Goal: Describe integration algebraically. Use as *defini*tion for generalized manifolds (stacks, ∞ -dim, etc.).

1. Expectation values as homological algebra

[Witten, A Note on the Antibracket Formalism, 1990]

X = compact manifold. Choose measure μ .

Want expectation value $\langle f \rangle_{\mu} = \frac{\int_{X} f \mu}{\int_{X} \mu}$, $f \in \mathscr{C}^{\infty}(X)$.

Observation: \int : Chains(X) $\rightarrow \mathbb{R}$ is almost completely determined by requirement that it be a chain map.

Defn: $MV^{\bullet}(X) = \Gamma(\bigwedge^{\bullet} TX)$, multivector fields.

Fact: If μ nowhere-vanishing, then "contract with μ ": $MV^{\bullet} \rightarrow \Omega^{\dim X - \bullet}$ is iso of graded vector spaces.

Defn: $\Delta_{\mu} = \mu^{-1} \circ d \circ \mu : MV^{\bullet}(X) \to MV^{\bullet-1}(X),$ divergence with respect to μ .

Fact: $(MV^{\bullet}(X), \Delta_{\mu})$ is a model of Chains(X).

Cor: $f \mapsto \int_X f$ is almost completely determined by requirement that it extends to chain map $\mathsf{MV}^{\bullet} \to \mathbb{R}$.

Cor: If X is connected then $\langle \cdot \rangle_{\mu}$ is determined by requirement that it be a chain map and that $\langle 1 \rangle = 1$.

Remark: $\mu \mapsto \Delta_{\mu}$ looses data: $\Delta_{a\mu} = \Delta_{\mu}$ for $a \in \mathbb{R}^{\times}$.

2. Some Gerstenhaber geometry

Fact: $MV^{\bullet}(X)$ is a $\mathscr{C}^{\infty}(X)$ -module. Δ_{μ} is a derivation of $\mathscr{C}^{\infty}(X)$ modules.

Question: $MV^{\bullet}(X)$ is a graded commutative algebra. Is $(MV^{\bullet}, \Delta_{\mu})$ a dga? I.e. is Δ_{μ} a derivation of $m = \wedge$?

Answer: No. Let $f, g \in MV^{\bullet}$ be homogeneous. The *failure of* Δ_{μ} *to be a derivation* is $[\Delta_{\mu}, m]$:

$$f \otimes g \mapsto \Delta_{\mu}(fg) - \left((\Delta_{\mu}f)g + (-1)^{|f| \cdot |\Delta_{\mu}|} f(\Delta_{\mu}g) \right)$$

(Extended linearly. Note: $|\Delta_{\mu}| = -1$.) Since *m* is (graded) commutative, $[\Delta_{\mu}, m]$ is (graded) symmetric.

Fact: $[\Delta_{\mu}, m]$ is a *biderivation*:

$$[\Delta_{\mu}, m](fg, h) = (-1)^{|f| \cdot |[\Delta_{\mu}, m]|} f [\Delta_{\mu}, m](g, h) + + (-1)^{|g| \cdot |h|} [\Delta_{\mu}, m](f, h) g$$

I.e. Δ_{μ} is a second-order diff. op. on $(\mathsf{MV}^{\bullet}, m = \wedge)$. $[\Delta_{\mu}, m]$ is its principal symbol.

Fact: You've met $[\Delta_{\mu}, m]$ before: it is the *Gerstenhaber* or *Schouten–Nijenhuis bracket* \mathcal{P} on MV[•], i.e. the extension (as a biderivation) of $[,]: MV^1 \otimes MV^1 \rightarrow MV^1$ to all of MV[•]. \mathcal{P} satisfies Jacobi identity. $|\mathcal{P}| = -1$.

manifolds : commutative algebra :: supermanifolds : graded commutative algebra

Eg: $\sqcap T^*X =$ "manifold" with $\mathscr{C}^{\infty}(\sqcap T^*X) = \mathsf{MV}^{\bullet}(X)$. S–N bracket = "symplectic" structure on $\sqcap T^*X$. For hands-on understanding, choose coordinates x^i on X. Get local sections $\partial_i = \pi_i \in \Gamma(TX) = MV^1(X)$. These are "linear functions" on fibers of ΠT^*X . Algebraically, S–N bracket is

$$\mathcal{P} = rac{\partial}{\partial x^i} \otimes rac{\partial}{\partial \pi_i} + rac{\partial}{\partial \pi_i} \otimes rac{\partial}{\partial x^i}$$

