MATH 4180/5180: Algebraic Topology

Assignment 4: H[•]

due March 30, 2023

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

- 1. Let $k, \ell > 0$. Show that every map $S^{k+\ell} \to S^k \times S^\ell$ induces the trivial map $H_{k+\ell}(S^{k+\ell}) \to H_{k+\ell}(S^k \times S^\ell)$. Hint: dualize to cohomology, and use cup products.
- 2. Calculate the cohomology ring (with Z coefficient, say), of a (closed, oriented) surface of genus g. Hint: by attaching g-1 2-cells, you can create a CW complex homotopy-equivalent to a wedge sum of g copies of $T^2 = S^1 \times S^1$.
- 3. Show that if $H_n(X)$ is a finitely generated free abelian group for each n, then the rings $H^{\bullet}(X;\mathbb{Z})\otimes\mathbb{Z}/p$ and $H^{\bullet}(X;\mathbb{Z}/p)$ are isomorphic. Show that the conclusion holds more generally if $H_n(X)$ is finitely generated and all elements of finite order have order coprime to p.
- 4. Show that $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$.
- 5. Fix a field F. The *Poincaré series* of a space X is the formal power series $p(X)(t) = \sum_{i=0}^{\infty} \dim_F \operatorname{H}^i(X; F)t^n$. Show that $p(X \times Y) = p(X)p(Y)$ and that $p(X \sqcup Y) = p(X) + p(Y)$. Compute the Poincaré series of $\mathbb{R}P^{\infty}$ and $\mathbb{C}P^{\infty}$.