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Problem Set 4: General Theory of Lie Algebras

1. Classify the 3-dimensional Lie algebras g over an algebraically closed field K of characteristic
zero by showing that if g is not a direct product of smaller Lie algebras, then either

• g ∼= sl(2,K),

• g is isomorphic to the nilpotent Heisenberg Lie algebra h with basis X,Y, Z such that Z
is central and [X,Y ] = Z, or

• g is isomorphic to a solvable algebra s which is the semidirect product of the abelian
algebra K2 by an invertible derivation. In particular s has basis X,Y, Z such that
[Y,Z] = 0, and adX acts on KY +KZ by an invertible matrix, which, up to change of
basis in KY + KZ and rescaling X, can be taken to be either ( 1 1

0 1 ) or
(
λ 0
0 1

)
for some

nonzero λ ∈ K.

2. (a) Show that the Heisenberg Lie algebra h in Problem 1 has the property that Z acts nilpo-
tently in every finite-dimensional module, and as zero in every simple finite-dimensional
module.

(b) Construct a simple infinite-dimensional h-module in which Z acts as a non-zero scalar.
[Hint: take X and Y to be the operators d

dt and t on K[t].]

3. Construct a simple 2-dimensional module for the Heisenberg algebra h over any field K of
characteristic 2. In particular, if K = K̄, this gives a counterexample to Lie’s theorem in
non-zero characteristic.

4. Let g be a finite-dimensional Lie algebra over K.

(a) Show that the intersection n of the kernels of all finite-dimensional simple g-modules can
be characterized as the largest ideal of g which acts nilpotently in every finite-dimensional
g-module. It is called the nilradical of g.

(b) Show that the nilradical of g is contained in g′ ∩ rad(g).

(c) Let h ⊆ g be a subalgebra and V a g-module. Given a linear functional λ : h → K,
define the associated weight space to be Vλ = {v ∈ V : Hv = λ(H)v for all H ∈ h}.
Assuming char(K) = 0, adapt the proof of Lie’s theorem to show that if h is an ideal
and V is finite-dimensional, then Vλ is a g-submodule of V .

(d) Show that if char(K) = 0 then the nilradical of g is equal to g′ ∩ rad(g). [Hint: assume
without loss of generality that K = K̄ and obtain from Lie’s theorem that any finite-
dimensional simple g-module V has a non-zero weight space for some weight λ on g′ ∩
rad(g). Then use (c) to deduce that λ = 0 if V is simple.]

5. Let g be a finite-dimensional Lie algebra over K, char(K) = 0. Prove that the largest nilpotent
ideal of g is equal to the set of elements of r = rad g which act nilpotently in the adjoint action
on g, or equivalently on r. In particular, it is equal to the largest nilpotent ideal of r.

6. Prove that the Lie algebra sl(2,K) of 2× 2 matrices with trace zero is simple, over a field K
of any characteristic ̸= 2. In characteristic 2, show that it is nilpotent.
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7. In this exercise, we’ll deduce from the standard functorial properties of Ext groups and their
associated long exact sequences that Ext1(N,M) bijectively classifies extensions 0 → M →
V → N → 0 up to isomorphism, for modules over any associative ring with unity.

(a) Let F be a free module with a surjective homomorphism onto N , so we have an exact
sequence 0 → K → F → N → 0. Use the long exact sequence to produce an isomorphism
of Ext1(N,M) with the cokernel of Hom(F,M) → Hom(K,M).

(b) Given ϕ ∈ Hom(K,M), construct V as the quotient of F ⊕M by the graph of −ϕ (note
that this graph is a submodule of K ⊕M ⊆ F ⊕M).

(c) Use the functoriality of Ext and the long exact sequences to show that the characteristic
class in Ext1(N,M) of the extension constructed in (b) is the element represented by the
chosen ϕ, and conversely, that if ϕ represents the characteristic class of a given extension,
then the extension constructed in (b) is isomorphic to the given one.

8. Calculate Exti(K,K) for all i for the trivial representation K of sl(2,K), where char(K) = 0.
Conclude that the theorem that Exti(M,N) = 0 for i = 1, 2 and all finite-dimensional
representations M,N of a semi-simple Lie algebra g does not extend to i > 2.

9. Let g be a finite-dimensional Lie algebra. Show that Ext1(K,K) can be canonically identified
with the dual space of g/g′, and therefore also with the set of 1-dimensional g-modules, up
to isomorphism.

10. Let g be a finite-dimensional Lie algebra. Show that Ext1(K, g) can be canonically identified
with the quotient Der(g)/ Inn(g), where Der(g) is the space of derivations of g, and Inn(g) is
the subspace of inner derivations, that is, those of the form d(x) = [y, x] for some y ∈ g. Show
that this also classifies Lie algebra extensions ĝ containing g as an ideal of codimension 1.

11. Let g be a finite-dimensional Lie algebra over K, char(K) = 0. The Malcev-Harish-Chandra
theorem says that all Levi subalgebras s ⊆ g are conjugate under the action of the group
exp ad n, where n is the largest nilpotent ideal of g (note that n acts nilpotently on g, so the
power series expression for exp adX reduces to a finite sum when X ∈ n).

(a) Show that the reduction we used to prove Levi’s theorem by induction in the case where
the radical r = rad g is not a minimal ideal also works for the Malcev-Harish-Chandra
theorem. More precisely, show that if r is nilpotent, the reduction can be done using
any nonzero ideal m properly contained in r. If r is not nilpotent, use Problem 4 to show
that [g, r] = r, then make the reduction by taking m to contain [g, r].

(b) In general, given a semidirect product g = h⋉m, where m is an abelian ideal, show that
Ext1U(h)(K,m) classifies subalgebras complementary to m, up to conjugacy by the action

of exp adm. Then use the vanishing of Ext1(M,N) for finite-dimensional modules over
a semi-simple Lie algebra to complete the proof of the Malcev-Harish-Chandra theorem.


