Math 4055/5055: Advanced Algebra II

Assignment 1

due February 1, 2024

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

- (a) Show that x³ + 9x + 6 is irreducible over Q.
 Hint: It is enough to show that there are no roots in Z why? Now check finitely many values.
 - (b) Let θ be a root of $x^3 + 9x + 6$, and $\mathbb{Q}[\theta]$ the corresponding field extension. In other words, $\mathbb{Q}[\theta] := \mathbb{Q}[x]/(x^3 + 9x + 6)$ with $\theta := x \mod x^3 + 9x + 6$. Compute $(1 + \theta)^{-1} \in \mathbb{Q}[\theta]$.
- 2. Show that $x^3 + x + 1$ is irreducible over $\mathbb{F}_2 := \mathbb{Z}/2\mathbb{Z}$. Let θ be a root, and compute its powers in $\mathbb{F}_2[\theta]$.
- 3. Let F be a field. In the field F(x) of rational functions, let u = x³/(x + 1), and consider the subfield F(u) ⊂ F(x). Compute the degree of this field extension.

Hint: F(x) = F(u)(x). Show that x is algebraic over F(u), and find its minimal polynomial.

4. Let ℓ be a prime, $\mathbb{F}_{\ell} := \mathbb{Z}/\ell\mathbb{Z}$, and $F := \mathbb{F}_{\ell}(t)$ the field of rational functions. Show that $x^{\ell} - t$ is irreducible in F[x].

Hint: Suppose that g(x) is a proper irreducible factor of $x^{\ell} - t$, and write $x^{\ell} - t = g(x)^a h(x)$ where g and h are coprime. Differentiate both sides and argue a contradiction unless $a = \ell$. Also use the irreducibility of t in $\mathbb{F}_{\ell}[t]$ to show that $\sqrt[\ell]{t} \notin F$.

5. Prove that the only unital ring endomorphism of \mathbb{R} is the identity.

Hint: \mathbb{R} is totally ordered by: $x \leq y$ iff y - x is a square.

6. A field F is formally real if -1 is not a sum of squares in F. Suppose that F is formally real and that $f(x) \in F[x]$ is irreducible of odd degree, and pick a root α of f(x). Show that $F[\alpha]$ is formally real.

Hint: Consider a counterexample of minimal degree. Show that there exists g(x) of odd degree $\langle \deg(f)$ such that -1 + f(x)g(x) is a sum of squares in F[x]. Show that g(x) would give a new counterexample, violating the minimality of f.