MATH 4180/5180: Algebraic Topology

Optional Assignment 5: π_{\bullet}

1. (a) Let (X, x_0) be an *H*-space, with multiplication $\mu : X \times X \to X$ (and identity element x_0). Consider the operation on $\pi_n(X, x_0)$ defined by

$$[f] \star [g] = [\mu(f,g)], \quad f,g: (D^n, \partial D^n) \to (X, x_0),$$

in other words, \star is the map that μ induces on π_n . Show that \star agrees with the usual group operation on π_n .

- (b) Conclude that $\pi_1(X, x_0)$ is abelian.
- (c) Generalize this argument to show that all Whitehead brackets vanish.
- 2. Let X be a pointed connected space and $X^{sc} \to X$ its simply connected cover. Recall that the induced map $\pi_n(X^{sc}) \to \pi_n(X)$ is an isomorphism for $n \ge 2$, and recall that $\pi_1(X)$ acts on X^{sc} , and hence on $\pi_n(X^{sc})$, by deck transformations. Show that this action agrees with the standard "conjugation" action of $\pi_1(X)$ on $\pi_n(X)$.
- 3. Show that an *n*-connected *n*-dimensional CW complex is contractible.
- 4. A space X is called *H*-finite if it is homotopic to a CW complex with finitely many cells, and a space Y is called π -finite if [it is a finite disjoint union of connected spaces, each of which satisfies] $\prod_{n=1}^{\infty} \pi_n(Y)$ is finite. Show that if X is *H*-finite and Y is π -finite, then [X, Y] is finite.
- 5. Show that there is no retract $\mathbb{R}P^n \to \mathbb{R}P^k$ if n > k > 0.
- 6. Compute the action of $\pi_1 \mathbb{R}P^n$ on $\pi_n \mathbb{R}P^n$.
- 7. Recall that a space is called *acyclic* if its reduced homology vanishes. Show that if X is acyclic, then ΣX is contractible.
- 8. Show that a map between simply-connected CW complexes is a homotopy equivalence iff its mapping cylinder is contractible. Use the previous exercise to give a counterexample if the simply-connectedness hypothesis is dropped.
- 9. (a) Suppose that $f: X \to Y$ is a map of CW complexes, and let $f^{sc}: X^{sc} \to Y^{sc}$ be the induced map. Show that f is a homotopy equivalence if $\pi_1(f)$ and $H_{\bullet}(f^{sc})$ are isos.
 - (b) Conclude that if X and Y are n-dimensional CW complexes, with n-truncations $\tau_n X$ and $\tau_n Y$, then a map $f: X \to Y$ is a homotopy equivalence if $\tau_n f: \tau_n X \to \tau_n Y$ is.
- 10. (a) Let $C_p = \{1, t, \dots, t^{p-1}\}$ denote the cyclic group of prime order p. Build a cell complex with p cells of each dimension, freely transitively permuted by C_p , as follows. Start with a single 0-cell e_0 and its images $te_0, t^2e_0, \dots, t^{p-1}e_0$. Now attach a 2-cell e_1 with boundary $e_0 \sqcup te_0$. Now attach p-1 more 2-cells te_1, t^2e_1, \dots , compatibly with the

 C_p -action: $\partial t^i e_1 = t^i e_0 \sqcup t^{i+1} e_0$. Note that $\cup_i t^i e_1$ is an S^1 , with basepoint e_0 , and attach a 2-cell e_2 along it. Now attach p-1 more 2-cells $te_2, t^2 e_2, \ldots$, again compatibly with the C_p action — only the basepoint changes. Now attach a 3-cell e_3 along $e_2 \cup te_2 \cong S^2$, and attach more 3-cells compatibly with the C_p -action. Note that you get an S^3 . Fill that S^3 with a 4-cell e_4 . Attach more 4-cells. Attach a 5-cell with boundary $e_4 \cup te_4$. Keep going.

Show that the resulting cell complex is contractible. Thus its quotient by the free C_p -action is a $K(C_p, 1)$.

Use this cell model of $K(C_p, 1)$ to compute $H^{\bullet}(K(C_p, 1); A)$ for any A. Compute dim $H^n(K(C_p^N, 1); \mathbb{F}_p)$.

- (b) Show that C_p^2 cannot act freely on any sphere. Hint: If C_p^2 acts freely on S^n , then the quotient M is an n-dimensional closed manifold M. When n > 1 (the n = 1 case is easier), build a $K(C_p^2, 1)$ from M by attaching one cell of dimension n+1 and some cells of dimension > n + 1. Conclude that dim $\mathrm{H}^{n+1}(K(C_p^2, 1); \mathbb{F}_p) \leq 1$, which it ain't.
- 11. Suppose that $F \to E \to B$ is a fibre bundle such that $F \hookrightarrow E$ is homotopic to the constant map. Show that the LES in homotopy splits: $\pi_n(B) \cong \pi_n(E) \oplus \pi_{n-1}(F)$. Conclude that $\pi_n \mathbb{R}P^n$, $\pi_{2n+1} \mathbb{C}P^n$, $\pi_{4n+3} \mathbb{H}P^n$, and $\pi_{15} \mathbb{O}P^1$ contain Z-summands. Note that, in the n = 1case, $\mathbb{K}P^1$ is a sphere of dimension $\dim_{\mathbb{R}} \mathbb{K}$.
- 12. Show that, up to homomotopy, there are precisely two maps $\mathbb{R}P^{\infty} \to \mathbb{C}P^{\infty}$, the trivial one and a nontrivial one. Show that the nontrivial one induces the trivial map on $\widetilde{H}_{\bullet}(-;\mathbb{Z})$ but a nontrivial map on $\widetilde{H}^{\bullet}(-;\mathbb{Z})$. How is this consistent with the universal coefficient theorem? Hint: $\mathbb{C}P^{\infty} = K(\mathbb{Z}, 2)$.

In fact, use the Bockstein for $\mathbb{Z} \to \mathbb{C} \to \mathbb{C}^{\times}$ to show that the nontrivial map $\mathbb{R}P^{\infty} \to \mathbb{C}P^{\infty}$ is simply the base-change along $\mathbb{R} \to \mathbb{C}$.

- 13. (a) Suppose that $E \to B \to C$ is a fibration. Show that the homotopy fibre of $E \to B$ is equivalent to ΩC . A fibration is called *principle* if, up to homotopy, it is of the form $\Omega C \to E \to B$ for some fibration $E \to B \to C$.
 - (b) Show that a principle fibration $\Omega C \to E \xrightarrow{p} B$ is equivalent to a product $\Omega C \times B$ if and only if it has a section, i.e. a map $s : B \to E$ such that $ps = id_B$. Hint for one direction: What is the homotopy fibre of the trivial map $B \to C$?