Math 4055/5055: Advanced Algebra II

Assignment 4

due March 21, 2024

Homework should be submitted as a single PDF attachment to theojf@dal.ca.

1. List (up to isomorphism) all groups of order 75:
(a) Use Sylow theory to show that if G is a group of order 75 , then its Sylow 5 -subgroup is normal. Conclude that $G=P_{5} \rtimes P_{3}$ is a semidirect product, where P_{5} and P_{3} are the Sylow 5 - and 3 -subgroups respectively.
(b) List all the groups of order 25 . Calculate the orders of their automorphism groups.
(c) For each group A of order 25, use Sylow theory to calculate all possible conjugacy classes of action of C_{3} on A. Hint: For one of them, there should be only the trivial action, and for the other, there should be a unique nontrivial action.
2. Determine the Galois groups of the following polynomials over the fields indicated:
(a) $x^{4}-5$ over \mathbb{Q}; over $\mathbb{Q}[\sqrt{-1}]$; over $\mathbb{Q}[\sqrt{5}]$; over $\mathbb{Q}[\sqrt{-5}]$.
(b) $x^{3}-x-1$ over \mathbb{Q}; over $\mathbb{Q}[\sqrt{-23}]$.
(c) $x^{4}+3 x^{2}+3 x-2$ over \mathbb{Q}; over \mathbb{R}.
(d) $x^{5}-6 x+3$ over \mathbb{Q}.
3. Let $F \rightarrow E$ be a Galois extension, with Galois group G. The trace is the function $\operatorname{tr}: E \rightarrow F$ defined by

$$
\operatorname{tr}(\alpha)=\sum_{g \in G} g \alpha,
$$

and the norm is function norm : $E \rightarrow F$ defined by

$$
\operatorname{norm}(\alpha)=\prod_{g \in G} g \alpha
$$

(a) What are the trace and norm for the extension $\mathbb{R} \rightarrow \mathbb{C}$?
(b) Think of E as an F-vector space. Describe $\operatorname{tr}(\alpha)$ and norm (α) in terms of the F-linear $\operatorname{map} \alpha \cdot(-): E \rightarrow E$. In particular, explain the name "trace."
(c) Let $n=[E: F]=\# G$. Show that if $\alpha \in E$, then α is the root of a degree-n polynomial $f(x) \in F[x]$ of the form

$$
f(x)=x^{n}-\operatorname{tr}(\alpha) x^{n-1}+\cdots \pm \operatorname{norm}(\alpha)
$$

where the sign is $\pm=(-1)^{n}$. What are the dotted-out coefficients?
(d) Show that if F, E are finite fields, then both $\operatorname{tr}: E \rightarrow F$ and norm : $E \rightarrow F$ are surjective.

