# Math 4055/5055: Advanced Algebra II 

## Assignment 1

due February 1, 2024

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

1. (a) Show that $x^{3}+9 x+6$ is irreducible over $\mathbb{Q}$.

Hint: It is enough to show that there are no roots in $\mathbb{Z}$ - why? Now check finitely many values.
(b) Let $\theta$ be a root of $x^{3}+9 x+6$, and $\mathbb{Q}[\theta]$ the corresponding field extension. In other words, $\mathbb{Q}[\theta]:=\mathbb{Q}[x] /\left(x^{3}+9 x+6\right)$ with $\theta:=x \bmod x^{3}+9 x+6$. Compute $(1+\theta)^{-1} \in \mathbb{Q}[\theta]$.
2. Show that $x^{3}+x+1$ is irreducible over $\mathbb{F}_{2}:=\mathbb{Z} / 2 \mathbb{Z}$. Let $\theta$ be a root, and compute its powers in $\mathbb{F}_{2}[\theta]$.
3. Let $F$ be a field. In the field $F(x)$ of rational functions, let $u=x^{3} /(x+1)$, and consider the subfield $F(u) \subset F(x)$. Compute the degree of this field extension.
Hint: $F(x)=F(u)(x)$. Show that $x$ is algebraic over $F(u)$, and find its minimal polynomial.
4. Let $\ell$ be a prime, $\mathbb{F}_{\ell}:=\mathbb{Z} / \ell \mathbb{Z}$, and $F:=\mathbb{F}_{\ell}(t)$ the field of rational functions. Show that $x^{\ell}-t$ is irreducible in $F[x]$.
Hint: Suppose that $g(x)$ is a proper irreducible factor of $x^{\ell}-t$, and write $x^{\ell}-t=g(x)^{a} h(x)$ where $g$ and $h$ are coprime. Differentiate both sides and argue a contradiction unless $a=\ell$. Also use the irredicubility of $t$ in $\mathbb{F}_{\ell}[t]$ to show that $\sqrt[\ell]{t} \notin F$.
5. Prove that the only unital ring endomorphism of $\mathbb{R}$ is the identity.

Hint: $\mathbb{R}$ is totally ordered by: $x \leq y$ iff $y-x$ is a square.
6. A field $F$ is formally real if -1 is not a sum of squares in $F$. Suppose that $F$ is formally real and that $f(x) \in F[x]$ is irreducible of odd degree, and pick a root $\alpha$ of $f(x)$. Show that $F[\alpha]$ is formally real.

Hint: Consider a counterexample of minimal degree. Show that there exists $g(x)$ of odd degree $<\operatorname{deg}(f)$ such that $-1+f(x) g(x)$ is a sum of squares in $F[x]$. Show that $g(x)$ would give a new counterexample, violating the minimality of $f$.

