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Goal: Describe integration algebraically. Use as defini-
tion for generalized manifolds (stacks, oco-dim, etc.).

1. Expectation values as homological algebra
[Witten, A Note on the Antibracket Formalism, 1990]

X = compact manifold. Choose measure u.

Want expectation value (f),, = % f e e>°(X).
X

Observation: | : Chains(X) — R is almost completely
determined by requirement that it be a chain map.

Defn: MV*(X) = I"(A\°* TX), multivector fields.

Fact: If u nowhere-vanishing, then “contract with u":
MV*® — QdmX=¢ is iso of graded vector spaces.

Defn: A/J' = /J,_l od oW : MV.(X) — MV._l(X),

divergence with respect to .
Fact: (MV*(X),A,) is a model of Chains(X).

Cor: f — [, f is almost completely determined by re-
quirement that it extends to chain map MV® — R.

Cor: If X is connected then (-), is determined by re-
quirement that it be a chain map and that (1) = 1.

Remark: p — A, looses data: A,y = A, for a € R*.

2. Some Gerstenhaber geometry

Fact: MV*(X) is a €°°(X)-module. A, is a derivation
of €°°(X) modules.

Question: MV*(X) is a graded commutative algebra. Is
(MV*, Ay,)adga? le. is Ay, a derivation of m = A7

Answer: No. Let f,g € MV® be homogeneous. The
failure of A, to be a derivation is [A,, m] :

fog > Au(fg)—((Auf)g+(—1) 1Al F(A,g))

(Extended linearly. Note: [A,] = —1.) Since m is
(graded) commutative, [A,,, m] is (graded) symmetric.

Fact: [A,, m] is a biderivation:

By, m(fg, h) = (1) BT £ [A,, mi(g, h) +
+(=1) A, mI(F,h) g

l.e. A, is a second-order diff. op. on (MV®, m = A).
[Ay, m] is its principal symbol.

Fact: You've met [A,, m] before: it is the Gerstenhaber
or Schouten—Nijenhuis bracket P on MV?®, i.e. the exten-
sion (as a biderivation) of [,] : MV @MV! — MV! to
all of MV*®. P satisfies Jacobi identity. |P| = —1.

manifolds : commutative algebra ::

supermanifolds : graded commutative algebra
Eg: nT*X = “manifold” with €>°(nT*X) = MV*(X).
S—N bracket = "symplectic” structure on nT*X.

For hands-on understanding, choose coordinates x’
on X. Get local sections 8, = m; € I(TX) = MV(X).
These are “linear functions” on fibers of NT*X. Alge-
braically, S—N bracket is

0 0 0 0

P:7 87T/+87T,'®§.
If we choose x' so that u = dx!---dxdmX then
62
Ay= -0
8x’8p,-

Defn: A BV Laplacian is a second-order diff. op. A on
nT*X such that:

0.[A1]=A(1)=0 2. [AP]=0
1. [Am=P 3. [A,A]=0
(Should also require |A] = —1; then 4. is automatic for

MV?®. We include it in case X is already “super”.)

Cor: By 0. and 1., two BV Laplacians differ by a vector
field (= derivation of MV*). By 2. this v-field is “sym-
plectic v-field.” For classical X, 3. is then automatic.

Thm (Koszul): There is canonical bijection
{BV Laplacians} = {flat connections on A“™ T*}.
(Flat & A? = 0. {connections} = satisfies 0,1,2.)

3. Some derived geometry

How does A, change under u ~ exp(s)u? Must change
by symplectic vector field. Not too surprisingly:

Fact: Aexp(s)u =P(s,—)+ Ay

Often want to understand (-) against measure exp(%s)u
(maybe with some v/—1s). If i is invertible, homology
for P(4s,—) + A, is the same as for P(s, —) + hA,.
The latter feels better if h < 1.

Inlimit & — 0, consider (MV*®, P(s, —)). Note: P(s, —)
is derivation, so (MV*, P(s, —)) is dg commutative al-
gebra, i.e. makes NT*X into Q-manifold.

Fact: HO(MV*®, P(s, —)) = €°°({ds = 0}).

Fact: (nT*X,P(s, —)) is the derived critical locus of s,
i.e. the derived intersection {p = ds} Nt+x {p = 0}.

Why? Intersection <+ ®, and derived intersection uses
left-derived functor of ®. We should “resolve” the zero
section X < T*X, and then tensor with €>°({p =
ds}). One resolution is X ~ (T &nT)X, with dg struc-
ture pia%,- (i.e.identity: T — nT). Intersection is

® ¢°(p=2
CKOC(T*X) ({pl ox )
= ¢°>°(nT*X) with dg structure =P(s,—).

Expect that P(s, —)+ hA is “controlled” by P(s, —),
when 11~ 0. (E.g. related by spectral sequence.) This is
a version of statement that oscillating integrals localize
near critical points.