If we choose x^i so that $\mu = dx^1 \cdots dx^{\dim X}$, then

$$\Delta_{\mu}=\frac{\partial^2}{\partial x^i\partial p_i}.$$

Defn: A *BV Laplacian* is a second-order diff. op. Δ on $\sqcap T^*X$ such that:

0.
$$[\Delta, 1] = \Delta(1) = 0$$

1. $[\Delta, m] = \mathcal{P}$
2. $[\Delta, \mathcal{P}] = 0$
3. $[\Delta, \Delta] = 0$

(Should also require $|\Delta| = -1$; then 4. is automatic for MV[•]. We include it in case X is already "super".)

Cor: By 0. and 1., two BV Laplacians differ by a vector field (= derivation of MV^{\bullet}). By 2. this v-field is "symplectic v-field." For classical *X*, 3. is then automatic.

Thm (Koszul): There is canonical bijection

 $\{BV \text{ Laplacians}\} = \{\text{flat connections on } \bigwedge^{\dim} \mathsf{T}^*\}.$ $(\text{Flat} \Leftrightarrow \Delta^2 = 0. \{\text{connections}\} = \text{satisfies } 0, 1, 2.)$

3. Some derived geometry

How does Δ_{μ} change under $\mu \rightarrow \exp(s)\mu$? Must change by symplectic vector field. Not too surprisingly:

Fact:
$$\Delta_{\exp(s)\mu} = \mathcal{P}(s, -) + \Delta_{\mu}$$
.

Often want to understand $\langle \cdot \rangle$ against measure $\exp(\frac{1}{\hbar}s)\mu$ (maybe with some $\sqrt{-1}s$). If \hbar is invertible, homology for $\mathcal{P}(\frac{1}{\hbar}s, -) + \Delta_{\mu}$ is the same as for $\mathcal{P}(s, -) + \hbar\Delta_{\mu}$. The latter feels better if $\hbar \ll 1$.

In limit $\hbar \to 0$, consider (MV[•], $\mathcal{P}(s, -)$). Note: $\mathcal{P}(s, -)$ is derivation, so (MV[•], $\mathcal{P}(s, -)$) is dg commutative algebra, i.e. makes $\sqcap T^*X$ into *Q*-manifold.

Fact: $H^0(MV^{\bullet}, \mathcal{P}(s, -)) = \mathscr{C}^{\infty}(\{ds = 0\}).$

Fact: $(\sqcap T^*X, \mathcal{P}(s, -))$ is the *derived critical locus* of *s*, i.e. the *derived* intersection $\{p = ds\} \cap_{T^*X} \{p = 0\}$.

Why? Intersection $\leftrightarrow \otimes$, and derived intersection uses left-derived functor of \otimes . We should "resolve" the zero section $X \hookrightarrow T^*X$, and then tensor with $\mathscr{C}^{\infty}(\{p = ds\})$. One resolution is $X \simeq (T \oplus \Pi T)X$, with dg structure $p_i \frac{\partial}{\partial \pi_i}$ (i.e. identity: $T \to \Pi T$). Intersection is

$$\mathscr{C}^{\infty}\big((\mathsf{T}^* \oplus \mathsf{n}\mathsf{T}^*)X, p_i \frac{\partial}{\partial \pi_i}\big) \underset{\mathscr{C}^{\infty}(\mathsf{T}^*X)}{\otimes} \mathscr{C}^{\infty}\big(\{p_i = \frac{\partial s}{\partial x^i}\}\big)$$
$$= \mathscr{C}^{\infty}(\mathsf{n}\mathsf{T}^*X) \text{ with dg structure } \frac{\partial s}{\partial x^i} \frac{\partial}{\partial \pi_i} = \mathcal{P}(s, -).$$

Expect that $\mathcal{P}(s, -) + \hbar\Delta$ is "controlled" by $\mathcal{P}(s, -)$, when $\hbar \approx 0$. (E.g. related by spectral sequence.) This is a version of statement that oscillating integrals localize near critical points.

