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Kong–Wen et al: (n+1)D topological order = fusion n-category
with remote detectability.

Goal for my talk: Complete mathematical definition.

Plan for my talk:

Weak n-categories

Categorical condensations

(Separable) multifusion n-categories

Remote detectability

Fusion and braided fusion n-categories

Classification of topological orders
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Weak n-categories
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Defn (part i of iii): We weak 0-category is a set. A weak
n-category is an (∞, 1)-category enriched in the (∞, 1)-category of
weak (n−1)-categories.

This means that C consists of the following data:

I A set ob(C) of objects (aka 0-morphisms) of C.

I For each (k + 1)-tuple (X0, . . . ,Xk) of objects of C, a weak
(n−1)-category C(X0, . . . ,Xk). This is the collection of

composable k-tuples X0
f1→ X1

f2→ X2
...→ Xk−1

fk→ Xk .

I Simplicial structure: strict functors

composition = delete Xi : C(. . . ,Xi , . . . )→ C(. . . , X̂i , . . . )

insert identity = repeat Xi : C(. . . ,Xi , . . . )→ C(. . . ,Xi ,Xi , . . . )

These data must satisfy the Segal axiom on next slide.
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Defn (part ii of iii): These data must satisfy the Segal axiom:

C(X0, . . . ,Xk)→
k∏

i=1

C(Xi−1,Xi )

is a weak equivalence (see part iii) of (n−1)-categories.

Upshot:

C(X0,X1)× C(X1,X2)
∼← C(X0,X1,X2)→ C(X0,X2)

gives a contractible space of composition maps. You could, if you
want, choose some noncanonical splitting to get a composition
◦ : C(X0,X1)× C(X1,X2)→ C(X0,X2).

Associativity from compatibility of C(X0,X1,X2,X3)→ C(X0,X3).
Higher associativity data from C(X0, . . . ,Xk)→ C(X0,Xk).
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Defn (part iii of iii): It is clear what is a strict functor F : C → D
of weak n-categories. A strict functor is a weak equivalence if it is

I Fully faithful: All C(X0, . . . ,Xk)→ D(FX0, . . . ,FXk) are weak
equivalences.

I Essentially surjective: Every object of D is isomorphic to an
object in the image of F .

If you like such things, you can make (weak n-categories, weak
equivalences) into a model category. The details don’t matter for
most users: I mention it just so that you sleep easy.

At the end of the day, weak n-categories have i-morphisms for
i ≤ n. The n-morphisms form sets, and their composition is strict.
i-morphisms for i < n do not have strict composition.

Can just as easily define C-linear weak n-category, in which the
n-morphisms form C-vector spaces, and compositions are bilinear.
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Categorical condensations
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All that said, a lot of the time you can just ignore all associator
and homotopy stuff, especially whenever you are studying
structures parameterized by n-computads (free weak n-categories)
which are gaunt (all isomorphisms are equalities).

Example: A condensation X ↩→ Y 1 in a weak n-category C is a
pair of 1-morphisms f : X � Y : g and a condensation fg ↩→ idY .
These are parameterized by a gaunt computad

X

Y

:=

X

Y

f g

Condensations are n-cat version of split surjection aka retract.

1
LATEX: \mathrel{\,\hspace{.75ex}\joinrel\rhook\joinrel\hspace{-.75ex}\joinrel\rightarrow}
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A condensation monad aka (nonunital) separable monad is an
endomorphism e : X → X plus an associative condensation
e2 ↩→ e. Condensation monad e splits if it factors e = gf through
a condensation f : X ↩→ Y : g . C is condensation complete aka
Karoubi complete if all condensation monads split.

Theorem (Gaiotto–JF, Douglas–Reutter for n = 2):

(1) If a condensation monad splits, then the splitting is unique.

(2) There is a natural construction C  Kar(C) that
condensation-completes any C.

(3) Condensation complete ⇒ complete for all absolute colimits.

(4) nVec := Σn−1Vec ⊂ {cond complete linear (n−1)-cats} is
the fully-dualizable subcategory. Notation: If C is monoidal,
ΣC := Kar(one-point delooping of C). Vec = f.d. vspaces.

