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Goal: Describe integration algebraically. Use as defini-

tion for generalized manifolds (stacks,∞-dim, etc.).

1. Expectation values as homological algebra

[Witten, A Note on the Antibracket Formalism, 1990]

X = compact manifold. Choose measure µ.

Want expectation value 〈f 〉µ =
∫
X f µ∫
X µ

, f ∈ C∞(X).

Observation:
∫

: Chains(X)→ R is almost completely

determined by requirement that it be a chain map.

Defn: MV•(X) = Γ (
∧•TX), multivector fields.

Fact: If µ nowhere-vanishing, then “contract with µ”:

MV• → ΩdimX−• is iso of graded vector spaces.

Defn: ∆µ = µ−1 ◦ d ◦ µ : MV•(X) → MV•−1(X),

divergence with respect to µ.

Fact: (MV•(X),∆µ) is a model of Chains(X).

Cor: f 7→
∫
X f is almost completely determined by re-

quirement that it extends to chain map MV• → R.

Cor: If X is connected then 〈·〉µ is determined by re-

quirement that it be a chain map and that 〈1〉 = 1.

Remark: µ 7→ ∆µ looses data: ∆aµ = ∆µ for a ∈ R×.

2. Some Gerstenhaber geometry

Fact: MV•(X) is a C∞(X)-module. ∆µ is a derivation

of C∞(X) modules.

Question: MV•(X) is a graded commutative algebra. Is

(MV•,∆µ) a dga? I.e. is ∆µ a derivation of m = ∧?

Answer: No. Let f , g ∈ MV• be homogeneous. The

failure of ∆µ to be a derivation is [∆µ, m] :

f⊗g 7→ ∆µ(f g)−
(

(∆µf )g+(−1)|f |·|∆µ|f (∆µg)
)

(Extended linearly. Note: |∆µ| = −1.) Since m is

(graded) commutative, [∆µ, m] is (graded) symmetric.

Fact: [∆µ, m] is a biderivation:

[∆µ, m](f g, h) = (−1)|f |·|[∆µ,m]| f [∆µ, m](g, h) +

+(−1)|g|·|h| [∆µ, m](f , h) g

I.e. ∆µ is a second-order diff. op. on (MV•, m = ∧).

[∆µ, m] is its principal symbol.

Fact: You’ve met [∆µ, m] before: it is the Gerstenhaber

or Schouten–Nijenhuis bracket P on MV•, i.e. the exten-

sion (as a biderivation) of [, ] : MV1⊗MV1 → MV1 to

all of MV•. P satisfies Jacobi identity. |P| = −1.

manifolds : commutative algebra ::

supermanifolds : graded commutative algebra

Eg: ΠT∗X = “manifold” with C∞(ΠT∗X) = MV•(X).

S–N bracket = “symplectic” structure on ΠT∗X.

For hands-on understanding, choose coordinates x i

on X. Get local sections ∂i = πi ∈ Γ (TX) = MV1(X).

These are “linear functions” on fibers of ΠT∗X. Alge-

braically, S–N bracket is

P =
∂

∂x i
⊗

∂

∂πi
+

∂

∂πi
⊗

∂

∂x i
.

If we choose x i so that µ = dx1 · · · dxdimX , then

∆µ =
∂2

∂x i∂pi
.

Defn: A BV Laplacian is a second-order diff. op. ∆ on

ΠT∗X such that:

0. [∆, 1] = ∆(1) = 0 2. [∆,P] = 0

1. [∆, m] = P 3. [∆,∆] = 0

(Should also require |∆| = −1; then 4. is automatic for

MV•. We include it in case X is already “super”.)

Cor: By 0. and 1., two BV Laplacians differ by a vector

field (= derivation of MV•). By 2. this v-field is “sym-

plectic v-field.” For classicalX, 3. is then automatic.

Thm (Koszul): There is canonical bijection

{BV Laplacians} = {flat connections on
∧dim T∗}.

(Flat⇔ ∆2 = 0. {connections} = satisfies 0,1,2.)