4. Feynman diagrams

[Gwilliam and —, http://math.berkeley.edu/ ~theojf/BVexample.pdf]

X = formal manifold, i.e. $\mathscr{C}^{\infty}(X) = \mathbb{R}[x^1, \dots, x^N]$. Suppose s has nondegenerate critical point at 0, i.e. $s = -\frac{1}{2}a_{ii}x^ix^j + b(x)$ with: $b \in I^3$, I = ideal gen. by $\{x^1, \ldots, x^n\}; a =$ invertible matrix; $\mu = dx^1 \ldots dx^N$.

$$D = \mathcal{P}(s, -) + \hbar \Delta_{\mu} = -a_{ij} x^{i} \frac{\partial}{\partial \pi^{j}} + \frac{\partial b}{\partial x^{i}} \frac{\partial}{\partial \pi_{i}} + \hbar \frac{\partial^{2}}{\partial x^{i} \partial \pi_{j}}$$

acts on $\mathbb{R}[x^i, \pi_i, \hbar]$ with $|x^i| = |\hbar| = 0$, $|\pi_i| = 1$.

Write [f] for class of f in homology. Ansatz (spectral sequence): $\mathrm{H}^{0}(\mathbb{R}[x^{i}, \pi_{i}, \hbar], D) \cong \mathbb{R}[\hbar]$. $\langle f \rangle = [f]/[1]$.

Eg (N = 1, b = 0): Then $\mathsf{MV}^{\bullet} = \mathbb{R}[\![x, \hbar]\!]\pi \oplus \mathbb{R}[\![x, \hbar]\!]$. Differential is $D = -ax\frac{\partial}{\partial \pi} + \hbar \frac{\partial^2}{\partial x \partial \pi}$. ker D? $f \in \mathbb{R}[\![x, \hbar]\!]$, then $f\pi \in \ker D$ iff $-axf' + \hbar f =$

0 iff $f = \exp(ax^2/2\hbar) \notin \mathbb{R}[x, \hbar]$.

im D? Profinite closure of D(polys). $D(x^n \pi) =$ $-ax^{n+1} + \hbar nx^{n-1} \Rightarrow [x^{n+1}] = \frac{\hbar}{a}n[x^{n-1}] \Rightarrow [x^{2n+1}] = 0,$

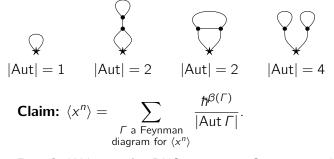
$$\langle x^{2n} \rangle = \left(\frac{\hbar}{a}\right)^n (2n-1)!! = \left(\frac{\hbar}{a}\right)^n \frac{(2n)!}{2^n n!}.$$

This is *Wick's formula*. □

Eg (
$$N = 1$$
, $a = 1$, $b = x^3/6$): $[D(x^n)] = 0 \Rightarrow$
 $[x^{n+1}] = \frac{1}{2} [x^{n+2}] + \hbar n [x^{n-1}].$

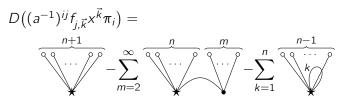
 $[x] = \frac{1}{2}[x^2] = \frac{1}{2}\left(\frac{1}{2}[x^3] + \hbar[1]\right) = \frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}[x^4] + 2\hbar[x]\right) + \frac{1}{2}\left(\frac{1}{2}[x^4] + 2\hbar[x]\right)\right)$ $\hbar[1]) = \dots$ so $\langle x \rangle = \frac{\hbar}{2} + \dots$ and converges in profinite topology. To organize the combinatorics:

A Feynman diagram for $\langle x^n \rangle$ is a connected finite graph Γ with a distinguished *n*-valent vertex (totally ordered incident half-edges) and $v(\Gamma)$ 3-valent vertices (unordered incident half-edges). 1st Betti number is $\beta(\Gamma) = (\nu(\Gamma) + n)/2$. The graphs for $\langle x^2 \rangle$ with $\beta = 1, 2$ are:



Proof: Write c_n for RHS. $c_0 = 1$. So must verify recursion $c_{n+1} = \frac{1}{2}c_{n+2} + \hbar n c_{n-1}$. Let Γ be diagram for $\langle x^{n+1} \rangle$. Walk along last half edge from \star : either (a) you return to \star or (b) you hit a vertex. If (a), delete this half-edge, producing diagram for $\langle x^{n-1} \rangle$ — there were *n* ways to produce said diagram, and it costs \hbar . If (b), unzip this edge, producing diagram for $\langle x^{n+2} \rangle$ — costs factor of 2 in count-with-symmetry. \Box

