Algebraic definition of topological order

Theo Johnson-Freyd

Topological Orders and Higher Structures Erwin Schrödinger Institute, 7 August 2020

Based on arXiv:2003.06663.

These slides: categorified.net/AlgTopOrder.pdf.

Perimeter $\widehat{\mathbf{P}}$ institute for theoretical physics

Kong–Wen et al: (n+1)D topological order = fusion *n*-category with remote detectability.

Goal for my talk: Complete mathematical definition.

Plan for my talk:

Weak *n*-categories

Categorical condensations

(Separable) multifusion *n*-categories

Remote detectability

Fusion and braided fusion *n*-categories

Classification of topological orders

Weak *n*-categories

Defn (part i of iii): We weak 0-category is a set. A weak *n*-category is an $(\infty, 1)$ -category enriched in the $(\infty, 1)$ -category of weak (n-1)-categories.

This means that $\mathcal C$ consists of the following data:

- ► A set ob(C) of objects (aka 0-morphisms) of C.
- For each (k + 1)-tuple (X₀,...,X_k) of objects of C, a weak (n−1)-category C(X₀,...,X_k). This is the collection of composable k-tuples X₀ → X₁ → X₂ → X_{k−1} → X_k.
- Simplicial structure: strict functors

composition = delete $X_i : \mathcal{C}(..., X_i, ...) \to \mathcal{C}(..., \widehat{X}_i, ...)$ insert identity = repeat $X_i : \mathcal{C}(..., X_i, ...) \to \mathcal{C}(..., X_i, X_i, ...)$

These data must satisfy the Segal axiom on next slide.

Defn (part ii of iii): These data must satisfy the Segal axiom:

$$\mathcal{C}(X_0,\ldots,X_k) \to \prod_{i=1}^k \mathcal{C}(X_{i-1},X_i)$$

is a weak equivalence (see part iii) of (n-1)-categories. Upshot:

$$\mathcal{C}(X_0, X_1) \times \mathcal{C}(X_1, X_2) \stackrel{\sim}{\leftarrow} \mathcal{C}(X_0, X_1, X_2) \to \mathcal{C}(X_0, X_2)$$

gives a contractible space of composition maps. You could, if you want, choose some noncanonical splitting to get a composition $\circ : C(X_0, X_1) \times C(X_1, X_2) \rightarrow C(X_0, X_2).$

Associativity from compatibility of $C(X_0, X_1, X_2, X_3) \rightarrow C(X_0, X_3)$. Higher associativity data from $C(X_0, \ldots, X_k) \rightarrow C(X_0, X_k)$. **Defn (part iii of iii):** It is clear what is a strict functor $F : C \to D$ of weak *n*-categories. A strict functor is a weak equivalence if it is

- ▶ Fully faithful: All $C(X_0, ..., X_k) \rightarrow D(FX_0, ..., FX_k)$ are weak equivalences.
- ► Essentially surjective: Every object of D is isomorphic to an object in the image of *F*.

If you like such things, you can make (weak *n*-categories, weak equivalences) into a model category. The details don't matter for most users: I mention it just so that you sleep easy.

At the end of the day, weak *n*-categories have *i*-morphisms for $i \le n$. The *n*-morphisms form sets, and their composition is strict. *i*-morphisms for i < n do not have strict composition.

Can just as easily define \mathbb{C} -linear weak *n*-category, in which the *n*-morphisms form \mathbb{C} -vector spaces, and compositions are bilinear.

Categorical condensations

All that said, a lot of the time you can just ignore all associator and homotopy stuff, especially whenever you are studying structures parameterized by *n*-computads (free weak *n*-categories) which are gaunt (all isomorphisms are equalities).

Example: A condensation $X \rightarrow Y^{-1}$ in a weak *n*-category C is a pair of 1-morphisms $f : X \leftrightarrows Y : g$ and a condensation $fg \rightarrow id_Y$. These are parameterized by a gaunt computad

Condensations are *n*-cat version of split surjection aka retract.

