Math 4055/5055: Advanced Algebra II

Assignment 4

due 18 March 2025, end of day

Fix a positive prime p, and assume throughout that all fields under consideration have characteristic p.

- 1. Show that if $F \subset E$ is a finite-degree field extension such that [E : F] is not divisible by p, then $F \subset E$ is separable.
- 2. The converse does not hold: There exists a field \mathbb{F}_{p^p} of order p^p ; the extension $\mathbb{F}_p \subset \mathbb{F}_{p^p}$ is separable (indeed, Galois) and of degree p.
 - (a) Suppose that F is a field of characteristic p, for example $F = \mathbb{F}_p$. An Artin-Schreier polynomial is a polynomial of the form $x^p x a$ for some $a \in F$. Fix a and suppose that $x^p x a$ has no roots in F. Consider the field $K = F[\alpha]$ where α is some root of (some irreducible factor of) $x^p x a$. Show that $\alpha + 1$ is another root.
 - (b) Conclude that α → α + 1 extends to an automorphism of K, called the Artin-Schreier automorphism of K. Conclude that the Galois group of K has order at least p. Conclude that [K : F] = p and that x^p - x - a is irreducible over K. Extensions of this form are called Artin-Schreier extensions.
 - (c) Show that when $K = \mathbb{F}_p$, then the Artin–Schreier polynomial has no roots as soon as $a \neq 0$. Conclude that $\mathbb{F}_p \subset \mathbb{F}_{p^p}$ is Artin–Schreier.
 - (d) We therefore have two different descriptions of $\operatorname{Gal}(\mathbb{F}_{p^p}/\mathbb{F}_p)$: it is the cyclic group of order p generated by the Frobenius automorphism and it is the cyclic group of order p generated by the Artin–Schreier automorphism. Find a formula relating these two automorphisms.
 - (e) Each nonzero $a \in \mathbb{F}_p$ gives a description of $\mathbb{F}_p \subset \mathbb{F}_{p^p}$ as an Artin–Schreier extension. As a varies, how do these descriptions vary? In particular, how many elements of \mathbb{F}_{p^p} are Artin–Schreier?
- 3. (a) Let ℓ be a prime, possibly but not necessarily equal to p. How many irreducible monic polynomials of degree ℓ are there over \mathbb{F}_p ? Hint: How many orbits does the Frobenius have when acting on $\mathbb{F}_{p^{\ell}}$? Alternate hint: Show that the irreducible factors of $x^{p^{\ell}} x$ are all either linear or degree- ℓ .
 - (b) Why are the two hints in the previous question actually the same hint?
 - (c) List all the irreducible cubics over \mathbb{F}_3 .
- 4. Let $F \subset E$ be an algebraic extension. Suppose that $\alpha \neq 0 \in E$ is separable over F and $\beta \neq 0 \in E$ is purely inseparable over F. Prove that $F[\alpha, \beta] = F[\alpha + \beta] = F[\alpha\beta]$.

- 5. The separable degree $[E:F]_s$ of a field extension is the degree $[E_s:F]$ where $E_s \subset E$ is the subfield of separable (over F) elements. The inseparable degree $[E:F]_i$ of E/F is $[E:E_s]$. Suppose that $E = F[\alpha]$ is a simple algebraic extension. What are $[E:F]_i$ and $[E:F]_s$ in terms of (the minimal polynomial of) α ?
- 6. Suppose that $F \subset K \subset E$ is a subextension, and let $K_s \subset K$ and $E_s \subset E$ denote the subfields of elements which are separable over F. Show that $K_s \subset E_s$ is separable.

Conclude that $[:]_s$, and hence also $[:]_i$, is multiplicative.

7. Fix a finite-degree extension $F \subset E$. Let $\overline{F} = \overline{E}$ denote the algebraic closure of F (why is $\overline{F} = \overline{E}$?), and let $F^s = \overline{F}_s \subset \overline{F}$ denote the separable closure. Show that the sets hom_F(E, \overline{F}) and hom_F(E_s, F^s) are canonically isomorphic (where the hom is in the category of fields over F). Conclude that hom(E, \overline{F}) is of cardinality equal to $[E : F]_s$.