
MATH 4180/5180: Algebraic Topology

Optional Assignment 5: π•

1. (a) Let (X,x0) be an H-space, with multiplication µ : X ×X → X (and identity element
x0). Consider the operation on πn(X,x0) defined by

[f ] ? [g] = [µ(f, g)], f, g : (Dn, ∂Dn)→ (X,x0),

in other words, ? is the map that µ induces on πn. Show that ? agrees with the usual
group operation on πn.

(b) Conclude that π1(X,x0) is abelian.

(c) Generalize this argument to show that all Whitehead brackets vanish.

2. Let X be a pointed connected space and Xsc → X its simply connected cover. Recall that
the induced map πn(Xsc)→ πn(X) is an isomorphism for n ≥ 2, and recall that π1(X) acts
on Xsc, and hence on πn(Xsc), by deck transformations. Show that this action agrees with
the standard “conjugation” action of π1(X) on πn(X).

3. Show that an n-connected n-dimensional CW complex is contractible.

4. A space X is called H-finite if it is homotopic to a CW complex with finitely many cells, and
a space Y is called π-finite if [it is a finite disjoint union of connected spaces, each of which
satisfies]

∏∞
n=1 πn(Y ) is finite. Show that if X is H-finite and Y is π-finite, then [X,Y ] is

finite.

5. Show that there is no retract RPn → RP k if n > k > 0.

6. Compute the action of π1RP
n on πnRP

n.

7. Recall that a space is called acyclic if its reduced homology vanishes. Show that if X is
acyclic, then ΣX is contractible.

8. Show that a map between simply-connected CW complexes is a homotopy equivalence iff its
mapping cylinder is contractible. Use the previous exercise to give a counterexample if the
simply-connectedness hypothesis is dropped.

9. (a) Suppose that f : X → Y is a map of CW complexes, and let f sc : Xsc → Y sc be the
induced map. Show that f is a homotopy equivalence if π1(f) and H•(f

sc) are isos.

(b) Conclude that if X and Y are n-dimensional CW complexes, with n-truncations τnX
and τnY , then a map f : X → Y is a homotopy equivalence if τnf : τnX → τnY is.

10. (a) Let Cp = {1, t, . . . , tp−1} denote the cyclic group of prime order p. Build a cell complex
with p cells of each dimension, freely transitively permuted by Cp, as follows. Start
with a single 0-cell e0 and its images te0, t

2e0, . . . , t
p−1e0. Now attach a 2-cell e1 with

boundary e0 t te0. Now attach p − 1 more 2-cells te1, t
2e1, . . . , compatibly with the
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Cp-action: ∂tie1 = tie0t ti+1e0. Note that ∪itie1 is an S1, with basepoint e0, and attach
a 2-cell e2 along it. Now attach p − 1 more 2-cells te2, t

2e2, . . . , again compatibly with
the Cp action — only the basepoint changes. Now attach a 3-cell e3 along e2 ∪ te2 ∼= S2,
and attach more 3-cells compatibly with the Cp-action. Note that you get an S3. Fill
that S3 with a 4-cell e4. Attach more 4-cells. Attach a 5-cell with boundary e4 ∪ te4.
Keep going.

Show that the resulting cell complex is contractible. Thus its quotient by the free Cp-
action is a K(Cp, 1).

Use this cell model of K(Cp, 1) to compute H•(K(Cp, 1);A) for any A.

Compute dim Hn(K(CN
p , 1);Fp).

(b) Show that C2
p cannot act freely on any sphere. Hint: If C2

p acts freely on Sn, then the
quotient M is an n-dimensional closed manifold M . When n > 1 (the n = 1 case is
easier), build a K(C2

p , 1) from M by attaching one cell of dimension n+1 and some cells

of dimension > n+ 1. Conclude that dim Hn+1(K(C2
p , 1);Fp) ≤ 1, which it ain’t.

11. Suppose that F → E → B is a fibre bundle such that F ↪→ E is homotopic to the constant
map. Show that the LES in homotopy splits: πn(B) ∼= πn(E) ⊕ πn−1(F ). Conclude that
πnRP

n, π2n+1CP
n, π4n+3HP

n, and π15OP
1 contain Z-summands. Note that, in the n = 1

case, KP 1 is a sphere of dimension dimRK.

12. Show that, up to homomotopy, there are precisely two maps RP∞ → CP∞, the trivial one
and a nontrivial one. Show that the nontrivial one induces the trivial map on ‹H•(−;Z) but

a nontrivial map on ‹H•(−;Z). How is this consistent with the universal coefficient theorem?
Hint: CP∞ = K(Z, 2).

In fact, use the Bockstein for Z → C → C× to show that the nontrivial map RP∞ → CP∞

is simply the base-change along R→ C.

13. (a) Suppose that E → B → C is a fibration. Show that the homotopy fibre of E → B is
equivalent to ΩC. A fibration is called principle if, up to homotopy, it is of the form
ΩC → E → B for some fibration E → B → C.

(b) Show that a principle fibration ΩC → E
p→ B is equivalent to a product ΩC ×B if and

only if it has a section, i.e. a map s : B → E such that ps = idB. Hint for one direction:
What is the homotopy fibre of the trivial map B → C?
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