
THE MORITA THEOREMS

by
Hyman Bass

Introduction
Virtually all algebraic notions in category theory are a

parody of their parents in the most "classical" of categories,
the category of (left) A-mbdulgs: Granting the interest and

importance of categories, therefore, - perhaps the most presump
tuous of our assumptions, to many - it is natural to ask, when

is J$>£ gW. ? Isomorphism problems of this generality generallv
admit either a trivial, or no humanly manageable, solution. The
present instance, however, must be regarded either as exceptional,
or, on closer scrutiny, as acquiring depth in virtue of the
formidable melange of trivialities which the solution meaningfully
organizes. Indeed, the solution is so overwhelmingly complete that
it permits a classification of all isomorphisms from to g$?f\ .

and, in particular, a computation of Aut

So natural a question as the above awaits category theory
only to be asked properly, but not to be answered, at least in
part. Historically the theory emerged piecemeal, first in the
V/edderburn structure theory for simple algebras, then in the
theory of the Brauer group, in the arithmetic of hypercomplex
systems (see, e.g., Chevalley's monograph, i:L' Arithmetique dans
les algebras de matricesk:), in the Brauer-Osima construction of
"basic rings1'", in the study of quasi-Froberius rings, and in the
new theory of the Brauer group over a commutative ring. Auslander
and Goldman developed a good deal of the present theory indepen
dently for the needs of the Brauer group, and simultaneously
S. Schanuel and S. Chase (unpublished) elaborated a large portion
of it. However, the problem had already received a complete and
systematic treatment in full generality by Morita. The exposition
here is based on that of Chase-Schanuel, and it is adapted to
applications in the theory of the Brauer group, in contrast with
Morita's prevailing concern with rings with minimum condition.
However, all of what follows is, for the patient reader, an easy
consequence of results in Morita's work.
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2.

Some. Remarks on Categories and Isomorphisms

Recall that a category,^, consists of objects , obj

morphisms , Homp{M,N) , for M, N eobjf^., and a law of composition.

If K is a commutative ring then we
call^

a K- category if

Hoi^b(M,N)
is always a K-module and the composition is K-bilinear.

If K ■ It £ ^s called an addit ive category. If A is a K-algebra,

then
AiTKland ffll^

, the categories of left and right A-modules,

are K-categories. If T:7°—
^>(0,

is a functor on K-categories we

call T a K-functor when the induced maps

T :

Hom.£
>

Hom^>f

are K-homomorphisms . For example, if P is an A-B-bimodule , where

P
A and B are K-algebras, a situation we denote by A B, then a

necessary and sufficient condition that

F8B
:

BW^->AJU1

be a K-functor is that, whenever a t K and x^P, ax = xa.

If S r — is a functor we call S an isomorphism when

there is a functor T:®-* such that ST * I
g

and TS
~

1^
,

where
1^

and

Ij
g are the identity functors, and ^"denotes a

natural equivalence of functors. A property of an object or

morphism in will be called categorical if it is shared by the

image under any isomorphism. We give below definitions of several

notions which make it manifest (or an easy exercise) that they are

categorical t

* All functors in what follows are covariant.
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3.

I. For morphisms;

(a) f is an epimorphism?
fg-^

=

fg2 $ g-^

=

g2«

f is a monomorphism; g-jf
=

g2f =) gn
=

g2

(b) f is a proper monomorphism; f is a monomorphism but

not an isomorphism (i.e. has no inverse).

(c) f < g" f and g are monomorphisms and f = gh for some h.

This defines a partial ordering on the monomorphisms into a

fixed object M.

II. Fixed objects;

(a) M is projective ; If N— * N* is an epimorphism,

,
- .

Hom^fMjN)
—

^HomA(M,NT)
is surjective.

(a?) M is in jective s dualize.

(b) M is a generator; If
g-^ f g2?

N —
»N? there exists

f; M—»N such that g±f
±

g2f.

(b*) M is a cogenerator : dualize.

(c) M is finitely generated; If f is a totally ordered

family of proper monomorphisms into M there is a proper

monomorphism f into M such that f < f for all v. I.e.

the proper monomorphisms into M are inductively ordered.

