
PhD Comprehensive Exam: Algebra Part II (nonspecialist)

& Math 4055/5055 Final Exam

Spring 2024

Solutions

Your name:

Exam structure:

There are 9 questions on this exam. The pass mark is 70%.

• The PhD comprehensive exam consists of any 8 of the 9 questions. You have three hours to
complete the comprehensive exam.

• The Math 4055/5055 final exam consists of any 6 of the 9 questions. You have two hours to
complete the final exam.

Please indicate which exam you are taking.
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1. Normal subgroups.

(a) Give the definition of subgroup. Give the definition of normal subgroup. Give an example
of a normal subgroup. Give an example of a subgroup which is not normal.

(b) Show that any subgroup of index 2 is normal.

Answers:

(a) [6pt] If G is a group, a subgroup of G is a nonempty subset H ⊂ G such that if g, h ∈ H,
then gh ∈ H and g−1 ∈ H. (Since H is nonempty, this implies that the identity element
e ∈ H.) A subgroup H ⊂ G is normal if for every g ∈ G and every h ∈ H, ghg−1 is
also in H. An example is the subgroup of S3 generated by the permutation (123). A
nonexample is the subgroup of S3 generated by the permutation (12).

(b) [4pt] Suppose that H ⊂ G has index 2. This means that the quotient space G/H has
order two. In other words, H has exactly two cosets: itself and GrH. This is true for
both left cosets and for right cosets: for every g ∈ G, we have gH = Hg at the level
of sets. This means that for every h ∈ H, we have gh = h′g for some (unique but)
possibly-different h′ ∈ H. This h′ = ghg−1. So we see that H is normal.
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2. The fundamental theorem of finite abelian groups.

(a) List (up to isomorphism) all of the abelian groups of order 120. Explain/justify your
answer.

(b) List (up to isomorphism) all of the abelian groups of order 120 that are subgroups of
the multiplicative group F× of some field F . Explain/justify your answer.

Answers:

(a) [5pt] If A is a finite abelian group, then A factors canonically as
∏
pA(p), where p ranges

over the primes and A(p) is the Sylow p-subgroup of A. (This is a version of the Chinese
Remainder Theorem.) The order of A(p) is the p-part of the order of A. Factoring, we
have 120 = 23 × 3× 5. Thus the groups A(p) for p ≥ 7 are trivial, and A(3) and A(5) are
cyclic of their respective orders and hence uniquely determined. The only question is
the structure of the group A(2), which is abelian of order 8. The abelian groups of order
8 are indexed by the factorizations of 8: either cyclic (8 = 8) or a product of two cyclic
groups (8 = 4 × 2) or a product of three cyclic groups (8 = 2 × 2 × 2). Thus the final
answer is:

Z/8Z×Z/3Z×Z/5Z, Z/4Z×Z/2Z×Z/3Z×Z/5Z, Z/2Z×Z/2Z×Z/2Z×Z/3Z×Z/5Z.

(b) [5pt] A finite subgroup of F× is necessarily cyclic. This is because otherwise it would
have too many elements of too-low order, and so the polynomial xn− 1 (where n is that
too-low order) would have too many solutions. Of the above groups, only one is cyclic:

Z/8Z×Z/3Z×Z/5Z ∼= Z/120Z.
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3. Solvable groups.

(a) When is a finite group solvable? Why is this name used?

(b) When is a finite group simple? Why is this name used?

(c) Suppose that f(x) ∈ Q[x] is irreducible of prime degree p ≥ 5, and suppose that f(x)
has exactly p − 2 real roots. Show that the roots of f(x) cannot be expressed in terms
of +,−,×,÷, and n

√
−. You may use without proof that the alternating group Ap is

simple, but you should explain how this is related to the problem.

Answers:

(a) [3pt] A finite group is solvable when it is an extension of cyclic groups: it has a normal
abelian subgroup, and the quotient has a normal abelian subgroup, and so on, until you
get to the trivial group. It is called this because a polynomial has solvable Galois group
if and only it its roots are expressible in terms of +,−,×,÷, and n

√
− and the elements

of the ground field.

(b) [3pt] A finite group is simple when it is not a nontrivial extension: it does not have
any proper normal subgroups. It is called this because it cannot be broken up: its
Jordan–Holder series is length one, which is as simple as they come.

(c) [4pt] Since f is irreducible, its Galois group G acts transitively on a set of order p. Thus
G ⊂ Sp has order divisible by p. So G contains a p-cycle. But G also contains complex
conjugation, which is a 2-cycle. So G = Sp, since Sp is generated by any p-cycle together
with any 2-cycle. But any subquotient of a solvable group is solvable, whereas Sp ⊃ Ap
which is simple. So Sp cannot be solvable, so f cannot be solved in radicals.
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4. Splitting fields.

(a) Give the definition of degree of a field extension. What is the degree ofQ ⊂ Q(
√

7−
√

2)?
You do not need to justify your answer.

