PhD Comprehensive Exam: Algebra Part II (nonspecialist) \& Math 4055/5055 Final Exam

Spring 2022
Sample exam

Your name:

Exam structure:

There are 9 questions on this exam. The pass mark is 60%.

- The PhD comprehensive exam consists of all 9 questions.
- The Math 4055/5055 final exam consists of the final 6 questions.

Please indicate which exam you are taking.

1. Let G be a group.
(a) What does it mean to say that a subgroup $K \subset G$ is normal?
(b) Suppose that $H \subset G$ is a subgroup, and $K \subset G$ is a normal subgroup. Show that the product

$$
H K:=\{h k \mid h \in H, k \in K\}
$$

is a subgroup of G.
2. Let G be a finite group.
(a) Define the centre $Z(G)$ of G and the derived subgroup $G^{\prime}=[G, G]$ of G.
(b) Show that both $Z(G)$ and G^{\prime} are normal subgroups of G.
(c) Let p be a prime. Show that if G is nonabelian of order p^{3}, then $Z(G)=G^{\prime}$.
(d) Show that if G is nonabelian of order 6 , then $Z(G) \neq G^{\prime}$.
3. Prove that there is no simple group of order $980=2^{2} \times 5 \times 7^{2}$. Hint: Constrain the number of Sylow subgroups.
4. (a) What does it mean for a field extension $F \subset E$ to have degree n ?
(b) Prove that if $F \subset E$ has degree $n<\infty$, then every element of E is a root of some polynomial over F of degree $\leq n$.
(c) State, but do not prove, a relationship between the degree of $F \subset E$ and the order of $\operatorname{Gal}(E / F)$.
5. Consider the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7})$.
(a) Is this extension Galois?
(b) Find all intermediate fields. Describe these fields as simple extensions over \mathbb{Q}, i.e. give a single generator for each intermediate extension.
(c) Give an example of a transcendental extension of $\mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7})$.
6. Set $F=\mathbb{Q}(\sqrt{7})$, and set $K_{1}=F(\sqrt{2+\sqrt{7}})$ and $K_{2}=F(\sqrt{2-\sqrt{7}})$. Let $E=K_{1} K_{2}$ be the composite field.
(a) Which of the following extensions are Galois?

$$
\begin{aligned}
& \mathrm{Q} \subset F, \quad \mathrm{Q} \subset K_{1}, \quad \mathrm{Q} \subset K_{2}, \quad \mathrm{Q} \subset E, \\
& F \subset K_{1}, \quad F \subset K_{2}, \quad F \subset E, \quad K_{1} \subset E, \quad K_{2} \subset E
\end{aligned}
$$

(b) For the extensions in part (a) which are Galois, what is the Galois group?
7. Find the Galois groups of the following polynomials over \mathbb{Q} and over \mathbb{R} :
(a) $x^{3}+3 x^{2}+2 x-1$.

Hint: The discriminant is -23 .
(b) $x^{4}-4 x^{2}+x+1$.

Hint: The discriminant is 1957 and the resolvent cubic is $x^{3}+4 x^{2}-4 x+15$.
8. (a) What does it mean for a field extension $F \subset E$ to be separable?
(b) What does it mean for a field extension $F \subset E$ to be purely inseparable?
(c) Give an example of a nontrivial field extension which is purely inseparable.
(d) Give an example of a nontrivial field extension which is neither separable nor purely inseparable.
9. (a) Suppose that F is field. Prove that if $G \subset F^{\times}$is a finite subgroup, then G is cyclic. Conclude that if F is finite, then \mathbb{F}^{\times}is cyclic.
(b) Describe the group \mathbb{C}^{\times}.
(c) Prove that for each prime p and each positive integer n, there exists a field $\mathbb{F}_{p^{n}}$ of order p^{n}, and that it is unique up to isomorphism.