Defn. P ^
ol3oQ

is called a prpgenerat or for
(J[if

P is a

finitely generated projective generator in
Q.

Corollary. If T;

Q
j^ —

» (
J is an isomorphism and F is a progenerator

f or Q
,

then T(P) is a progenerator for

^ .

Finally, we define

Center Q

= End ( I ) ,

where I is the identity functor of £ and End (
I

^

is the set of

natural transformations I —

> I

G
e
n
e
r
a
t
e
d
 f

o
r
 g

u
e
s
t
 (

N
o
r
t
h
w

e
s
t
e
r
n
 U

n
iv

e
r
s
it

y
)
 o

n
 2

0
1
5
-1

2
-0

9
 2

0
:1

8
 G

M
T
  
/ 

 h
t
t
p
:/

/h
d
l.
h
a
n
d
le

.n
e
t
/2

0
2
7
/c

o
o
.3

1
9
2
4
0
0
1
1
4
0
9
7
3

P
u
b
li
c
 D

o
m

a
in

, 
G

o
o
g
le

-d
ig

it
iz

e
d
  
/ 

 h
t
t
p
:/

/w
w

w
.h

a
t
h
it

r
u
s
t
.o

r
g
/a

c
c
e
s
s
_
u
s
e
#

p
d
-g

o
o
g
le



4.
Proposition Center center of A, for any ring A. (

(The "homothetic!: defined by an element of the center of A

establishes the above isomorphism)

Proof. Let (J) £ End I.. Then there exists in particular an

A-homomorphism 0(A): IA(A) — >

1^ ( A) ( = A) , and we write (1)(|)(A) =

(Note map convention) Then (a) (J) (A) =
aa^

for all a t A. Now let

M be any A-module, x M, x arbitrary and consider the map f :A —

sending a £ A onto ax £ M. This is an A-homomorphism, and, in
identifying I«(M) with M, I.(f) with f, we see that

this means that x(f)(M) =
a^x.

Now <j)(M) is an A-endomorphism of M, and the equation

x(J)(M) =
a^x

asserts that (f)(M) islinduced by left multiplication by

a^

for all A-modules M. Clearly this can happen if and only if

a^

is in the center of A. Retracing the above steps we see that
left multiplication by an element of the center of A does indeed

induce an endomorphism of the identity functor. Finally we see

that left multiplication by distinct elements of a and b of the

center of A induces distinct endomorphisms (j) , (f),, since in

A^i '* A

(pfMLw must commute, i.e. (l)<J)(A)f = (l)f(f)(M);

particular $aU) f 0bU).
The Morita Context

We adopt the following standard notation:

A'
M M is a left A-module

,Mn s M is an A-B-bimodule" i.e. .M,Ad A '

ML, and (ax)b = a(xb) for a 0 A, x e M, b £ B.
If A° denotes the opposite ring of A, ,,M M .

M is a right E-module
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5.

All rings in what follows will be understood to be K-algebras

for a fixed commutative ring K, Moreover when we write
AMg

we

shall understand further that tx = xt for all x e M, t £ K

Finally, we adopt the following, non standard, convention,

which will facilitate our notation considerably; homomorphisms

will be written opposite the scalars . For
' right modules

this is standard. However if us M
— is a homomorphism of

left A-modules, we write xu instead of u(x) , and A-linearity

becomes (ax)u = a(xu). If u; M' —$>M'' is another; x(uu') = (xu)u'.

This convention has several consequences, of which the following

are notable: (i) commutativity becomes associativity? (ii) a

number of opposite rings tend to disappear. In regard to (ii)

we shall take care to arrange the statements of the theorems so

as to agree with standard usage, but we invoke the convention

systematically in discussion, as illustrated now.