Eq (general case): Can use similar diagrams. To compute $\langle f \rangle$ for $f \in \mathbb{R}[x^i]$, allow vertices { \star for Taylor coef of f, • for Taylor coefs of b, • for x} and "cap" edges for a^{-1} . $\Gamma \mapsto \frac{\operatorname{ev}(\Gamma)\hbar^{\beta\Gamma}}{|\operatorname{Aut}(\Gamma)|}$, $\operatorname{ev} = \operatorname{contract}$ tensors.



is boundary. In final diagram, self-loop connects kth and (n+1)th half-edges on marked vertex.

Now play Hercules' game of the *many-headed hydra*: chop off the last head by either attaching it to another head (increase power of \hbar) or by producing a new vertex with more heads (increase power of x). Game converges to something in $\mathbb{R}[\![\hbar]\!]$ (the only hydrae with no heads to chop). Game produces all such hydrae. □

5. Homological perturbation theory

If
$$\{p = ds\} \cap_{\mathsf{T}^*X} \{p = 0\}$$
 is clean, then
$$\mathsf{H}^{\bullet}(\mathscr{C}^{\infty}(\mathsf{T}^{\mathsf{T}^*X}), \mathcal{D}(\mathsf{c}^{\mathsf{T}^*})) = (\mathscr{C}^{\infty}(\mathsf{T}^{\mathsf{T}^*}(\mathsf{d}\mathsf{c}^{\mathsf{T}^*})))$$

$$\mathsf{H}^{\bullet}(\mathscr{C}^{\infty}(\mathsf{n}\mathsf{T}^{*}X),\mathcal{P}(s,-)) = (\mathscr{C}^{\infty}(\mathsf{n}\mathsf{T}^{*}\{\mathsf{d} s = 0\}),0).$$

Write $M = MV^{\bullet}$, $L = H^{\bullet}$, $\partial = \mathcal{P}(s, -)$. Choose ι, ϕ, η to form a retraction:

$$(\star) \qquad (L,0) \stackrel{\iota}{\underset{\phi}{\longleftrightarrow}} (M,\partial) \stackrel{\frown}{\bigcirc} \eta \qquad \iota \phi = \mathrm{id}_L \\ \phi \iota = \mathrm{id}_M - [\partial,\eta]$$

Can always achieve side conditions: $\iota \eta = \eta^2 = \eta \phi = 0$. $\partial^2 = \mathcal{P}(s, -)^2 = 0$ is the classical master equation.

Set $\delta = \hbar \Delta$. $(\partial + \delta)^2 = 0$ is the *quantum master equation*. The *homotopy perturbation lemma* says:

Thm: If (\star) is a retraction, so is:

$$(\tilde{\star}) \qquad (L, \tilde{\delta}) \xleftarrow[(\mathrm{id}-\eta\delta)^{-1}]{(\mathrm{id}-\delta\eta)^{-1}\circ\phi} (M, \partial+\delta) \bigcirc \eta(\mathrm{id}-\delta\eta)^{-1}$$

 $\tilde{\delta} = \iota \circ \eta (\mathrm{id} - \delta \eta)^{-1} \circ \phi$. Remark: don't need \hbar formal, just "small" enough for $(id - \eta \delta)^{-1}$ to exist.

One choice of splitting comes from trivializing tubular nbhd of {ds = 0}. $\iota \leftrightarrow$ "restriction to critical locus". $\iota \circ ({\rm id} - \eta \delta)^{-1} =$ integrate out the fibers. New differential $\tilde{\delta}$ on $L = \mathscr{C}^{\infty}(\Pi T^* \{ ds = 0 \})$ encodes remaining measure on critical locus (the *effective action*).

Put another way: we are interested in the (hopefully unique) chain map $\langle \cdot \rangle : (M, \partial + \delta) \to \mathbb{R}$ sending $1 \mapsto 1$. To construct it, factor through L, which is usually much smaller than M.

Difficulties: If X is stacky, $(\partial + \delta)^2 = 0$ is not automatic for $\delta = \hbar \Delta_{\mu}$, $\partial = \mathcal{P}(s, -)$. If X is ∞ -dim'l, defining \mathcal{P} requires renormalization theory.

C.f. [Crainic, 2004], [Costello-Gwilliam, 2011].