Math 4055/5055: Advanced Algebra II

Assignment 2

due February 29, 2024

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

- 1. Let $F = \mathbb{Q}(\sqrt{-3})$. Let *E* denote the splitting field of $(x^3 2)(x^2 3)$ over *F*. Compute $\operatorname{Gal}(E/F)$. Compute the complete Galois correspondence for $F \subset E$: work out the poset of all subgroups of $\operatorname{Gal}(E/\mathbb{G})$ and use it to work out the poset of all subfields of *E*.
- 2. (a) Explain why the extensions $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\sqrt{1+\sqrt{5}})$ are each Galois, but that $\mathbb{Q} \subset \mathbb{Q}(\sqrt{1+\sqrt{5}})$ is not Galois.
 - (b) Let E denote the splitting field of $(x^2 1)^2 5$ over \mathbb{Q} . Compute $\operatorname{Gal}(E/\mathbb{Q})$. Compute the complete Galois correspondence for $\mathbb{Q} \subset E$: work out the poset of all subgroups of $\operatorname{Gal}(E/\mathbb{Q})$ and use it to work out the poset of all subfields of E.
- 3. Let p_1, \ldots, p_n be a finite set of distinct primes. Let $E = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$.
 - (a) Show that $\mathbb{Q} \subset E$ is Galois, and compute its Galois group. **Hint:** What is the degree $[E:\mathbb{Q}]$? Find that many distinct automorphisms of E. Why does this suffice?
 - (b) How many subfields does E have? Describe/parameterize them.
 - (c) Show that $E = \mathbb{Q}(\sqrt{p_1} + \cdots + \sqrt{p_n})$. **Hint:** Think about subfields.
- 4. (Lagrange's Theorem of Natural Irrationalities) Suppose given a diagram of field extensions

such that $F \subset K$ is finite and Galois. Prove that $L \subset KL$ is finite and Galois, and that $\operatorname{Gal}(KL/L) = \operatorname{Gal}(K/(K \cap L))$.

Hints: $L \subset KL$ is the splitting field of some separable polynomial. (Why? So what?) Any F-linear automorphism of KL takes K to itself. (Why? So what?) Compute kernel and image of $\operatorname{Gal}(KL/L) \to \operatorname{Gal}(K/F)$.