¹ LATEX: \mathrel{\,\hspace{.75ex}\joinrel\rhook\joinrel\hspace{-.75ex}\joinrel\rightarrow}

A condensation monad aka (nonunital) separable monad is an endomorphism $e: X \to X$ plus an associative condensation $e^2 \to e$. Condensation monad e splits if it factors e = gf through a condensation $f: X \to Y : g$. C is condensation complete aka Karoubi complete if all condensation monads split.

Theorem (Gaiotto–JF, Douglas–Reutter for n = 2):

(1) If a condensation monad splits, then the splitting is unique.

- (2) There is a natural construction C → Kar(C) that condensation-completes any C.
- (3) Condensation complete \Rightarrow complete for all absolute colimits.

(4) nVEC := Σⁿ⁻¹VEC ⊂ {cond complete linear (n-1)-cats} is the fully-dualizable subcategory. Notation: If C is monoidal, ΣC := Kar(one-point delooping of C). VEC = f.d. vspaces.

Caveat: Full story of colimits in enriched higher cats still under development. (3,4) assume it will be "the same" as classical story.

(Separable) multifusion *n*-categories

Recall: A multifusion 1-category \mathcal{A} is a monoidal \mathbb{C} -linear Karoubi-complete category which is

(1) semisimple with finitely many simples;

(2) rigid: all objects in C have duals.

Definition of multifusion 2-category due to **Douglas-Reutter**.

How to find correct *n*-categorical generalization?

Tillmann: (1) $\Leftrightarrow \mathcal{A}$ is 1-dualizable $\Leftrightarrow \mathcal{A}$ is fully dualizable in $KARCAT_{\mathbb{C}} := \{Karoubi \text{ complete } \mathbb{C}\text{-linear cats}\}, \text{ i.e. } \mathcal{A} \text{ is proper.}$

Exercise (Gaitsgory): (2) \Leftrightarrow tensor product $\otimes : \mathcal{A} \boxtimes \mathcal{A} \to \mathcal{A}$ has an \mathcal{A} -bilinear right adjoint $\Delta = \otimes^{R} : \mathcal{A} \to \mathcal{A} \boxtimes \mathcal{A}$. In particular, counit of adjunction $\eta : \otimes \circ \Delta \Rightarrow \mathrm{id}_{\mathcal{A}}$ is \mathcal{A} -bilinear.

Douglas–Schommer-Pries–Snyder: Since $char(\mathbb{C}) = 0$, there exists an \mathcal{A} -bilinear splitting ϵ s.t. $\eta \epsilon = id_{id_{\mathcal{A}}}$, i.e. \mathcal{A} is separable aka smooth. I.e. $\otimes : \mathcal{A} \boxtimes \mathcal{A} \to \mathcal{A}$ is an \mathcal{A} -bilinear condensation.

Defn: A (separable) multifusion *n*-cat A is a monoidal (aka E_1) \mathbb{C} -linear Karoubi-complete *n*-category which is

proper: \mathcal{A} is 1-dualizable (in fact, fully dualizable) in $n \operatorname{KarCat}_{\mathbb{C}} := \{ \operatorname{Karoubi complete } \mathbb{C} \text{-linear } n \text{-cats} \}.$

smooth: multiplication map $\otimes : \mathcal{A} \boxtimes \mathcal{A} \to \mathcal{A}$ extends to an *A*-bilinear condensation.

Theorem: For a monoidal \mathbb{C} -linear Karoubi-complete *n*-category \mathcal{A} , the following are equivalent:

- ► A is (separable) multifusion.
- \mathcal{A} is 2-dualizable in the (n+2)-category $MOR_1(nKARCAT_{\mathbb{C}})$.
- \mathcal{A} is fully dualizable in $MOR_1(nKarCat_{\mathbb{C}})$.

The corresponding (n+2)D TFT is what X.G. Wen calls the anomaly of the (n+1)D topological order with excitations A.

JF–Scheimbauer: Construction of $MOR_1(nKARCAT_{\mathbb{C}})$.