Given
AM

, set B =

HomA(M,M)°. Then AMB. For if
b-^ b2i

M—>M

then, by our convention b-jb2 denotes their product in B, Let

M* =

Hom^(M,A). Then
BM*A;

for b e B, u G M*, a £ A we have

buas M —
> A

defined for x £ M -by x(bua)
= ((xb)u)a. Now since the expression

xu, x t M, u fe M is B-bilinear and A - A linear, it defines an

A-A-homomorphism

( , )
=

( ,
)M

°
M

8B
M*

) A; x®u —
> (x,u) = xu.

Next observe that if, for x 6M, u £ W we let [u,x] e B be

defined, for y £ M, by
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6.

I. y[u,x] = (y,u)x
then this defines a B - B-homomorphism

(y,[u,x]v) = (y[u,x],v) - ((y,u)x,v) = (y,u) (x,v) = (y,u(x,v))
and, hence ,

The abave considerations provide an example of what we now

define, abstractly, to be a Mor it a context ; this consists of
K-algebras A and B, bimodules and BQA ^ an A. A_homomorphism

( , ) : P®B
o a

and a B - B - homomorphism

[ , 3 : q§ap— »B

subject to the two axioms,

I. y[u,x] = (y,u)x for x,y £ P, u c-Q.
II. [u,x]v = u(x,v) for x t P, u, v tr Q.

When discussing the Morita Context, and/or the example of the

Morita Context already given, we shall consistently denote

elements of A by a, of B by b, of P by x,y,z, and of Q by u,v,w.
Lemma 1; In the category A of left A-modules the following
are equivalent :

(1) P is a generator for . ^21 (see page 3 for definition)
(2) 5 Pu = A (i.e. (,)p is an epimorphism) .

(3) A is a direct summand of a direct sum of copies of P.

II. [u,x]v - u(x,v)

e. ^uer
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7.

.-IProof. 1) s>2; Let LA= / „ Pud" A• We note that Ul is a left

A /
ideal and we consider the canonical projection w: A

—
> / j\

If ir f 0, then there exists g: P—>A such that P-S-) &-^A/\j\. is

not zero. But g (=. P and hence gir must be zero. Hence ir = 0

and Ul
- A.

2) =^3: Define S =^SL ? (Note that P* is being used as an

u<=P

index set; S is a direct sum of copies of P.). The map
f; S—)A

given by f |p
= u is well-defined and surjective by 2) • But A

u

is a projective A-module and hence A is a direct summand of S•

3) .=>!; Let^$ P. = A © L, and let f; M—»N be a non-zero map.

1
1

Then there exists a map g; A—>M such that gf is non*-,zero.

This map g can be extended to a map g;/^
P^

—
> M and clearly

gf is non-zero. Hence there exists at least one i such that

gf|p^ is non-zero, and g j p
is the desired map.

Lemma (Dual Basis Lemma)

A left A-module P is projective iff there exist
x^t

P and

u . £ P* , . i e I, such that

(a) For x&P,
xui

= 0 for almost all i and

(b) For x £ P, ixu. x. .

ifcl
1 1

Moreover, in this case, the families
^x^\

which maY occur in

this way are precisely the generating sets of P.

Proof: If P is projective with generators
-^x^ j, g j, define

F ■/ & AXs and define Tt F— *P via ir{l.) = x . , extending by

linearity. P is a direct summand of F, since it is projective,

and hence can be oonsidered to be a submodule of F. If x 6:P,
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t.

then x and the a. are certainly well-defined functions

of x; indeed the maps
u^«

P — given via
xu^

=

a^,
i€l, are

A-homomorphisms , i.e. & P . Now if x & P, then in ~

ttx = x =2Za.x. =ZT(xuj) x. \ since P c F, a direct sum of copies
t

l l j i i

of A, one sees that the condition that xu. is almost always 0 A' i

is satisfied. Note finally that \xA was an arbitrary
L1) iMl

generating set of P.

Conversely, given the
x^fcP

and u. tP , i e I, we form the

free module /* . AX., and we define a map ir: F—£P via
i frl x

•rr(X^)

=

x^
, for all i 6. I, and extend by linearity ir is clearly

an epimorphism (note that
x^£

p for all i 6 I) . W<a now define

a map t
y
;

P —>F, such that is the identity on P;

this is done by setting, for x c]> (xu^)
x.feP,

x({)
=

XZ(xui)X^.

i I

This is clearly a homomorphism and tyoir
=

lp? hence P is a direct

summand of F and hence projective. We note finally that the

£x^
is a generating set for P.

