PhD Comprehensive Exam: Algebra Part II (nonspecialist) & Math 4055/5055 Final Exam

Spring 2022

Sample exam

Your name:

Exam structure:

There are 9 questions on this exam. The pass mark is 60%.

- The PhD comprehensive exam consists of all 9 questions.
- The Math 4055/5055 final exam consists of the final 6 questions.

Please indicate which exam you are taking.

- 1. Let G be a group.
 - (a) What does it mean to say that a subgroup $K \subset G$ is normal?
 - (b) Suppose that $H\subset G$ is a subgroup, and $K\subset G$ is a normal subgroup. Show that the product

$$HK := \{hk | h \in H, k \in K\}$$

is a subgroup of G.

2. Let G be a finite group.

- (a) Define the centre Z(G) of G and the derived subgroup G' = [G, G] of G.
- (b) Show that both Z(G) and G' are normal subgroups of G.
- (c) Let p be a prime. Show that if G is nonabelian of order p^3 , then Z(G) = G'.
- (d) Show that if G is nonabelian of order 6, then $Z(G) \neq G'$.

3. Prove that there is no simple group of order $980 = 2^2 \times 5 \times 7^2$. Hint: Constrain the number of Sylow subgroups.

- 4. (a) What does it mean for a field extension $F \subset E$ to have degree n?
 - (b) Prove that if $F \subset E$ has degree $n < \infty$, then every element of E is a root of some polynomial over F of degree $\leq n$.
 - (c) State, but do not prove, a relationship between the degree of $F \subset E$ and the order of $\operatorname{Gal}(E/F)$.

- 5. Consider the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{5}, \sqrt{7}).$
 - (a) Is this extension Galois?
 - (b) Find all intermediate fields. Describe these fields as simple extensions over \mathbb{Q} , i.e. give a single generator for each intermediate extension.
 - (c) Give an example of a transcendental extension of $\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{7})$.

- 6. Set $F = \mathbb{Q}(\sqrt{7})$, and set $K_1 = F(\sqrt{2+\sqrt{7}})$ and $K_2 = F(\sqrt{2-\sqrt{7}})$. Let $E = K_1K_2$ be the composite field.
 - (a) Which of the following extensions are Galois?

$$\begin{aligned} \mathbb{Q} \subset F, \quad \mathbb{Q} \subset K_1, \quad \mathbb{Q} \subset K_2, \quad \mathbb{Q} \subset E, \\ F \subset K_1, \quad F \subset K_2, \quad F \subset E, \quad K_1 \subset E, \quad K_2 \subset E \end{aligned}$$

(b) For the extensions in part (a) which are Galois, what is the Galois group?

- 7. Find the Galois groups of the following polynomials over \mathbb{Q} and over \mathbb{R} :
 - (a) $x^3 + 3x^2 + 2x 1$. Hint: The discriminant is -23.
 - (b) $x^4 4x^2 + x + 1$. Hint: The discriminant is 1957 and the resolvent cubic is $x^3 + 4x^2 - 4x + 15$.

- 8. (a) What does it mean for a field extension $F \subset E$ to be *separable*?
 - (b) What does it mean for a field extension $F \subset E$ to be *purely inseparable*?
 - (c) Give an example of a nontrivial field extension which is purely inseparable.
 - (d) Give an example of a nontrivial field extension which is neither separable nor purely inseparable.

- 9. (a) Suppose that F is field. Prove that if $G \subset F^{\times}$ is a finite subgroup, then G is cyclic. Conclude that if F is finite, then \mathbb{F}^{\times} is cyclic.
 - (b) Describe the group \mathbb{C}^{\times} .
 - (c) Prove that for each prime p and each positive integer n, there exists a field \mathbb{F}_{p^n} of order p^n , and that it is unique up to isomorphism.