(b) Give the definition of when Q ⊂ K is a splitting field of
√

7−
√

2. Show that if K is a

splitting field of
√

7−
√

2, then K 3
√

47.

(c) What is the degree of a splitting field of
√

7−
√

2? You do not need to justify your
answer.

(d) What is the automorphism group of the field Q(
√

7−
√

2)? You do not need to justify
your answer.

(e) What is the automorphism group of a splitting field of
√

7−
√

2? You do not need to
justify your answer.

Answers:

(a) [2pt] The degree of a field extension F ⊂ E is the dimension of E over F . The degree of

Q ⊂ Q(
√

7−
√

2) is 4.

(b) [2pt] A splitting field of
√

7−
√

2 over Q is a field that contains, and is generated over

Q by, all roots of the minimal polynomial of
√

7−
√

2. For example, the splitting field

of
√

7−
√

2 would also contain
√

7 +
√

2, and hence would contain»
7−
√

2 ·
»

7−
√

2 =
√

72 − 2 =
√

47

(c) [2pt] 8.

(d) [2pt] Z/2Z.

(e) [2pt] D8.

4



5. Cyclotomic extensions and Galois correspondence.

(a) Let ζ12 denote a primitive 12th root of unity. Show that Q ⊂ Q(ζ12) is Galois, and
compute its Galois group. Also compute the minimal polynomial of ζ12.

(b) List all subfields of Q(ζ12).

Answers:

(a) [5pt] All cyclotomic extensions are Galois, because they are splitting: the Galois conju-
gates of ζ12 are other primitive roots, and hence powers of ζ12, and hence in Q(ζ12). The
Galois group is the Aut(Z/12Z) = (Z/12Z)× = (Z/4Z)× × (Z/3Z)× ∼= (Z/2Z)2.

The minimal polynomial of ζ12 is thus of degree 4, and it suffices to find a degree-4

polynomial over Q that ζ12 solves. We have ζ212 = ζ6 and ζ6 = 1+
√
−3

2 solves the equation
(2x− 1)2 + 3 = 0. So ζ12 is a root of the polynomial

(2x2 − 1)2 + 3 = 4x4 − 4x2 + 4

or, dividing by 4,
x4 − x2 + 1.

(b) [5pt] There is a subfield of Q(ζ12) for each subgroup of the Klein group (Z/2Z)2. This
group has five subgroups: the trivial subgroups {0} and (Z/2Z)2, corresponding respec-
tively to Q(ζ12), and three subgroups of order 2. These must correspond to quadratic
extensions of Q. One can work them out algorithmically, but it is also easy to eyeball
three quadratic subfields of Q(ζ12):

Q(ζ6) = Q(
√
−3), Q(ζ4) = Q(

√
−1), Q(ζ12 + ζ̄12) = Q(

√
3).
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6. Computing Galois groups.

(a) Compute the Galois group of x3 − 7x+ 5 over Q and over R.
Hint: the discriminant is 697.

(b) Compute the Galois group of x4 + 3x2 + 3x− 3 over Q.
Hint: the resolvent cubic is x3 − 3x2 + 12x− 45 and the discriminant is −35991.

Answers:

(a) [5pt] Let f(x) = x3 − 7x+ 5.

f is irreducible over Q by the rational root test, since a cubic is irreducible if and only if
it has a root: the possible rational roots are ±1 and ±5, and f(±1) = ±1∓7+5 6= 0 and
f(±5) = ±125 ∓ 35 + 5 6= 0. So the Galois group is either A3 or S3. The discriminant
is not a square over Q, and so the Galois group over Q is S3.

f is reducible over R, since all cubics are reducible over R, so the Galois group is either
trivial (A2) or S2. The discriminant is a square over R, and so the Galois group over R
is trivial.

(b) [5pt] Let f(x) = x4 + 3x2 + 3x− 3 and g(x) = x3 − 3x2 + 12x− 45.

f is irreducible over Q by Eisenstein’s criterion (with p = 3), so the Galois group over
Q is a transitive subgroup of S4.

Note that g′(x) = 3x2 + 6x2 + 12 = 3(x2 + 2x + 4), which has no real roots, since
22 − 4× 4× 1 < 0. So g has exactly one real root. Testing some values, we see that

g(3) = 27− 27 + 36− 45 = −9 < 0, g(4) = 64− 36 + 48− 45 = 31 > 0.

So the unique real root of g is not an integer, and so g is irreducible over Q. It follows
that the Galois group of g over Q contains a 3-cycle, and hence this is also true for the
Galois group of f . So the Galois group of f is either S4 or A4.

The discriminant is negative and hence not a square. So the Galois group of f over Q
is S4.
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7. Finite fields.

(a) Recall that F27 is generated, as a field, by a single element. How many elements of F27

are generators of F27 as a field?

(b) Recall that F×27 is generated, as a group, by a single element. How many elements of
F×27 are generators of F×27 as a group?