Caveat: Full story of colimits in enriched higher cats still under
development. (3,4) assume it will be “the same” as classical story.
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(Separable) multifusion n-categories
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Recall: A multifusion 1-category A is a monoidal C-linear
Karoubi-complete category which is

(1) semisimple with finitely many simples;

(2) rigid: all objects in C have duals.

Definition of multifusion 2-category due to Douglas–Reutter.

How to find correct n-categorical generalization?

Tillmann: (1) ⇔ A is 1-dualizable ⇔ A is fully dualizable in
KarCatC := {Karoubi complete C-linear cats}, i.e. A is proper.

Exercise (Gaitsgory): (2) ⇔ tensor product ⊗ : A�A → A has
an A-bilinear right adjoint ∆ = ⊗R : A → A�A. In particular,
counit of adjunction η : ⊗ ◦∆⇒ idA is A-bilinear.

Douglas–Schommer-Pries–Snyder: Since char(C) = 0, there
exists an A-bilinear splitting ε s.t. ηε = ididA , i.e. A is separable
aka smooth. I.e. ⊗ : A�A ↩→ A is an A-bilinear condensation.
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Defn: A (separable) multifusion n-cat A is a monoidal (aka E1)
C-linear Karoubi-complete n-category which is

proper: A is 1-dualizable (in fact, fully dualizable) in
nKarCatC := {Karoubi complete C-linear n-cats}.

smooth: multiplication map ⊗ : A�A → A extends to an
A-bilinear condensation.

Theorem: For a monoidal C-linear Karoubi-complete n-category
A, the following are equivalent:

I A is (separable) multifusion.

I A is 2-dualizable in the (n+2)-category Mor1(nKarCatC).

I A is fully dualizable in Mor1(nKarCatC).

The corresponding (n+2)D TFT is what X.G. Wen calls the
anomaly of the (n+1)D topological order with excitations A.

JF–Scheimbauer: Construction of Mor1(nKarCatC).
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Remote detectability
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Defn: The (Drinfeld) centre Z (A) of A is the n-category of
A-bimodule endomorphisms of A. It is automatically C-linear
Karoubi complete.

A satisfies remote detectability if Z (A) ' nVec, i.e. trivial.

Theorem: For a multifusion n-category A, the following are
equivalent:

I A satisfies remote detectability.

I A is invertible in the (n+2)-category Mor1(nKarCatC).

Defn: An (unstable) (n+1)D algebraic topological order is a
multifusion n-category satisfying remote detectability.

Corollary:

{(n+1)D algebraic topological orders} =
{(n+1)D TFTs}
{invertible TFTs}

= {(gravitationally) anomalous framed (n+1)D TFTs}
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Fusion and braided fusion n-categories
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Notation: If A is a multifusion n-category, write ΩA for the
endomorphism (n−1)-category the unit object 1A ∈ A. It is
automatically braided (aka E2) multifusion.

Physics: A is the n-category of codimension-(≥ 1) excitations in
some topological order. ΩA is the codimension-(≥ 2) excitations.
Continue: ΩkA is the codimension-(≥ k) excitations.

Recall: A multifusion 1-category A is fusion if ΩC = C.
Equivalently, 1A does not decompose as a nontrivial direct sum.

Defn: A multifusion n-category is fusion if ΩnA = C.
Equivalently, 1A does not decompose as a nontrivial direct sum.

Physics: ΩnA is a commutative separable finite-dimensional
C-algebra, so = C

⊕
N for some N <∞. In high-energy QFT,

Spec(ΩnA) are the N local vacua. If N > 1, then the system is
unstable: for each local vacuum, there is a small operator that you
can add to the Hamiltonian which projects onto that vacuum.
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Theorem: For A an (n+1)D (possibly unstable) algebraic
topological order, i.e. a multifusion n-category satisfying remote
detectibility, the following are equivalent:

(1) A is fusion, i.e. ΩnA = C.

(2) A = ΣΩA.

Remark: (2) Says that there are no “nontrivial” codimension-1
operators. But interpret this carefully! There are typically lots of
codimension-1 operators, including many that do not decompose
as a direct sum. What makes them “trivial” is that they all arise
from condensing codimension-(≥ 2) operators.

