.e.
there are some real numbers R−, R+ ∈ R such that R− < f(r) < R+ for all r ∈ R. Then these also
bound ∗f(x) for every hyperreal x. But then you can pick some infinite hyperreal ω, and look at
body(f(ω)), and this is a sort of “limx→∞ f(x)”. If you wanted a limit to 0 instead, you could pick
some nonzero infinitesimal hyperreal ε and look at body(f(ε)). Maybe you want to know which of
two functions f, g “grows faster”: just ask whether f(ω) or g(ω) is bigger. Etc.
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