PhD Comprehensive Exam: Algebra Part II (nonspecialist) \& Math 4055/5055 Final Exam

Spring 2024
April 17, 2024

Your name:

Exam structure:

There are 9 questions on this exam. The pass mark is 70%.

- The PhD comprehensive exam consists of any 8 of the 9 questions. You have three hours to complete the comprehensive exam.
- The Math $4055 / 5055$ final exam consists of any 6 of the 9 questions. You have two hours to complete the final exam.

Please indicate which exam you are taking.

1. Normal subgroups.
(a) Give the definition of subgroup. Give the definition of normal subgroup. Give an example of a normal subgroup. Give an example of a subgroup which is not normal.
(b) Show that any subgroup of index 2 is normal.
2. The fundamental theorem of finite abelian groups.
(a) List (up to isomorphism) all of the abelian groups of order 120. Explain/justify your answer.
(b) List (up to isomorphism) all of the abelian groups of order 120 that are subgroups of the multiplicative group F^{\times}of some field F. Explain/justify your answer.
3. Solvable groups.
(a) When is a finite group solvable? Why is this name used?
(b) When is a finite group simple? Why is this name used?
(c) Suppose that $f(x) \in \mathbb{Q}[x]$ is irreducible of prime degree $p \geq 5$, and suppose that $f(x)$ has exactly $p-2$ real roots. Show that the roots of $f(x)$ cannot be expressed in terms of,,$+- \times, \div$, and $\sqrt[n]{-}$. You may use without proof that the alternating group A_{p} is simple, but you should explain how this is related to the problem.
4. Splitting fields.
(a) Give the definition of degree of a field extension. What is the degree of $\mathbb{Q} \subset \mathbb{Q}(\sqrt{7-\sqrt{2}})$? You do not need to justify your answer.
(b) Give the definition of when $\mathbb{Q} \subset K$ is a splitting field of $\sqrt{7-\sqrt{2}}$. Show that if K is a splitting field of $\sqrt{7-\sqrt{2}}$, then $K \ni \sqrt{47}$.
(c) What is the degree of a splitting field of $\sqrt{7-\sqrt{2}}$? You do not need to justify your answer.
(d) What is the automorphism group of the field $\mathbb{Q}(\sqrt{7-\sqrt{2}})$? You do not need to justify your answer.
(e) What is the automorphism group of a splitting field of $\sqrt{7-\sqrt{2}}$? You do not need to justify your answer.
5. Cyclotomic extensions and Galois correspondence.
(a) Let ζ_{12} denote a primitive 12th root of unity. Show that $\mathbb{Q} \subset \mathbb{Q}\left(\zeta_{12}\right)$ is Galois, and compute its Galois group. Also compute the minimal polynomial of ζ_{12}.
(b) List all subfields of $\mathbb{Q}\left(\zeta_{12}\right)$.
6. Computing Galois groups.
(a) Compute the Galois group of $x^{3}-7 x+5$ over \mathbb{Q} and over \mathbb{R}.

Hint: the discriminant is 697 .
(b) Compute the Galois group of $x^{4}+3 x^{2}+3 x-3$ over \mathbb{Q}.

Hint: the resolvent cubic is $x^{3}-3 x^{2}+12 x-45$ and the discriminant is -35991 .
7. Finite fields.
(a) Recall that \mathbb{F}_{27} is generated, as a field, by a single element. How many elements of \mathbb{F}_{27} are generators of \mathbb{F}_{27} as a field?
(b) Recall that \mathbb{F}_{27}^{\times}is generated, as a group, by a single element. How many elements of \mathbb{F}_{27}^{\times}are generators of \mathbb{F}_{27}^{\times}as a group?
(c) How many field automorphisms does \mathbb{F}_{27} have? Into how many orbits does the set from question (7a) break under the action of $\operatorname{Aut}\left(\mathbb{F}_{27}\right)$? What about the set from question 7b)?
(d) Find the minimal polynomial of some element that generates \mathbb{F}_{27}^{\times}as a group. (Hint: there is more than one answer.) Justify your answer.
8. The Frobenius map and inseparable extensions.
(a) Let F be a field of positive characteristic. Define the Frobenius endomorphism Frob $_{F}$: $F \rightarrow F$.
(b) Give an example of a field F such that Frob_{F} is an automorphism.
(c) Give an example of a field F such that Frob_{F} is a not an automorphism.
(d) Give definitions of the following terms:

- (in)separable polynomial
- (in)separable extension
- perfect field
(e) State without proof the relationship between whether F is perfect and whether Frob_{F} is an automorphism.

9. Transcendental extensions.
(a) What does it mean to say that a field extension $F \subset E$ is transcendental? Give an example of a transcendental extension.
(b) Suppose that $F \subset E$ is a field extension. What does it mean that a subset $S \subset E$ is a transcendence base for E over F ?
(c) Show that any nontrivial field extension of \mathbb{C} has uncountable dimension.
