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Problem Set 5: Classification of Semisimple Lie Algebras

1. (a) Show that SL(2,R) is topologically the product of a circle and two copies of R, hence it
is not simply connected.

(b) Let S be the simply connected cover of SL(2,R). Show that its finite-dimensional com-
plex representations, i.e., real Lie group homomorphisms S → GL(n,C), are determined
by corresponding complex representations of the Lie algebra Lie(S)C = sl(2,C), and
hence factor through SL(2,R). Thus S is a simply connected real Lie group with no
faithful finite-dimensional representation.

2. (a) Let U be the group of 3 × 3 upper-unitriangular complex matrices. Let Γ ⊆ U be the
cyclic subgroup of matrices  1 0 m

0 1 0
0 0 1

 ,

where m ∈ Z. Show that G = U/Γ is a (non-simply-connected) complex Lie group that
has no faithful finite-dimensional representation.

(b) Adapt the solution to Set 4, Problem 2(b) to construct a faithful, irreducible infinite-
dimensional linear representation V of G.

3. Following the outline below, prove that if h ⊆ gl(n,C) is a real Lie subalgebra with the
property that every X ∈ h is diagonalizable and has purely imaginary eigenvalues, then the
corresponding connected Lie subgroup H ⊆ GL(n,C) has compact closure (this completes
the solution to Set 1, Problem 7).

(a) Show that adX is diagonalizable with imaginary eigenvalues for every X ∈ h.

(b) Show that the Killing form of h is negative semidefinite and its radical is the center of
h. Deduce that h is reductive and the Killing form of its semi-simple part is negative
definite. Hence the Lie subgroup corresponding to the semi-simple part is compact.

(c) Show that the Lie subgroup corresponding to the center of h is a dense subgroup of a
compact torus. Deduce that the closure of H is compact.

(d) Show that H is compact — that is, closed — if and only if it further holds that the
center of h is spanned by matrices whose eigenvalues are rational multiples of i.

4. Let Vn = Sn(C2) be the (n+ 1)-dimensional irreducible representation of sl(2,C).

(a) Show that for m ≤ n, Vm ⊗ Vn
∼= Vn−m ⊕ Vn−m+2 ⊕ · · · ⊕ Vn+m, and deduce that the

decomposition into irreducibles is unique.

(b) Show that in any decomposition of V ⊗n
1 into irreducibles, the multiplicity of Vn is equal

to 1, the multiplicity of Vn−2k is equal to
(n
k

)
−
( n
k−1

)
for k = 1, . . . , ⌊n/2⌋, and all other

irreducibles Vm have multiplicity zero.

5. Let a be a symmetric generalized Cartan matrix, i.e. a is symmetric with diagonal entries
2 and off-diagonal entries 0 or −1. Let Γ be a subgroup of the automorphism group of the
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Dynkin diagram D of a, such that every edge of D has its endpoints in distinct Γ orbits.
Define the folding D′ of D to be the diagram with a node for every Γ orbit I of nodes in D,
with edge weight k from I to J if each node of I is adjacent in D to k nodes of J . Denote by
a′ the generalized Cartan matrix with diagram D′.

(a) Show that a′ is symmetrizable and that every symmetrizable generalized Cartan matrix
(not assumed to be of finite type) can be obtained by folding from a symmetric one.

(b) Show that every folding of a finite type symmetric Cartan matrix is of finite type.

(c) Verify that every non-symmetric finite type Cartan matrix is obtained by folding from
a unique symmetric finite type Cartan matrix.

6. An indecomposable symmetrizable generalized Cartan matrix a is said to be of affine type if
det(a) = 0 and all the proper principal minors of a are positive.

(a) Classify the affine Cartan matrices.

(b) Show that every non-symmetric affine Cartan matrix is a folding, as in the previous
problem, of a symmetric one.

(c) Let h be a vector space, αi ∈ h∗ and α∨
i ∈ h vectors such that a is the matrix ⟨αj , α

∨
i ⟩.

Assume that this realization is non-degenerate in the sense that the vectors αi are linearly
independent. Define the affine Weyl group W to be generated by the reflections sαi , as
usual. Show that W is isomorphic to the semidirect product W0 ⋉Q where Q and W0

are the root lattice and Weyl group of a unique finite root system, and that every such
W0 ⋉Q occurs as an affine Weyl group.

(d) Show that the affine and finite root systems related as in (c) have the property that the
affine Dynkin diagram is obtained by adding a node to the finite one, in a unique way if
the finite Cartan matrix is symmetric.

7. Work out the root systems of the orthogonal Lie algebras so(m,C) explicitly, thereby verifying
that they correspond to the Dynkin diagrams Bn if m = 2n + 1, or Dn if m = 2n. Deduce
the isomorphisms so(4,C) ∼= sl(2,C)× sl(2,C), so(5,C) ∼= sp(4,C), and so(6,C) ∼= sl(4,C).

8. Show that the Weyl group of type Bn or Cn (they are the same because these two root
systems are dual to each other) is the group Sn ⋉ (Z/2Z)n of signed permutations, and that
the Weyl group of type Dn is its subgroup of index two consisting of signed permutations
with an even number of sign changes, i.e., the semidirect factor (Z/2Z)n is replaced by the
kernel of Sn-invariant summation homomorphism (Z/2Z)n → Z/2Z

9. Let (h, R,R∨) be a finite root system, ∆ = {α1, . . . , αn} the set of simple roots with respect
to a choice of positive roots R+, si = sαi the corresponding generators of the Weyl group W .
Given w ∈ W , let l(w) denote the minimum length of an expression for w as a product of the
generators si.