Main step in proof: More generally, suppose A is fusion but not
necessarily remote detectable. Then ρ : Z (A)→ A is dominant:
every object Y ∈ A is the image of a condensation X ↩→ Y with
X ∈ image(ρ). This gives (1 ⇒ 2), and (2 ⇒ 1) is easy.
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More generally:

Theorem: For A an (n+1)D algebraic topological order, the
following are equivalent:

(1) Ωn−kA = kVec.

(2) A = Σk+1Ωk+1A.

Slogan: If all excitations of dimension ≤ k are “trivial,” then all
morphisms of codimension ≤ k+1 are “trivial.”

Outline of proof: The hard direction is (1 ⇒ 2). Define
Ek+1-centre Z(k+1) (e.g. E2-centre = Müger centre). Without
assuming remote detectability, show that if B is an Ek+1-monoidal
multifusion m-category with Ωm−kB = kVec, then
Z(k+1)(A)→ A is dominant. For this, dimensionally reduce on
blackboard-framed spheres to the E1 case.
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Classification of topological orders
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Slogan: If all excitations of dimension ≤ k are “trivial,” then all
morphisms of codimension ≤ k+1 are “trivial.”

Example: Suppose n = 3. If (1) Ω2A = Vec (“no lines”) then
(2) A = Σ2Ω2A = 3Vec.

This is the main unproven step in:

Theorem (Lan–Kong–Wen, Lan–Wen, JF): Each (3+1)D
topological order is canonically an anomalous topological sigma
models with target a 1-groupoid.

Small print: If A is fermionic, then target is the categorical
spectrum Spec(Ω2A) = hom(Ω2A,SVec). Action is in reduced
supercohomology (need anomalous/reduced to make canonical). If
A is bosonic, then Spec(Ω2A) carries an action by Zf

2[1], and
action lives in reduced Zf

2[1]-twisted-equivariant supercohomology.
Now can have actual anomaly, because twisted-equivariance means
nonreduced 6= reduced⊕ . . . , but rather there is LES.
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Classification in other dimensions?

(0+1)D Topological order = central simple algebra ∼= MatN(C). N is
the ground state degeneracy. Classification requires that C is
algebraically closed. Otherwise, you could have a system
which is protected by Galois symmetry.

(1+1)D All unstable, because C is algebraically closed. Fermionically,
there is still some data: a relative Arf invariant between pairs
of local vacua. This is explained by super cohomology.

(2+1)D Stable (aka fusion) topological orders = “MTCs” =
nondegenerate braided fusion categories (no canonical ribbon
structure). Classification of MTCs is wild.

Unstable (multifusion) topological orders: each local vacuum
supports an MTC. Each pair of local vacua carries a
Witt-equivalence of MTCs.

(3+1)D Anomalous topological sigma models with 1-groupoid targets.
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(4+1)D I expect a classification in terms of symplectic finite abelian
groups and Lagrangian correspondences. Joint work in
progress with Matthew Yu.

(5+1)D Anomalous topological sigma models with 2-groupoid targets.
Basically repeat the Lan–Kong–Wen proof. Need 2-categorical
Tannakian duality: every symmetric separable multifusion
2-category admits a super fibre functor, i.e. a symmetric
monoidal functor to to 2SVec := ΣSVec = SAlg. Joint
work in progress with Michael Hopkins.

(6+1)D Probably something about the classical Witt group of finite
abelian groups with nondegenerate quadratic forms (bosonic)
or symmetric bilinear pairings (fermionic)? Definitely there are
gravitational anomalies (7D Chern–Simons theory).

(7+1)D Would have classification in terms of anomalous topological
sigma models with 3-groupoid targets, except 3-categorical
Tannakian duality fails. Need beyond-fermionic 2-branes.
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Thank you!

Further details:

[arXiv:1502.06526] (Op)lax natural transformations, twisted
field theories, and the “even higher” Morita categories.
(joint with Claudia Scheimbauer)

[arXiv:1905.09566] Condensations in higher categories.
(joint with Davide Gaiotto)

[arXiv:2003.06663] On the classification of topological orders.

[these slides] http://categorified.net/AlgTopOrder.pdf
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