Problem Set 4: General Theory of Lie Algebras

- 1. Classify the 3-dimensional Lie algebras \mathfrak{g} over an algebraically closed field \mathbb{K} of characteristic zero by showing that if \mathfrak{g} is not a direct product of smaller Lie algebras, then either
 - $\mathfrak{g} \cong \mathfrak{sl}(2,\mathbb{K}),$
 - \mathfrak{g} is isomorphic to the nilpotent Heisenberg Lie algebra \mathfrak{h} with basis X, Y, Z such that Z is central and [X, Y] = Z, or
 - \mathfrak{g} is isomorphic to a solvable algebra \mathfrak{s} which is the semidirect product of the abelian algebra \mathbb{K}^2 by an invertible derivation. In particular \mathfrak{s} has basis X, Y, Z such that [Y, Z] = 0, and ad X acts on $\mathbb{K}Y + \mathbb{K}Z$ by an invertible matrix, which, up to change of basis in $\mathbb{K}Y + \mathbb{K}Z$ and rescaling X, can be taken to be either $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$ for some nonzero $\lambda \in \mathbb{K}$.
- 2. (a) Show that the Heisenberg Lie algebra \mathfrak{h} in Problem 1 has the property that Z acts nilpotently in every finite-dimensional module, and as zero in every simple finite-dimensional module.
 - (b) Construct a simple infinite-dimensional \mathfrak{h} -module in which Z acts as a non-zero scalar. [Hint: take X and Y to be the operators $\frac{d}{dt}$ and t on $\mathbb{K}[t]$.]
- 3. Construct a simple 2-dimensional module for the Heisenberg algebra \mathfrak{h} over any field \mathbb{K} of characteristic 2. In particular, if $\mathbb{K} = \overline{\mathbb{K}}$, this gives a counterexample to Lie's theorem in non-zero characteristic.
- 4. Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{K} .
 - (a) Show that the intersection \mathfrak{n} of the kernels of all finite-dimensional simple \mathfrak{g} -modules can be characterized as the largest ideal of \mathfrak{g} which acts nilpotently in every finite-dimensional \mathfrak{g} -module. It is called the *nilradical* of \mathfrak{g} .
 - (b) Show that the nilradical of \mathfrak{g} is contained in $\mathfrak{g}' \cap \operatorname{rad}(\mathfrak{g})$.
 - (c) Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a subalgebra and V a \mathfrak{g} -module. Given a linear functional $\lambda : \mathfrak{h} \to \mathbb{K}$, define the associated weight space to be $V_{\lambda} = \{v \in V : Hv = \lambda(H)v \text{ for all } H \in \mathfrak{h}\}$. Assuming char(\mathbb{K}) = 0, adapt the proof of Lie's theorem to show that if \mathfrak{h} is an ideal and V is finite-dimensional, then V_{λ} is a \mathfrak{g} -submodule of V.
 - (d) Show that if char(K) = 0 then the nilradical of g is equal to g' ∩ rad(g). [Hint: assume without loss of generality that K = K and obtain from Lie's theorem that any finite-dimensional simple g-module V has a non-zero weight space for some weight λ on g' ∩ rad(g). Then use (c) to deduce that λ = 0 if V is simple.]
- 5. Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{K} , char(\mathbb{K}) = 0. Prove that the largest nilpotent ideal of \mathfrak{g} is equal to the set of elements of $\mathfrak{r} = \operatorname{rad} \mathfrak{g}$ which act nilpotently in the adjoint action on \mathfrak{g} , or equivalently on \mathfrak{r} . In particular, it is equal to the largest nilpotent ideal of \mathfrak{r} .
- 6. Prove that the Lie algebra $\mathfrak{sl}(2,\mathbb{K})$ of 2×2 matrices with trace zero is simple, over a field \mathbb{K} of any characteristic $\neq 2$. In characteristic 2, show that it is nilpotent.

- 7. In this exercise, we'll deduce from the standard functorial properties of Ext groups and their associated long exact sequences that $\text{Ext}^1(N, M)$ bijectively classifies extensions $0 \to M \to V \to N \to 0$ up to isomorphism, for modules over any associative ring with unity.