(a) If w = si1 . . . sir and w(αj) ∈ R−, show that for some k we have αik = sik+1
. . . sir(αj),

and hence siksik+1
. . . sir = sik+1

. . . sirsj . Deduce that l(wsj) = l(w)− 1 if w(αj) ∈ R−.
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(b) Using the fact that the conclusion of (a) also holds for v = wsj , deduce that l(wsj) =
l(w) + 1 if w(αj) ̸∈ R−.

(c) Conclude that l(w) = |w(R+) ∪ R−| for all w ∈ W . Characterize l(w) in more explicit
terms in the case of the Weyl groups of type A and B/C.

(d) Assuming that h is over R, show that the dominant cone X = {λ ∈ h : ⟨λ, α∨
i ⟩ ≥

0 for all i} is a fundamental domain for W , i.e., every vector in h has a unique element
of X in its W orbit.

(e) Deduce that |W | is equal to the number of connected regions into which h is separated
by the removal of all the root hyperplanes ⟨λ, α∨⟩, α∨ ∈ R∨.

10. Let h1, . . . , hr be linear forms in variables x1, . . . , xn with integer coefficients. Let Fq denote
the finite field with q = pe elements. Prove that except in a finite number of “bad” charac-
teristics p, the number of vectors v ∈ Fn

q such that hi(v) ̸= 0 for all i is given for all q by a
polynomial χ(q) in q with integer coefficients, and that (−1)nχ(−1) is equal to the number
of connected regions into which Rn is separated by the removal of all the hyperplanes hi = 0.

Pick your favorite finite root system and verify that in the case where the hi are the root
hyperplanes, the polynomial χ(q) factors as (q − e1) . . . (q − en) for some positive integers ei
called the exponents of the root system. In particular, verify that the sum of the exponents
is the number of positive roots, and that (by Problem 9(e)) the order of the Weyl group is∏

i(1 + ei)

11. The height of a positive root α is the sum of the coefficients ci in its expansion α =
∑

i ciαi

on the basis of simple roots.

Pick your favorite root system and verify that for each k ≥ 1, the number of roots of height
k is equal to the number of the exponents ei in Problem 10 for which ei ≥ k.

12. Pick your favorite root system and verify that if h denotes the height of the highest root
plus one, then the number of roots is equal to h times the rank. This number h is called
the Coxeter number. Verify that, moreover, the multiset of exponents (see Problem 10) is
invariant with respect to the symmetry ei 7→ h− ei.

13. A Coxeter element in the Weyl group W is the product of all the simple reflections, once each,
in any order. Prove that a Coxeter element is unique up to conjugacy. Pick your favorite
root system and verify that the order of a Coxeter element is equal to the Coxeter number
(see Problem 12).

14. The fundamental weights λi are defined to be the basis of the weight lattice P dual to the
basis of simple coroots in Q∨, i.e., ⟨λi, α

∨
j ⟩ = δij .

(a) Prove that the stabilizer in W of λi is the Weyl group of the root system whose Dynkin
diagram is obtained by deleting node i of the original Dynkin diagram.

(b) Show that each of the root systems E6, E7, and E8 has the property that its highest root
is a fundamental weight, and identify the corresponding simple root. Deduce that the
order of the Weyl group W (Ek) in each case is equal to the number of roots times the
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order of the Weyl group W (G), where G is the root system formed from Ek by deleting
the identified root. Use this to calculate the orders of the Weyl groups W (Ek).

15. Let e1, . . . , e8 be the usual orthonormal basis of coordinate vectors in Euclidean space R8. The
root system of type E8 can be realized in R8 with simple roots αi = ei − ei+1 for i = 1, . . . , 7
and

α8 =

Å
−1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

ã
.

Show that the root lattice Q is equal to the weight lattice P , and that in this realization, Q
consists of all vectors β ∈ Z8 such that

∑
i βi is even and all vectors β ∈

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
+

Z8 such that
∑

i βi is odd. Show that the root system consists of all vectors of squared length
2 in Q, namely, the vectors ±ei ± ej for i < j, and all vectors with coordinates ±1

2 and an
odd number of coordinates with each sign.

16. Show that the root system of type F4 has 24 long roots and 24 short roots, and that the roots
of each length form a root system of type D4. Show that the highest root and the highest
short root are the fundamental weights at the end nodes of the diagram. Then use Problem
14(a) to calculate the order of the Weyl group W (F4). Show that W (F4) acts on the set of
short (resp. long roots) as the semidirect product S3 ⋉W (D4), where the symmetric group
S3 on three letters acts on W (D4) as the automorphism group of its Dynkin diagram.

17. Pick your favorite root system and verify that the generating function W (t) =
∑

w∈W tl(w) is
equal to

∏
i (1 + t+ · · ·+ tei), where ei are the exponents as in Problem 10.

18. Let S be the subring of W -invariant elements in the ring of polynomial functions on h. Pick
your favorite root system and verify that S is a polynomial ring generated by homogeneous
generators of degrees ei + 1, where ei are the exponents as in Problem 10.