Corollary If B

-
!HomA(P,P)

0

and [,]p: P*®;P >B is defined

as in the last section, then P is a finitely generated projective

A-module iff [,]p is an epimorphism.

Recalling that we call P a progenerator for .wlwhen P is

a finitely generated projective generator in we can combine

this corollary with Lemma 1 to conclude,

Proposition P is a progenerator for Ml iff both (,)p and

[ , ]
p are epimorphisms.

Proof of Corollary. If P is projective and finitely generated,

say by
x^

... xn, then by the Lemma
'"-

x =H i™±)*i =ZZx[ui,xi]p
=

^Hcu^x.jp for all x fe p and
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suitable u £ P* . Hence^__[ui, x^p
= [, ]p( ^_ui«xi)

=1 €B.

Conversely, if, for Uj & P and
xi

& p, i = 1...-&. we have

[,]p ( J^u^XjJ
= ltB, then x = x^[ui,xi] = 2jxuj.)xi for

all x 6- P, and P is thus finitely generated and, by the Lemma, is

project ive.

Morita I.

P 0
Theorem Suppose given a Morita Qontexts A, B, A B, B A,

(,), and [,] with the latter both epimorphisms. Then:

(1) P is a progenerator for ~K^\ and XlUp .
A D '

Q is a progenerator for

fi
ft

A

and
B$R

.

(2) (,) and [,] are isomorphisms

(3) Q^HomA(AP, AA)
*

HoiDg (Pg, Bg)

and

P ^HomA(QA,AA) ^HomB(BQ, BB)

as bimodules.

(4) A =

HomB (B^, Br.)° ^Hom3(PB, Pg)

and

B~HomA(qA,<\,,
*

Horn, (AP

,

AP)

0

as K-algebras.

(5) P®t3 .! 05ft--).$ft and '."©,; Ml ^J^re inverse K-isomorphisms.'

B B A A A B ^

Similarly for 0 P: SP-^Sftg and
®BCs5RB— >WJ[.

(6) The lattice of A-submodules of P is isomorphic to the

lattice of left ideals in B, with A-B-submodules corresponding to

two sided ideals. Similar statements follow from symmetry. In

particular, A and B have isomorphic lattices of two sided ideals.
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10.

(7) Center of A =' Center of B,

Proof; (as before, we shall write consistently, x, ye P,

u, v 6 0, at A, b 6 B)

(1) Each element u £ Q induces an A-homomorphisra (,u);P —>A.

Since (,) is surjective, there exist x^ € P, u^Cr
°> §uch that

XZ^xi,uiJ ■ 1 £ A. By Lemma 1 'we see that P is a generator

for ^pl. In exactly the same way, exchanging [,] for (,), we see

that P is a generator for ooLg. Since
[,] is surjective, there exist v^£r':, y^£P, such that ^ICv^.y^]

jC

■It B. Hence, for x£P, x = x«l = (xjV^) y^, and by Lemma 2
xC

P is a finitely-generated projective left A-module. In exactly the

same way exchanging (,) for [,3, one sees that P is a finitely
generated projective right B-module. This proves the assertion
for P, and that for 0 is proved by symmetry.

[ Let us, for the rest of the proof, hold fast to the notation

Il(xi,ui) = 1 £ A,Ovk,yk3 = UB
j

(2) We show that Ker (s) is zero. Indeed, if z .fP, w-6-
s.t. (z., w.) = 0, then ^p-z.® w. = ^ z . 0 w . 2l(x . ,u.)

» J 1 j J 1 j

It is clear that an exactly analogous proof shows that Ker [,]
is zero. Since (,) and [ , ] are onto by hypothesis, we see that
[,] and ( , ) are isomorphisms as asserted.

(':> (3) We show that Q
~

HomA ( .^
P , ^A) , via u -) ( ,u) • that

(,u)r P — ) A is an element of Hom,-^ ^P, ^A)
is clear by hypothesis.
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We show that the map u — ->(,u) is an isomorphism.

