MATH 4180/5180: Algebraic Topology

Optional Assignment 5: π •

1. (a) Let $\left(X, x_{0}\right)$ be an H-space, with multiplication $\mu: X \times X \rightarrow X$ (and identity element $\left.x_{0}\right)$. Consider the operation on $\pi_{n}\left(X, x_{0}\right)$ defined by

$$
[f] \star[g]=[\mu(f, g)], \quad f, g:\left(D^{n}, \partial D^{n}\right) \rightarrow\left(X, x_{0}\right),
$$

in other words, \star is the map that μ induces on π_{n}. Show that \star agrees with the usual group operation on π_{n}.
(b) Conclude that $\pi_{1}\left(X, x_{0}\right)$ is abelian.
(c) Generalize this argument to show that all Whitehead brackets vanish.
2. Let X be a pointed connected space and $X^{\text {sc }} \rightarrow X$ its simply connected cover. Recall that the induced map $\pi_{n}\left(X^{\mathrm{sc}}\right) \rightarrow \pi_{n}(X)$ is an isomorphism for $n \geq 2$, and recall that $\pi_{1}(X)$ acts on $X^{\text {sc }}$, and hence on $\pi_{n}\left(X^{\text {sc }}\right)$, by deck transformations. Show that this action agrees with the standard "conjugation" action of $\pi_{1}(X)$ on $\pi_{n}(X)$.
3. Show that an n-connected n-dimensional CW complex is contractible.
4. A space X is called H-finite if it is homotopic to a CW complex with finitely many cells, and a space Y is called π-finite if [it is a finite disjoint union of connected spaces, each of which satisfies] $\prod_{n=1}^{\infty} \pi_{n}(Y)$ is finite. Show that if X is H-finite and Y is π-finite, then $[X, Y]$ is finite.
5. Show that there is no retract $\mathbb{R} P^{n} \rightarrow \mathbb{R} P^{k}$ if $n>k>0$.
6. Compute the action of $\pi_{1} \mathbb{R} P^{n}$ on $\pi_{n} \mathbb{R} P^{n}$.
7. Recall that a space is called acyclic if its reduced homology vanishes. Show that if X is acyclic, then ΣX is contractible.
8. Show that a map between simply-connected CW complexes is a homotopy equivalence iff its mapping cylinder is contractible. Use the previous exercise to give a counterexample if the simply-connectedness hypothesis is dropped.
9. (a) Suppose that $f: X \rightarrow Y$ is a map of CW complexes, and let $f^{\mathrm{sc}}: X^{\mathrm{sc}} \rightarrow Y^{\mathrm{sc}}$ be the induced map. Show that f is a homotopy equivalence if $\pi_{1}(f)$ and $\mathrm{H}_{\bullet}\left(f^{\mathrm{sc}}\right)$ are isos.
(b) Conclude that if X and Y are n-dimensional CW complexes, with n-truncations $\tau_{n} X$ and $\tau_{n} Y$, then a map $f: X \rightarrow Y$ is a homotopy equivalence if $\tau_{n} f: \tau_{n} X \rightarrow \tau_{n} Y$ is.
10. (a) Let $C_{p}=\left\{1, t, \ldots, t^{p-1}\right\}$ denote the cyclic group of prime order p. Build a cell complex with p cells of each dimension, freely transitively permuted by C_{p}, as follows. Start with a single 0 -cell e_{0} and its images $t e_{0}, t^{2} e_{0}, \ldots, t^{p-1} e_{0}$. Now attach a 2 -cell e_{1} with boundary $e_{0} \sqcup t e_{0}$. Now attach $p-1$ more 2 -cells $t e_{1}, t^{2} e_{1}, \ldots$, compatibly with the