 - (a) Let F be a free module with a surjective homomorphism onto N, so we have an exact sequence $0 \to K \to F \to N \to 0$. Use the long exact sequence to produce an isomorphism of $\text{Ext}^1(N, M)$ with the cokernel of $\text{Hom}(F, M) \to \text{Hom}(K, M)$.
 - (b) Given $\phi \in \text{Hom}(K, M)$, construct V as the quotient of $F \oplus M$ by the graph of $-\phi$ (note that this graph is a submodule of $K \oplus M \subseteq F \oplus M$).
 - (c) Use the functoriality of Ext and the long exact sequences to show that the characteristic class in $\text{Ext}^1(N, M)$ of the extension constructed in (b) is the element represented by the chosen ϕ , and conversely, that if ϕ represents the characteristic class of a given extension, then the extension constructed in (b) is isomorphic to the given one.
- 8. Calculate $\operatorname{Ext}^{i}(\mathbb{K},\mathbb{K})$ for all *i* for the trivial representation \mathbb{K} of $\mathfrak{sl}(2,\mathbb{K})$, where $\operatorname{char}(\mathbb{K}) = 0$. Conclude that the theorem that $\operatorname{Ext}^{i}(M,N) = 0$ for i = 1,2 and all finite-dimensional representations M, N of a semi-simple Lie algebra \mathfrak{g} does not extend to i > 2.
- 9. Let \mathfrak{g} be a finite-dimensional Lie algebra. Show that $\operatorname{Ext}^1(\mathbb{K}, \mathbb{K})$ can be canonically identified with the dual space of $\mathfrak{g}/\mathfrak{g}'$, and therefore also with the set of 1-dimensional \mathfrak{g} -modules, up to isomorphism.
- 10. Let \mathfrak{g} be a finite-dimensional Lie algebra. Show that $\operatorname{Ext}^1(\mathbb{K}, \mathfrak{g})$ can be canonically identified with the quotient $\operatorname{Der}(\mathfrak{g})/\operatorname{Inn}(\mathfrak{g})$, where $\operatorname{Der}(\mathfrak{g})$ is the space of derivations of \mathfrak{g} , and $\operatorname{Inn}(\mathfrak{g})$ is the subspace of inner derivations, that is, those of the form d(x) = [y, x] for some $y \in \mathfrak{g}$. Show that this also classifies Lie algebra extensions $\hat{\mathfrak{g}}$ containing \mathfrak{g} as an ideal of codimension 1.
- 11. Let \mathfrak{g} be a finite-dimensional Lie algebra over \mathbb{K} , $\operatorname{char}(\mathbb{K}) = 0$. The Malcev-Harish-Chandra theorem says that all Levi subalgebras $\mathfrak{s} \subseteq \mathfrak{g}$ are conjugate under the action of the group exp ad \mathfrak{n} , where \mathfrak{n} is the largest nilpotent ideal of \mathfrak{g} (note that \mathfrak{n} acts nilpotently on \mathfrak{g} , so the power series expression for exp ad X reduces to a finite sum when $X \in \mathfrak{n}$).
 - (a) Show that the reduction we used to prove Levi's theorem by induction in the case where the radical $\mathfrak{r} = \operatorname{rad} \mathfrak{g}$ is not a minimal ideal also works for the Malcev-Harish-Chandra theorem. More precisely, show that if \mathfrak{r} is nilpotent, the reduction can be done using any nonzero ideal \mathfrak{m} properly contained in \mathfrak{r} . If \mathfrak{r} is not nilpotent, use Problem 4 to show that $[\mathfrak{g}, \mathfrak{r}] = \mathfrak{r}$, then make the reduction by taking \mathfrak{m} to contain $[\mathfrak{g}, \mathfrak{r}]$.
 - (b) In general, given a semidirect product g = h κ m, where m is an abelian ideal, show that Ext¹_{U(h)}(K, m) classifies subalgebras complementary to m, up to conjugacy by the action of exp ad m. Then use the vanishing of Ext¹(M, N) for finite-dimensional modules over a semi-simple Lie algebra to complete the proof of the Malcev-Harish-Chandra theorem.