MATH 4180/5180: Algebraic Topology

Assignment 2: π_{1}
due February 28, 2023

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

1. Construct infinitely many non-homotopic retractions $S^{1} \vee S^{1} \rightarrow S^{1}$. Hint: Use π_{1} to show that they are non-homotopic.
2. Let $X \subset \mathbb{R}^{m}$ be a union of convex open subsets X_{i}, such that for every triple i, j, k, the triple intersection $X_{i} \cap X_{j} \cap X_{k}$ is nonempty. Show that X is simply connected.
3. Let M be a manifold of dimension $n \geq 3$, and suppose that M is simply connected. Show that M remains simply connected if you remove finitely many points.
4. Let X denote the complement of a trefoil knot in \mathbb{R}^{3}. Pick a basepoint $x_{0} \in X$ "above" the knot, with respect to the standard drawing of the trefoil:

Note that, in this standard drawing, there are three "arcs" that go over but not under other strands. For each of these arcs, consider the loop in X that leaves from x_{0}, loops just around that arc, and then heads back to the basepoint, without interacting with the other strands. This selects three elements $a, b, c \in \pi_{1}\left(X, x_{0}\right)$.
(a) Show that a, b, c together generate $\pi_{1}\left(X, x_{0}\right)$.
(b) Show that a, b, c satisfy the relations $a b a^{-1}=c, b c b^{-1}=a, c a c^{-1}=b$. Show that these relations generate all relations.
(c) Construct a nontrivial surjection $\pi_{1}\left(X, x_{0}\right) \rightarrow S_{3}$, the symmetric group on three elements. Conclude that $\pi_{1}\left(X, x_{0}\right)$ is nonabelian. Conclude that the trefoil is nontrivially knotted.

Remark: You may use van Kampen's theorem, but also feel free to argue slightly informally about how loops can interact.
5. Recall that the reduced suspension of a pointed space $\left(X, x_{0}\right)$ is $\Sigma\left(X, x_{0}\right)=S X / S\left\{x_{0}\right\}$; it is pointed by the image of x_{0}. Explain that there is a loops-suspension adjunction: for any pointed spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$, show that the sets of pointed maps

$$
\operatorname{maps}_{*}\left(\left(X, x_{0}\right), \Omega\left(Y, y_{0}\right)\right), \quad \operatorname{maps}_{*}\left(\Sigma\left(X, x_{0}\right),\left(Y, y_{0}\right)\right)
$$

are naturally isomorphic.
6. Show that if a connected space X has finite π_{1}, then every map $X \rightarrow S^{1}$ is nullhomotopic (=homotopic to a constant map). Hint: use the covering space $\mathbb{R}^{1} \rightarrow S^{1}$.
7. Find all 2- and 3 -sheeted covers of $S^{1} \vee S^{1}$, up to isomorphism of covering spaces without basepoint.
8. Find all connected covering spaces of $\mathbb{R P}^{2} \vee \mathbb{R P}^{2}$.