Remote detectability

Defn: The (Drinfeld) centre Z(A) of A is the *n*-category of A-bimodule endomorphisms of A. It is automatically \mathbb{C} -linear Karoubi complete.

 \mathcal{A} satisfies remote detectability if $Z(\mathcal{A}) \simeq n \text{VEC}$, i.e. trivial.

Theorem: For a multifusion *n*-category \mathcal{A} , the following are equivalent:

- \mathcal{A} satisfies remote detectability.
- \mathcal{A} is invertible in the (n+2)-category $MOR_1(nKARCAT_{\mathbb{C}})$.

Defn: An (unstable) (n+1)D algebraic topological order is a multifusion *n*-category satisfying remote detectability.

Corollary:

 $\{(n+1)D \text{ algebraic topological orders}\} = \frac{\{(n+1)D \text{ TFTs}\}}{\{\text{invertible TFTs}\}}$ $= \{(\text{gravitationally}) \text{ anomalous framed } (n+1)D \text{ TFTs}\}$

Fusion and braided fusion *n*-categories

Notation: If \mathcal{A} is a multifusion *n*-category, write $\Omega \mathcal{A}$ for the endomorphism (n-1)-category the unit object $1_{\mathcal{A}} \in \mathcal{A}$. It is automatically braided (aka E_2) multifusion.

Physics: \mathcal{A} is the *n*-category of codimension- (≥ 1) excitations in some topological order. $\Omega \mathcal{A}$ is the codimension- (≥ 2) excitations. Continue: $\Omega^k \mathcal{A}$ is the codimension- $(\geq k)$ excitations.

Recall: A multifusion 1-category \mathcal{A} is fusion if $\Omega \mathcal{C} = \mathbb{C}$. Equivalently, $1_{\mathcal{A}}$ does not decompose as a nontrivial direct sum.

Defn: A multifusion *n*-category is fusion if $\Omega^n \mathcal{A} = \mathbb{C}$. Equivalently, $1_{\mathcal{A}}$ does not decompose as a nontrivial direct sum.

Physics: $\Omega^n \mathcal{A}$ is a commutative separable finite-dimensional \mathbb{C} -algebra, so = $\mathbb{C}^{\bigoplus N}$ for some $N < \infty$. In high-energy QFT, Spec $(\Omega^n \mathcal{A})$ are the *N* local vacua. If N > 1, then the system is unstable: for each local vacuum, there is a small operator that you can add to the Hamiltonian which projects onto that vacuum.

Theorem: For \mathcal{A} an (n+1)D (possibly unstable) algebraic topological order, i.e. a multifusion *n*-category satisfying remote detectibility, the following are equivalent:

(1)
$$\mathcal{A}$$
 is fusion, i.e. $\Omega^n \mathcal{A} = \mathbb{C}$.

(2) $\mathcal{A} = \Sigma \Omega \mathcal{A}$.

Remark: (2) Says that there are no "nontrivial" codimension-1 operators. But interpret this carefully! There are typically lots of codimension-1 operators, including many that do not decompose as a direct sum. What makes them "trivial" is that they all arise from condensing codimension-(≥ 2) operators.

Main step in proof: More generally, suppose \mathcal{A} is fusion but not necessarily remote detectable. Then $\rho : Z(\mathcal{A}) \to \mathcal{A}$ is dominant: every object $Y \in \mathcal{A}$ is the image of a condensation $X \to Y$ with $X \in \text{image}(\rho)$. This gives $(1 \Rightarrow 2)$, and $(2 \Rightarrow 1)$ is easy.

More generally:

Theorem: For A an (n+1)D algebraic topological order, the following are equivalent:

(1) $\Omega^{n-k} \mathcal{A} = k \text{VEC.}$ (2) $\mathcal{A} = \Sigma^{k+1} \Omega^{k+1} \mathcal{A}.$

Slogan: If all excitations of dimension $\leq k$ are "trivial," then all morphisms of codimension $\leq k+1$ are "trivial."

