Problem Set 2: Differential Geometry

- 1. (a) Show that the composition of two immersions is an immersion.
 - (b) Show that an immersed submanifold $N \subseteq M$ is always a closed submanifold of an open submanifold, but not necessarily an open submanifold of a closed submanifold.
- 2. Prove that if $f: N \to M$ is a smooth map, then $(df)_p$ is surjective if and only if there are open neighborhoods U of p and V of f(p), and an isomorphism $\psi: V \times W \to U$, such that $f \circ \psi$ is the projection on V.

In particular, deduce that the fibers of f meet a neighborhood of p in immersed closed submanifolds of that neighborhood.

- 3. Prove the implicit function theorem: a map (of sets) $f: M \to N$ between manifolds is smooth if and only if its graph is an immersed closed submanifold of $M \times N$.
- 4. Prove that the curve $y^2 = x^3$ in \mathbb{R}^2 is not an immersed submanifold.
- 5. Let M be a complex holomorphic manifold, p a point of M, X a holomorphic vector field. Show that X has a complex integral curve γ defined on an open neighborhood U of 0 in \mathbb{C} , and unique on U if U is connected, which satisfies the usual defining equation but in a complex instead of a real variable t.

Show that the restriction of γ to $U \cap \mathbb{R}$ is a real integral curve of X, when M is regarded as a real analytic manifold.

6. Let $\operatorname{SL}(2, \mathbb{C})$ act on the Riemann sphere $\mathbb{P}^1(\mathbb{C})$ by fractional linear transformations $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = (az+b)/(cz+d)$. Determine explicitly the vector fields $f(z)\partial_z$ corresponding to the infinitesimal action of the basis elements

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

of $\mathfrak{sl}(2,\mathbb{C})$, and check that you have constructed a Lie algebra homomorphism by computing the commutators of these vector fields.

- 7. (a) Describe the map $\mathfrak{gl}(n,\mathbb{R}) = \operatorname{Lie}(\operatorname{GL}(n,\mathbb{R})) = \operatorname{Mat}(n,\mathbb{R}) \to \operatorname{Vect}(\mathbb{R}^n)$ given by the infinitesimal action of $\operatorname{GL}(n,\mathbb{R})$.
 - (b) Show that $\mathfrak{so}(n,\mathbb{R})$ is equal to the subalgebra of $\mathfrak{gl}(n,\mathbb{R})$ consisting of elements whose infinitesimal action is a vector field tangential to the unit sphere in \mathbb{R}^n .
- 8. (a) Let X be an analytic vector field on M all of whose integral curves are unbounded (i.e., they are defined on all of \mathbb{R}). Show that there exists an analytic action of $R = (\mathbb{R}, +)$ on M such that X is the infinitesimal action of the generator ∂_t of Lie(\mathbb{R}).
 - (b) More generally, prove the corresponding result for a family of n commuting vector fields X_i and action of \mathbb{R}^n .

- 9. (a) Show that the matrix $\begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix}$ belongs to the identity component of $\operatorname{GL}(2,\mathbb{R})$ for all positive real numbers a, b.
 - (b) Prove that if $a \neq b$, the above matrix is not in the image $\exp(\mathfrak{gl}(2,\mathbb{R}))$ of the exponential map.