Suppose (x,u) = 0 v^x£ P. Then u = l*u=2j[vk,yk3u

«=2 vk^yk,u^ = Hence the map is infective.
iC

Let f e HomA(AP,AA) ; we show f = ( ,Zvk(ykf)).

Indeed (x,7yk(ykf)) = /Qx,vk) (ykf )
= (XI(x,vk) yk)f =

k k k

(x£[vk,yk"J)f = xf. Hence the map is surjective. Finally note

that this- is a B - A-homomorphism, since (x,bua) = (xb,u)a.

In exactly the same way isomorphisms are established .

between Q and Homg(Pg, Bg) via u — [ u, ] ,

t! P and HomB(gQ, gB) via x—>[ ,x],
and " P and Hom^(QjA , A^) via x—>(x, ).

(4) There is a map from A to Honig(Pg,Pg) given by left
multiplication. Ue show it is an isomorphism.

Infective; If ax = 0 for all xeP then a = a•l = aTixi'ui) =

HUx-.u^ = 0

Sur.jective ; Let f £r Homg(Pg,Pg) j we show that f is given by

left multiplication by^Jf^jU^) . Indeed ^(fx.jU.^x =

^-fxiCui,x] = f ( ]T x^a^x]) = f ( H(xi,ui)x) = fx.

Hence A Horrig (Pg,Pg) , and similarly B Horn. , via left
multiplication by elements of B.

Finally, there is a map from A to Homg (gr;,gC)
0 given by right

multiplication, just as explained following the definition of the

Morita Context. We see, just as in the previous two cases, that

A
~

Homg (gO,gO)
° and B Hom^,( ^P, ,^P) °. The commuting of elements

of K with those of P and Q guarantees that the above are K-algebra

isomorphisms.
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(5) Let S =

Q®A :Aftl->BWl and

T -
p®B °BU->M.

Then for M a left A-module.

r "{ TS(M)« P®B ((^AM)

=
(P®B0)®AM

A §AM using the isomorphism, (,)

V M.

Similarly ST = I S and T are K-isomorphisms since the elements
B

of K commute with those of P and Q,

(6) Since T is an isomorphism , the (left) B-submodules of
of B are lattice isomorphic to the A-submodules of T(B) = P,

with the B-B submodules of B corresponding to A-B-submodules of P

(7) Using an earlier proposition
Center A

~ Center A&*tfT^' Center B$fl ^ Center Bl

This concludes the proof of Morita I.
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Morita II

Theorem Let
S:A51R

—
>B5W.

and T:
B

8TR
—

:
>AUl

be K-isomorphisms.

Then if P =
T(B) and Q

=
S(A) we have APg, gQA , and

S
~

0®A
and T

~
P®g

as functors.

Proof: P is a progenerator for
^Sl

since
gB

is a progenerator

for gftR and T is an isomorphism*

Moreover

n^HomB
( B, 0)

^
HomA(T(B)

, T(C)

^HomA
(P,TS(A)

~
HomA

(P,A),

and these are all bimodule isomorphisms. Further T defines

an isomorphism

B~ HomB(BB,BB)° 1$ HomA(P,P)° ,

the isomorphism thus being given by right multiplication. Now

since P is a progenerator for we can apply Morita I to P,

HomA(P,P)

0
*~ B , and HomA(P,A)

&
Q and conclude, in particular , that

Q^HomB
(P,B)

as a bimodule. We thus obtain the following isomorphisms of

functors jjWl-^Bfll i let M be a left B-module0 then

P«BM

~

P0B HomB(B,M)

^
HomB(HomB(P,B) , M) , since P is a

finitely generated projective B-raodule*

* We are using the following identity in the situation Pg,

pMg, CN.
The natural transformation P8gHomc(M,ll)

- -t—
>

Homc(HomB(P,M) ,N) defined by $(p8f)Cg) * fgp is cle'arly an

isomorphism for P = B, and hence for P finitely generated projec

tive right B-module, by additivity.
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=*

Homg(0,M) , by the remark above

~
..Horn, (T(C) ,T(M) ) , via T

^,{BamA (A,T(M)) , since T(0)-T(S(A) )
- A.