C_{p}-action: $\partial t^{i} e_{1}=t^{i} e_{0} \sqcup t^{i+1} e_{0}$. Note that $\cup_{i} t^{i} e_{1}$ is an S^{1}, with basepoint e_{0}, and attach a 2 -cell e_{2} along it. Now attach $p-1$ more 2-cells $t e_{2}, t^{2} e_{2}, \ldots$, again compatibly with the C_{p} action - only the basepoint changes. Now attach a 3 -cell e_{3} along $e_{2} \cup t e_{2} \cong S^{2}$, and attach more 3-cells compatibly with the C_{p}-action. Note that you get an S^{3}. Fill that S^{3} with a 4 -cell e_{4}. Attach more 4 -cells. Attach a 5 -cell with boundary $e_{4} \cup t e_{4}$. Keep going.
Show that the resulting cell complex is contractible. Thus its quotient by the free $C_{p^{-}}$ action is a $K\left(C_{p}, 1\right)$.
Use this cell model of $K\left(C_{p}, 1\right)$ to compute $\mathrm{H}^{\bullet}\left(K\left(C_{p}, 1\right) ; A\right)$ for any A.
Compute $\operatorname{dim} \mathrm{H}^{n}\left(K\left(C_{p}^{N}, 1\right) ; \mathbb{F}_{p}\right)$.
(b) Show that C_{p}^{2} cannot act freely on any sphere. Hint: If C_{p}^{2} acts freely on S^{n}, then the quotient M is an n-dimensional closed manifold M. When $n>1$ (the $n=1$ case is easier), build a $K\left(C_{p}^{2}, 1\right)$ from M by attaching one cell of dimension $n+1$ and some cells of dimension $>n+1$. Conclude that $\operatorname{dim} \mathrm{H}^{n+1}\left(K\left(C_{p}^{2}, 1\right) ; \mathbb{F}_{p}\right) \leq 1$, which it ain't.
11. Suppose that $F \rightarrow E \rightarrow B$ is a fibre bundle such that $F \hookrightarrow E$ is homotopic to the constant map. Show that the LES in homotopy splits: $\pi_{n}(B) \cong \pi_{n}(E) \oplus \pi_{n-1}(F)$. Conclude that $\pi_{n} \mathbb{R} P^{n}, \pi_{2 n+1} \mathbb{C} P^{n}, \pi_{4 n+3} \mathbb{H} P^{n}$, and $\pi_{15} \mathrm{O} P^{1}$ contain \mathbb{Z}-summands. Note that, in the $n=1$ case, $\mathbb{K} P^{1}$ is a sphere of dimension $\operatorname{dim}_{\mathbb{R}} \mathbb{K}$.
12. Show that, up to homomotopy, there are precisely two maps $\mathbb{R} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$, the trivial one and a nontrivial one. Show that the nontrivial one induces the trivial map on $\widetilde{H}_{\bullet}(-; \mathbb{Z})$ but a nontrivial map on $\widetilde{\mathrm{H}}^{\bullet}(-; \mathbb{Z})$. How is this consistent with the universal coefficient theorem? Hint: $\mathbb{C} P^{\infty}=K(\mathbb{Z}, 2)$.
In fact, use the Bockstein for $\mathbb{Z} \rightarrow \mathbb{C} \rightarrow \mathbb{C}^{\times}$to show that the nontrivial map $\mathbb{R} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ is simply the base-change along $\mathbb{R} \rightarrow \mathbb{C}$.
13. (a) Suppose that $E \rightarrow B \rightarrow C$ is a fibration. Show that the homotopy fibre of $E \rightarrow B$ is equivalent to ΩC. A fibration is called principle if, up to homotopy, it is of the form $\Omega C \rightarrow E \rightarrow B$ for some fibration $E \rightarrow B \rightarrow C$.
(b) Show that a principle fibration $\Omega C \rightarrow E \xrightarrow{p} B$ is equivalent to a product $\Omega C \times B$ if and only if it has a section, i.e. a map $s: B \rightarrow E$ such that $p s=\operatorname{id}_{B}$. Hint for one direction: What is the homotopy fibre of the trivial map $B \rightarrow C$?