¢ (T*enT*)X, p,aim)

Os &6
ox' Om;
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4. Feynman diagrams

[Gwilliam and —, http://math.berkeley.edu/
~theojf/BVexample.pdf]

X = formal manifold, i.e. €°(X) = R[x},..., xN].
Suppose s has nondegenerate critical point at 0, i.e.

s = —Zajx'x) + b(x) with: b € I3, | = ideal gen. by

{x% ..., x"}: a = invertible matrix; u = dx* ... dx".

LI
om/  Ox' omj  Ox'om;

acts on R[x’, m;, ] with |x'| = |A| =0, |m;| = 1.

D =P(s, —)+hh, = —aj;x'

Write [f] for class of f in homology. Ansatz (spectral se-
quence): HO(R[x', m;, A], D) = R[A]. () = [f]/[1].
Eg (N =1, b=0): Then MV* = R[x, A]m & R[x, A].
Differential is D = —ax(a@7T + ﬁ@fc;r'

ker D? f € R[x, 1], then fm € ker D iff —axf'+hf =
0 iff f = exp(ax?/2h) & R[x, h].

im D?  Profinite closure of D(polys). D(x"m) =
_aXn+1_'_hanfl = [Xn+1] — gn[xnfl] - [X2n+1] =0,

= (1 on = (1) 2

This is Wick's formula. O

Eg(N=1,a=1,b=x3/6): [D(x")]=0=

[Xn+1] — % [Xn+2] 4+ Hn [Xn—l]_

[X] = 3[x°] = 1 31x° + n1]) = 3 (3 (3[x*] + 2n[x]) +
All]) =... so (x) = g + ... and converges in profinite
topology. To organize the combinatorics:

A Feynman diagram for (x") is a connected finite
graph I with a distinguished n-valent vertex (totally or-
dered incident half-edges) and v(I") 3-valent vertices
(unordered incident half-edges). 1st Betti number is
B(Ir) = (v(I")+n)/2. The graphs for (x?) with3 = 1,2

are:
|Aut| =1 |Aut| =2 |Aut| =2 |Aut| = 4
RN
Loy
Claim: (x") Z AUt

" a Feynman

diagram for (x™)

Proof: Write ¢, for RHS. ¢g = 1. So must verify

recursion cp+1 = %C,,+2+hncn_1. Let [ be diagram for

(x"*1). Walk along last half edge from x: either (a) you

return to * or (b) you hit a vertex. If (a), delete this

half-edge, producing diagram for (x"~!) — there were

n ways to produce said diagram, and it costs f. If (b),

unzip this edge, producing diagram for (x"*2) — costs
factor of 2 in count-with-symmetry. O

Eg (general case): Can use similar diagrams. To com-
pute (f) for f € R[x'], allow vertices {* for Taylor coef
of f, e for Taylor coefs of b, o for x} and “cap” edges

e
fora=l. — T\’A(Llj—t)(’f)l , ev = contract tensors.
D((afl)"frj.';x;w,') =
n+1 n m n—1

—_—

v_mi _kZIW

is boundary. In final diagram, self-loop connects kth and
(n+ 1)th half-edges on marked vertex.

Now play Hercules' game of the many-headed hydra:
chop off the last head by either attaching it to another
head (increase power of f) or by producing a new vertex
with more heads (increase power of x). Game converges
to something in R[#A] (the only hydrae with no heads to
chop). Game produces all such hydrae. O

5. Homological perturbation theory
If {p =ds} Nr+x {p =0} is clean, then
H® (¢>°(nT*X), P(s,—)) = (¢>°(nT*{ds = 0}),0).

Write M = MV®, L = H®, 8 = P(s, —). Choose ¢, ¢, n
to form a retraction:

(»)  (L,0) ‘? (M, 0) D n

Can always achieve side conditions: tn =n?> = n¢ = 0.

0% = P(s, —)? = 0 is the classical master equation.
Set § = hA. (8 +6)° = 0 is the quantum master equa-
tion. The homotopy perturbation lemma says:

L =id,
¢L=idy — [0, 7]

Thm: If (%) is a retraction, so is:

(M, 0+56) D n(id—om) !

6 =von(id—8n)"to¢. Remark: don't need f formal,
just “small” enough for (id — nd)~? to exist.

to(id—né)~!

) (L9

(id—dm)~og

One choice of splitting comes from trivializing tubular
nbhd of {ds = 0}. ¢ < "restriction to critical locus”.
Lo (id — nd)~! = integrate out the fibers. New differ-
ential § on L = €°°(nT*{ds = 0}) encodes remaining
measure on critical locus (the effective action).

Put another way: we are interested in the (hopefully
unique) chain map (-) : (M,0+0) — R sending 1 — 1.
To construct it, factor through L, which is usually much
smaller than M.

Difficulties: If X is stacky, (8+6)? = 0 is not automatic
for 6 = hA,, 0 = P(s, —). If X is co-dim’l, defining P
requires renormalization theory.

C.f. [Crainic, 2004], [Costello—Gwilliam, 2011].
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