^ T (M).

Morita III.

Def n; If A and B are K-algebras, an A
- B-progenerator is a

module
APg

such that P is a progenerator for
A5lR

and right

multiplication defines an isomorphism B *
HomA(P,P) °.

(As always, elements of K commute with those of P.)

It follows from Morita I that this definition is in fact

symmetrical.

Theorem ;
,^Pg

>
P®g

defines a bisection between the

(isomorphism types of) A-B-progenerators and the (isomorphism

types of) K-isomorphisms
g ftTl^Wl

. Composition of isomorphisms

corresponds to tensor products of progenerators.

Proof ; Clearly an A-B isomorphism P —>P? induces an isomorphism

P®B
> p»®B

of functors
B$tfT

—

>A^7
. Moreover, by Morita I.

P®B
is an isomorphism for P an A-B-progenerator. Hence our

mapping is well defined. By Morita II it is surjective. Finally,

it is an easy exercise to conclude from an isomorphism of
P®g

with
PT®g

as functors
g

. an A-B-isomorphism of P with Pf.

and this shows the mapping is inject ive.
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Applications %

We now proceed to indicate how to subsume certain classical

theorems in the theory of algebras and their arithmetics in the

preceding circle of ideas.

Wedderburn Structure Theory ;

Let A be a simple Artinian ring. Then every non zero finitely

generated A-module P is projective (A is semi-simple) and a

generator (since Im (,)p is a non zero two sided ideal and A is

simple). Hence, if D =
HomA(P,P)° we may conclude from Morita I

that :

(a) P is a D-progenerator (condition 1)

(b) D is a simple Artinian ring (condition 6)

(c) Center D center A (condition 7)

(d) A ■

HomD(P,B) (eondition 4)

Theorem 1; If A is a division ring the ring of nxn matrices

over A is a simple Artinian ring with the same center as A.

Proof; P is a vector space of some dimension, n, and D is the

ring of nxn matrices over A.

Theorem 2. If A is a simple Artinian ring and P is a simple left

A-module, then D -
Hom^(P,P)° is a division ring (Schur) , P is a

finite dimensional D-space, and A Honu(P,P).

The Brauer Group;

Let K be a commutative ring, A a K-algebra. We write

Ae =

A®KA°.
Then a left Ae-module is just an A-A-bimodule.

(K, as always, commutes with everything.) In particular A is a

left Ae-module and we call A a separable K-algebra if it is
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Ae*projective. A is central if center A s K»l ■ K.

If M is an Ae-module, then f »f (1) defines a natural

isomorphism of Horn (A,M) with the "fixed points1, cf

r ke

M =

(me M| am =
ma for all a 6

A
j-

• In particular, if M and N

are left A-modules then
HomK(M,N)

is an A-A-bimodule whose fixed

points are
Hom^(M,N)•

i.e.

Horn (A, Hom^MjN))
= Horn. (M.N).

Ae
* A

It follows that if K is a field (so
Hom^

is exact), and if A is

separable (so Horn a(Al) is exact), then Horn, is exact, so A is a

Ae

A

semi-simple Artinian ring. If, in addition, A is central, therefore,

A must be simple;

Proposition;- If K is a field, a central separable K-algebra is central
simple.

Now suppose A is central and separable, but K is

arbitrary. Then Auslander and Goldman show, using this Proposition,

that every two sided proper ideal in A is contained in 5UlAe for

some maximal ideal $R cK, and from this it follows that Im (,)A

is the unit two sided ideal in Ae.

Proposition;

( Auslander-Goldman) A central separable K-algebra

A is an Ae-progenerator.

Finally, to apply Morita I, we state the following lemma,

which is contained in the remarks above in fixed points.

Lemma For any K-algebra A
,

Horn (A. A
) ^ center A,

Ae

Putting this together, if A is a central separable K-algebra

then A is an Ae-progenerator and Horn (A, A
) e K. We applv Morita I

A
e

and conclude,
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Theorem: Let A be a central separable K-algebra. Then

(a) A is a K-progenerator.

