Math 4055/5055: Advanced Algebra II

Assignment 3

due February 29, 2024

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

- (a) Suppose that f(x) ∈ F₃[x] is a monic irreducible cubic. Show that f must divide x²⁷-x. Conversely, show that if f is irreducible and divides x²⁷ - x then f is either linear or cubic.
 - (b) Use part (a) to (quickly!) count the number of monic irreducible cubics over \mathbb{F}_3 .
 - (c) List all the irreducible monic cubics over \mathbb{F}_3 . Hints:
 - i. Observe that, as functions $\mathbb{F}_3 \to \mathbb{F}_3$, the polynomial $x^3 x$ always vanishes, whereas the polynomials 1 and $x^2 + 1$ never vanish. Use this to list at least four irreducible cubics over \mathbb{F}_3 .
 - ii. Observe that, as functions $\mathbb{F}_3 \to \mathbb{F}_3$, $x^2 1$ vanishes whenever $x \neq 0$, whereas x^3 and $x^3 + x$ vanish only when x = 0. Use this to list at least four irreducible cubics over \mathbb{F}_3 .
- 2. (Artin–Schreier extensions) Let p be a positive prime and $a \neq 0 \in \mathbb{F}_p$. Let $\mathbb{E} = \mathbb{F}_p[\alpha]$ where α is a root of $x^p x a$ over \mathbb{F}_p . Show that $\alpha \mapsto \alpha + 1$ extends to an automorphism of \mathbb{E} . Conclude that $x^p - x - a$ is irreducible and that \mathbb{E} is its splitting field. How does $\alpha \mapsto \alpha + 1$ relate to the Frobenius endomorphism of \mathbb{E} ?
- 3. Recall that a field F is *perfect* if all of its algebraic extensions are separable. Equivalently, a field F is perfect if it has no irreducible inseparable polynomials. Recall also that all fields of characteristic zero are perfect. So let's assume that F has characteristic p > 0. Recall also that every field of characteristic p has a *Frobenius endomorphism* $\phi_F : F \to F, x \mapsto x^p$.
 - (a) Suppose that the Frobenius endomorphism ϕ_F of F is not an automorphism. Give an example of an inseparable extension $F \subset E$ of degree p.
 - (b) Conversely, suppose that F admits a finite-degree inseparable extension $F \subset E$, and let $q(x) \in F[x]$ be the minimal polynomial of some inseparable element in $E \smallsetminus F$. Remind why $q(x) \in F[x^p]$. The ring F[x] has a Frobenius endomorphism $\phi_{F[x]}$. Why does it land in $F[x^p]$? Show that $\phi_F : F \to F$ is an automorphism if and only if $\phi_{F[x]} : F[x] \to F[x^p]$ is an isomorphism. Conclude that if $q(x) \in F[x^p]$ is irreducible in F[x], then ϕ_F could not be an automorphism.

In summary, you have shown that a field F of characteristic p is perfect if and only if ϕ_F is an automorphism. Use this to give a proof that every finite field is perfect which does not require any classification of finite fields.