3. Some derived geometry

How does ∆µ change under µ ; exp(s)µ? Must change

by symplectic vector field. Not too surprisingly:

Fact: ∆exp(s)µ = P(s,−) + ∆µ.

Often want to understand 〈·〉 against measure exp( 1
~ s)µ

(maybe with some
√
−1s). If ~ is invertible, homology

for P( 1
~ s,−) + ∆µ is the same as for P(s,−) + ~∆µ.

The latter feels better if ~ � 1.

In limit ~ → 0, consider
(

MV•,P(s,−)
)

. Note: P(s,−)

is derivation, so
(

MV•,P(s,−)
)

is dg commutative al-

gebra, i.e. makes ΠT∗X into Q-manifold.

Fact: H0
(

MV•,P(s,−)
)

= C∞({ds = 0}).

Fact:
(

ΠT∗X,P(s,−)
)

is the derived critical locus of s,

i.e. the derived intersection {p = ds} ∩T∗X {p = 0}.
Why? Intersection↔⊗, and derived intersection uses

left-derived functor of ⊗. We should “resolve” the zero

section X ↪→ T∗X, and then tensor with C∞({p =

ds}). One resolution is X ' (T⊕ ΠT)X, with dg struc-

ture pi
∂
∂πi

(i.e. identity: T→ ΠT). Intersection is

C∞
(

(T∗ ⊕ ΠT∗)X, pi
∂
∂πi

)
⊗

C∞(T∗X)
C∞

(
{pi = ∂s

∂x i
}
)

= C∞(ΠT∗X) with dg structure ∂s
∂x i

∂
∂πi

= P(s,−).

Expect that P(s,−) +~∆ is “controlled” by P(s,−),

when ~ ≈ 0. (E.g. related by spectral sequence.) This is

a version of statement that oscillating integrals localize

near critical points.



Introduction to BV Integrals. Theo Johnson-Freyd, Universität Zürich, 1 Nov 2011. p 2/2.

4. Feynman diagrams

[Gwilliam and —, http://math.berkeley.edu/

˜theojf/BVexample.pdf]

X = formal manifold, i.e. C∞(X) = RJx1, . . . , xNK.

Suppose s has nondegenerate critical point at 0, i.e.

s = −1
2ai jx

ix j + b(x) with: b ∈ I3, I = ideal gen. by

{x1, . . . , xn}; a = invertible matrix; µ = dx1 . . . dxN .

D = P(s,−)+~∆µ = −ai jx i
∂

∂πj
+
∂b

∂x i
∂

∂πi
+~

∂2

∂x i∂πj

acts on RJx i , πi , ~K with |x i | = |~| = 0, |πi | = 1.

Write [f ] for class of f in homology. Ansatz (spectral se-

quence): H0
(
RJx i , πi , ~K, D

) ∼= RJ~K. 〈f 〉 = [f ]/[1].

Eg (N = 1, b = 0): Then MV• = RJx, ~Kπ ⊕ RJx, ~K.

Differential is D = −ax ∂
∂π + ~ ∂2

∂x∂π .

kerD? f ∈ RJx, ~K, then f π ∈ kerD iff −axf ′+~f =

0 iff f = exp(ax2/2~) 6∈ RJx, ~K.

imD? Profinite closure of D(polys). D(xnπ) =

−axn+1+~nxn−1⇒ [xn+1] = ~
an[xn−1]⇒ [x2n+1] = 0,

〈x2n〉 =

(
~
a

)n
(2n − 1)!! =

(
~
a

)n (2n)!

2n n!
.

This is Wick’s formula. 2

Eg (N = 1, a = 1, b = x3/6): [D(xn)] = 0 ⇒

[xn+1] =
1

2
[xn+2] + ~ n [xn−1].