(b) Ae'^HomK(A,A)

(c) K = center K = center Ae

(d) IJl > (j\Ae defines a bisection between the ideals of K

and the two sided ideals of A .

(e)
A®K

: K^-^e^l
is an isomorPhism of> categories which

A

converts
®^

into

The Automorphisms of *

Let A be a K-algebra. V/e shall write

Sk-N(A)
=

K-Aut(A)/ln Aut(A)

where K-Aut(A) is the group of K-automorphisms of A, and

In Aut (A) the normal subgroup of inner automorphisms. Further, let

K-Aut(JPSt)
41

denote the group of isomorphism types of K-automorphisms of the

K- category This is indeed a group (the only issue being

that it is a set) since, by Morita III,

Theorem
K-Aut(A$R ) is isomorphic to the group of isomorphism

classes of A-A-progenerators, P, where the group operation is

induced by the identity is the class of A, and the inverse of

the class of P is that of HomA(AP,AA), which, by Morita I. i*

A-A-isomorphic to
Hom^(PA, A.).

Recall that, as always, K commutes with the elements of the

modules P as above. Hence, an A-A-bimodule with this property is

just a left Ae-module, where Ae =

A®KA°.
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Now let S be an automorphism of
A$*(fl

, and suppose P = 3(A)

is isomorphic to A as a left A-module. Such a left A-isomorphism

may fail to be an A-A-isomorphism, and this failure is measured

by an automorphism, a , of A, since A, via right multiplication,

is isomorphic to both.
Hom^(^A,AA)

and
Horn^

(
^P^P)

. It is

straight -forward to verify that if another left A-isomorphism

A )P is chosen then a varies only in its coset modulo In Aut(A)

and that A and P are A-A-isomorphic iff a fe In Aut(A). Now let

T be another automorphism of
A$$l

such that n = T(A) is left

isomorphic to A. Then P =
S(A) is left isomorphic to S(Q) and

if p 6 K*-Aut(A) measures the failure of A and Q being

A-A- isomorphic, it does likewise for P and S(Q). Hence £a

measures the failure of a and ST(A) being isomorphic.

The above remarks are intended as a sketch of the proof that

Theorem; The group of K-automorphisms of
A<T?TL

which fix the left
1 ■ Jl--

^

isomorphism type of A is isomorphic to Sk-N(A) . Moreover the

cosets of this group in
K-Aut(A£$\)

is in bijective correspondence

with the left isomorphism classes of A-A-progenerators.

Remarks ; (1) The argument above yielded an anti-isomorphism,

but any group is anti-isomorphic to itself.

(2) We have viewed K-Aut ( JftT ) as acting on the left

isomorphism types of A-A-progenerators and identified Sk-N(A)

with the stability subgroup of .A. Hence the cosets correspond

to the orbit of
AA

under this action, so the last assertion follows

since the group operates transitively; given P,
P®A

carries A

into P. Moreover, this observation shows that Sk-N corresponds to

a well defined conjugacy class of subgroups of K-Aut(.^Jl).

G
e
n
e
r
a
t
e
d
 f

o
r
 g

u
e
s
t
 (

N
o
r
t
h
w

e
s
t
e
r
n
 U

n
iv

e
r
s
it

y
)
 o

n
 2

0
1
5
-1

2
-0

9
 2

0
:3

8
 G

M
T
  
/ 

 h
t
t
p
:/

/h
d
l.
h
a
n
d
le

.n
e
t
/2

0
2
7
/c

o
o
.3

1
9
2
4
0
0
1
1
4
0
9
7
3

P
u
b
li
c
 D

o
m

a
in

, 
G

o
o
g
le

-d
ig

it
iz

e
d
  
/ 

 h
t
t
p
:/

/w
w

w
.h

a
t
h
it

r
u
s
t
.o

r
g
/a

c
c
e
s
s
_
u
s
e
#

p
d
-g

o
o
g
le



19.