Outline of proof: The hard direction is $(1 \Rightarrow 2)$. Define E_{k+1} -centre $Z_{(k+1)}$ (e.g. E_2 -centre = Müger centre). Without assuming remote detectability, show that if \mathcal{B} is an E_{k+1} -monoidal multifusion *m*-category with $\Omega^{m-k}\mathcal{B} = k$ VEC, then $Z_{(k+1)}(\mathcal{A}) \rightarrow \mathcal{A}$ is dominant. For this, dimensionally reduce on blackboard-framed spheres to the E_1 case.

Classification of topological orders

Slogan: If all excitations of dimension $\leq k$ are "trivial," then all morphisms of codimension $\leq k+1$ are "trivial."

Example: Suppose n = 3. If (1) $\Omega^2 \mathcal{A} = \text{VEC}$ ("no lines") then (2) $\mathcal{A} = \Sigma^2 \Omega^2 \mathcal{A} = 3 \text{VEC}$.

This is the main unproven step in:

Theorem (Lan–Kong–Wen, Lan–Wen, JF): Each (3+1)D topological order is canonically an anomalous topological sigma models with target a 1-groupoid.

Small print: If \mathcal{A} is fermionic, then target is the categorical spectrum $\operatorname{Spec}(\Omega^2 \mathcal{A}) = \operatorname{hom}(\Omega^2 \mathcal{A}, \operatorname{SVEC})$. Action is in reduced supercohomology (need anomalous/reduced to make canonical). If \mathcal{A} is bosonic, then $\operatorname{Spec}(\Omega^2 \mathcal{A})$ carries an action by $\mathbb{Z}_2^f[1]$, and action lives in reduced $\mathbb{Z}_2^f[1]$ -twisted-equivariant supercohomology. Now can have actual anomaly, because twisted-equivariance means nonreduced \neq reduced $\oplus \ldots$, but rather there is LES.

Classification in other dimensions?

(0+1)D Topological order = central simple algebra $\cong Mat_N(\mathbb{C})$. *N* is the ground state degeneracy. Classification requires that \mathbb{C} is algebraically closed. Otherwise, you could have a system which is protected by Galois symmetry.

- (1+1)D All unstable, because C is algebraically closed. Fermionically, there is still some data: a relative Arf invariant between pairs of local vacua. This is explained by super cohomology.
- (2+1)D Stable (aka fusion) topological orders = "MTCs" = nondegenerate braided fusion categories (no canonical ribbon structure). Classification of MTCs is wild.

Unstable (multifusion) topological orders: each local vacuum supports an MTC. Each pair of local vacua carries a Witt-equivalence of MTCs.

(3+1)D Anomalous topological sigma models with 1-groupoid targets.

(4+1)D I expect a classification in terms of symplectic finite abelian groups and Lagrangian correspondences. Joint work in progress with Matthew Yu.

- (5+1)D Anomalous topological sigma models with 2-groupoid targets. Basically repeat the Lan–Kong–Wen proof. Need 2-categorical Tannakian duality: every symmetric separable multifusion 2-category admits a super fibre functor, i.e. a symmetric monoidal functor to to $2\text{SVEC} := \Sigma \text{SVEC} = \text{SALG}$. Joint work in progress with **Michael Hopkins**.
- (6+1)D Probably something about the classical Witt group of finite abelian groups with nondegenerate quadratic forms (bosonic) or symmetric bilinear pairings (fermionic)? Definitely there are gravitational anomalies (7D Chern–Simons theory).
- (7+1)D Would have classification in terms of anomalous topological sigma models with 3-groupoid targets, except 3-categorical Tannakian duality fails. Need beyond-fermionic 2-branes.

Thank you!

Further details:

[arXiv:1502.06526] (Op)lax natural transformations, twisted field theories, and the "even higher" Morita categories. (joint with Claudia Scheimbauer)

[arXiv:1905.09566] Condensations in higher categories. (joint with Davide Gaiotto)

[arXiv:2003.06663] On the classification of topological orders.

[these slides] http://categorified.net/AlgTopOrder.pdf