[x ] = 1
2 [x2] = 1

2

(
1
2 [x3] + ~[1]

)
= 1

2

(
1
2

(
1
2 [x4] + 2~[x ]

)
+

~[1]
)

= . . . so 〈x〉 = ~
2 + . . . and converges in profinite

topology. To organize the combinatorics:

A Feynman diagram for 〈xn〉 is a connected finite

graph Γ with a distinguished n-valent vertex (totally or-

dered incident half-edges) and v(Γ ) 3-valent vertices

(unordered incident half-edges). 1st Betti number is

β(Γ ) = (v(Γ )+n)/2. The graphs for 〈x2〉 with β = 1, 2

are:

|Aut| = 1 |Aut| = 2 |Aut| = 2 |Aut| = 4

Claim: 〈xn〉 =
∑

Γ a Feynman
diagram for 〈xn〉

~β(Γ )

|Aut Γ | .

Proof: Write cn for RHS. c0 = 1. So must verify

recursion cn+1 = 1
2cn+2 +~ncn−1. Let Γ be diagram for

〈xn+1〉. Walk along last half edge from ?: either (a) you

return to ? or (b) you hit a vertex. If (a), delete this

half-edge, producing diagram for 〈xn−1〉 — there were

n ways to produce said diagram, and it costs ~. If (b),

unzip this edge, producing diagram for 〈xn+2〉 — costs

factor of 2 in count-with-symmetry. 2

Eg (general case): Can use similar diagrams. To com-

pute 〈f 〉 for f ∈ RJx iK, allow vertices { for Taylor coef

of f , for Taylor coefs of b, for x} and “cap” edges

for a−1. Γ 7→ ev(Γ )~βΓ
|Aut(Γ )| , ev = contract tensors.

D
(

(a−1)i j fj,~kx
~kπi
)

=

. . .

n+1

−
∞∑
m=2

. . . . . .

n m

−
n∑
k=1

. . .
n−1

k

is boundary. In final diagram, self-loop connects kth and

(n + 1)th half-edges on marked vertex.

Now play Hercules’ game of the many-headed hydra:

chop off the last head by either attaching it to another

head (increase power of ~) or by producing a new vertex

with more heads (increase power of x). Game converges

to something in RJ~K (the only hydrae with no heads to

chop). Game produces all such hydrae. 2

5. Homological perturbation theory

If {p = ds} ∩T∗X {p = 0} is clean, then

H•
(
C∞(ΠT∗X),P(s,−)

)
=
(
C∞(ΠT∗{ds = 0}), 0

)
.

Write M = MV•, L = H•, ∂ = P(s,−). Choose ι, φ, η

to form a retraction:

(?) (L, 0) (M, ∂)
φ

ι
η

ιφ = idL
φι = idM − [∂, η]

Can always achieve side conditions: ιη = η2 = ηφ = 0.

∂2 = P(s,−)2 = 0 is the classical master equation.

Set δ = ~∆. (∂ + δ)2 = 0 is the quantum master equa-

tion. The homotopy perturbation lemma says:

Thm: If (?) is a retraction, so is:

(?̃) (L, δ̃) (M, ∂ + δ)
(id−δη)−1◦φ

ι◦(id−ηδ)−1

η(id−δη)−1

δ̃ = ι ◦ η(id− δη)−1 ◦ φ. Remark: don’t need ~ formal,

just “small” enough for (id− ηδ)−1 to exist.

One choice of splitting comes from trivializing tubular

nbhd of {ds = 0}. ι ↔ “restriction to critical locus”.

ι ◦ (id− ηδ)−1 = integrate out the fibers. New differ-

ential δ̃ on L = C∞(ΠT∗{ds = 0}) encodes remaining

measure on critical locus (the effective action).

Put another way: we are interested in the (hopefully

unique) chain map 〈·〉 : (M, ∂ + δ)→ R sending 1 7→ 1.

To construct it, factor through L, which is usually much

smaller than M.

Difficulties: If X is stacky, (∂+δ)2 = 0 is not automatic

for δ = ~∆µ, ∂ = P(s,−). If X is ∞-dim’l, defining P
requires renormalization theory.

C.f. [Crainic, 2004], [Costello–Gwilliam, 2011].
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