MATH 4180/5180: Algebraic Topology

Assignment 1

due January 23, 2023

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

- 1. Show that a retract of a contractible space is contractible.
- 2. Let $X \subset \mathbb{R}^3$ denote the image of the standard immersion of a Klein bottle. Show that X is homotopy equivalent to $S^1 \vee S^1 \vee S^2$.
- 3. Show that \vee is the coproduct of pointed spaces (i.e. in the category of pointed spaces and pointed continuous maps).

Show that \wedge is the *tensor product* of pointed spaces in sense of hom-tensor adjunctions: given pointed spaces Y, Z, the set hom_{*}(Y, Z) of pointed maps from Y to Z is naturally a space; the statement to be proven is that hom_{*} $(X \wedge Y, Z) = \text{hom}_*(X, \text{hom}_*(Y, Z))$.

Remark: Since we haven't talked at all about point-set issues, you should use without proof that \times is the tensor product, in the same sense, in the category of unpointed spaces.

- 4. Show that S^{∞} is contractible.
- 5. Given positive integers v, e, f with v e + f = 2, find a cell decomposition of S^2 with v 0-cells, e 1-cells, and f 2-cells.
- 6. A map $X \to Y$ is constant if it factors as $X \to \{pt\} \to Y$. A map is homotically constant if it is homotopic to a constant map. Show that the following are equivalent for a space X:
 - (a) X is contractible.
 - (b) For every space Y, every map $X \to Y$ is homotopically constant.
 - (c) For every space Y, every map $Y \to X$ is homotopically constant.
- 7. Suppose that $f: X \to Y$ and there exists $g, h: Y \to X$, possibly different, such that $fg \simeq id_Y$ and $hf \simeq id_X$. Show that f is a homotopy equivalence.
- 8. The join X * Y of spaces X and Y is the quotient of $X \times Y \times I$ under the identifications $(x, y_1, 0) \sim (x, y_2, 0)$ for any fixed $x \in X$ and any two $y_1, y_2 \in Y$, and $(x_1, y, 1) \sim (x_2, y, 1)$ for any fixed $y \in Y$ and any two $x_1, x_2 \in X$.
 - (a) Show that the cone CX is $X * \{ pt \}$.
 - (b) Show that the suspension SX is $X * S^0$.
 - (c) Show that $S^m * S^n = S^{m+n+1}$.