(c) How many field automorphisms does F27 have? Into how many orbits does the set
from question (7a) break under the action of Aut(F27)? What about the set from
question (7b)?

(d) Find the minimal polynomial of some element that generates F×27 as a group. (Hint:
there is more than one answer.) Justify your answer.

Answers:

(a) [1pt] The only subfields of F27 is F3. So F27 has 27− 3 = 24 generators as a field.

(b) [2pt] The group F×27 is cyclic of order 26 = 21×131, and so has (21−20)×(131−130) = 12
generators as a group.

(c) [3pt] Since 27 = 33, the Galois group of F27 over F3 is cyclic of order 3. It acts on the
sets from parts (7a) and (7b) without stabilizer. So it splits the 24 field generators into
24/3 = 8 orbits, and it splits the 12 group generators into 12/3 = 4 orbits.

(d) [4pt] An element α ∈ F27 generates F×27 as a group iff α 6∈ F3 (and hence α2 6= 1) and
also α13 6= 1. But α26 = 1, so α13 = −1. So we simply need to find an irreducible cubic
over F3 that divides x13 + 1. We could work systematically, but a faster method is to
guess and check. Recall that a cubic is irreducible as soon as it has no roots, and that
x3 − x takes constant value 0 on F3, so that x3 − x ± 1 takes constant value ±1 and
hence is irreducible. Let’s see if either of those answers work.

We could do this by long division, but since we don’t actually care about the quotient,
only the remainder, we can do it even faster. What we want is to know: What is the
remainder of x13 upon division by x3 − x± 1? (We want the answer to be “−1.”) Note
that x3 ≡ x∓ 1, and so

x12 = (x3)4 ≡ (x∓ 1)4 = x4 ∓ 4x3 + 6x2 ∓ 4x+ 1 = x4 ∓ x3 ∓ x+ 1

since we are working mod 3. This simplifies further to

= x3(x∓ 1)∓ x+ 1 ≡ (x∓ 1)2 ∓ x+ 1 = x2 ± x+ 1∓ x+ 1 = x2 − 1.

Multiplying by x gives:
x13 ≡ x3 − x = x∓ 1− x = ∓1.

We want the answer to be −1. So we find that x3 − x+ 1 works.
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8. The Frobenius map and inseparable extensions.

(a) Let F be a field of positive characteristic. Define the Frobenius endomorphism FrobF :
F → F .

(b) Give an example of a field F such that FrobF is an automorphism.

(c) Give an example of a field F such that FrobF is a not an automorphism.

(d) Give definitions of the following terms:

• (in)separable polynomial

• (in)separable extension

• perfect field

(e) State without proof the relationship between whether F is perfect and whether FrobF
is an automorphism.

Answers:

(a) [2pt] If F has characteristic p, then FrobF : F → F is the map α 7→ αp.

(b) [2pt] An example with FrobF an automorphism is F = Fp, or more generally any finite
field.

(c) [2pt] An example with FrobF an non-automorphism is F = Fp(x). The element x is not
in the range of FropF .

(d) [2pt] A polynomial p(x) is separable if it has no repeated roots, equivalently if it is
coprime to its derivative; otherwise p(x) is inseparable. A field extension F ⊂ E is
separable if it is algebraic and the minimal polynomial (over F ) of every element of E is
separable; a field extension F ⊂ E is inseparable if it is algebraic but not separable. A
field F is perfect if all of its algebraic extensions are separable.

(e) [2pt] A positive-characteristic field F is perfect if and only if FrobF is an automorphism.
(Fields of characteristic zero are always perfect.)

8



9. Transcendental extensions.

(a) What does it mean to say that a field extension F ⊂ E is transcendental? Give an
example of a transcendental extension.

(b) Suppose that F ⊂ E is a field extension. What does it mean that a subset S ⊂ E is a
transcendence base for E over F?

(c) Show that any nontrivial field extension of C has uncountable dimension.

Answers:

(a) [2pt] F ⊂ E is transcendental if there is some element α ∈ E such that the evaluation
map F [x] → E sending x 7→ α is injective (and hence extends to the field of rational
functions F (x)→ E). Examples include F ⊂ F (x) and Q ⊂ R.

(b) [2pt] A subset S ⊂ E is called a transcendence base over F if it is:

• Independent: the elements of S do not satisfy any nontrivial polynomial identity
over F . More precisely, for any finite subset s1, . . . , sn, the map F [x1, . . . , xn]→ E
sending xi 7→ si is an injection (and hence extends to the field of rational functions
F (x1, . . . , xn)).

• Spanning: the elements of S generate E up to algebraic extensions. More precisely,
writing F (S) for the subfield of E generated by F ∪ S, the extension F (S) ⊂ E
should be algebraic.

(c) [6pt] Since C is algebraically closed, any nontrivial field extension of it must be tran-
scendental. Thus it suffices to show that dimCC(x) is uncountable. But the elements
1

x−λ for λ ∈ C are linearly independent, and there are uncountably many of them.

9