Now suppose A is a central separable K-algebra, and let P

be an A-A-progenerator. We know by the Brauer group theorem

(condition (e)) that A8«.: an isomorphism of categories.

~ A

Hence,. as a left A -module, P
~

A®KE
for a projective K-module E.

determined uniquely up to isomorphism, and for which

Hom^E.E)
- Horn JP,P) = K.

&
Ae

Horn e(P,P) = K follows from the fact that any Ae-endomorphism of

Ae

the progenerator P is induced by a right multiplication by a

unique a 6 A (Since an Ae-endomorphism is, a fortiore, a left

A-endomorphism) , which must commute with all right multiplications,"

hence a 9 K.

Conversely, if E is a finitely generated projective

K-module with HomK(E,E)
'* K, then P =

A®RE
is clearly an

A-A-progenerator.

Finally, since the category isomorphism converts
8^

into
®^

it defines a group isomorphism

K-Aut
(Afl&U > *{X)

by P >E, where
^(K)

is the group (under
®K)

of isomorphism

types of finitely generated projective K-modules with endomorphism

ring K. In particulars

K-Aut (
^TJl

) is abelian, and depends only on K, for A

a central separable X-algebra.

Hence, in the theorem above, we see that the subgroup Sk-N(A)

must be normal, and therefore that

8
,^ induces a group structure

on
^r(A)

, the set of left isomorphism classes of A- v-progenerators.

Moreover the theorem above then yields
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Theorem: (Rosehberg-Zelinsky) If A is a central separable

K-algebra then there is an exact sequence

1
—

-> Sk-N(A)— -> (?(K)
—

>
(^(A)

> 1.

Corollary; (Skolem-Noether) If (?(K)
=

{l} all K-automorphisms

of a central separable K-algebra are inner.

The Commutative Case

Let A be a commutative K-algebra. Then there are no inner

automorphisms, so

Sk-N(A)
=

C^(A/K)
,

the i:galois group** of K-automorphisms of A. If P is an

A-A-progenerator we call P symmetric if ax = xa for all a A.

There is an obvious procedure for writing an arbitrary P

uniquely in the form

p =.

oeA a0

as a bimodule, where Q is symmetric, a € ^(A/K) , and a is an

A-A-module left isomorphic to A on which A right multiplies via a.

This decomposition amounts to exhibiting a split exact sequence

1
-)^(A) )K-Aut(A)

>0j(A'K)
->1

(Note that this is a reversal of the Rosehberg-Zelinski sequence.)

Moreover, it is easy to verify that the action of
U^(A^K)

on

(P^(A)
is defined by letting an a "twist11 the operation of A on

a projective left A- module P.

As an example, let K = 2 and let A be the algebraic integers in

a number field L over
(Q

. Then y~(A) is known to be the class

group, C(L), and

ijj(A/Z)

=

Oj(L/(Q
) . Moreover the action above is

the usual action of the galois group on the class group.

G
e
n
e
r
a
t
e
d
 f

o
r
 g

u
e
s
t
 (

N
o
r
t
h
w

e
s
t
e
r
n
 U

n
iv

e
r
s
it

y
)
 o

n
 2

0
1
5
-1

2
-0

9
 2

0
:3

8
 G

M
T
  
/ 

 h
t
t
p
:/

/h
d
l.
h
a
n
d
le

.n
e
t
/2

0
2
7
/c

o
o
.3

1
9
2
4
0
0
1
1
4
0
9
7
3

P
u
b
li
c
 D

o
m

a
in

, 
G

o
o
g
le

-d
ig

it
iz

e
d
  
/ 

 h
t
t
p
:/

/w
w

w
.h

a
t
h
it

r
u
s
t
.o

r
g
/a

c
c
e
s
s
_
u
s
e
#

p
d
-g

o
o
g
le



21.

We concede?

Theorem; If A is the ring of integers in an algebraic number

field L, then

Aut
(A^0)

is the split extension of the class group, C(L), of L, by the

absolute "Galois group, where C(L) is viewed as

a module in the usual way.
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Unversity of Oregon
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