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THE MORITA THEOREMS

by
Hyman Bass

Introduction

Virtually all algebraic notions in category theory are a
rarody of their parents in the most ‘classical® of categories,
A, the category of (left) A-modulss. Granting the interest and

importance of categories, therefore, - perhaps the most presump-
tuous of our assumptions, to many - it is natural to ask, when

is Kmlg an ? Isomorphism problems of this generalitv generallv
admit either a trivial, or no humanly manageable, solution., The
present instance, however, must be regarded either as exceptional,
or, on closer scrutiny, as acquiring depth in virtue of the
formidable mélange of trivialities which the solution meaningfully
organizes. Indeed, the solution is so overwhelmingly complete that
it permits a classification of all isomorphisms from A@ﬂ'to gAML -
and, in particular, a computation of Aut (&ﬁ\).

So natural a cuestion as the above awaits category theory
only to be asked properly, but not to be answered, at least in
part. Historically the theory emerged piecemeal, first in the
Jedderburn structure theory for simple algebras, then in the
theory of the Brauer group, in the arithmetic of hypercomplex
systems (see, e.g., Chevalley's monograph, “L'Arithmeticue dans
les algebras de matrices'), in the Brauer-Osima construction of
“basic rings', in the study of quasi-Froberius rings, and in the
new theory of the Brauer group over a commutative ring. J4uslander
and Goldman developred a good deal of the present theory indepen-
dently for the needs of the Brauer group, and simultaneously
S. Schanuel and S. Chase (unpublished) elaborated a large portion
of it. However, the problem had already received a complete and
systematic treatment in full generality by Morita. The exposition
here is based on that of Chase-Schanuel, and it is adapted to
applications in the theory of the Brauer group, in contrast with
Morita‘'s prevailing concern with rings with minimum condition.,
However, all of what follows is, for the patient reader, an easy
consequence of results in Morita‘'s work.
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Some Remarks on Categories and Isomorphisms

Recall that a category,(’, consists of cbjects, obj Cj
morphisms, HomeJM,N), for M, N € obj(, and a law of composition.

If K is a commutative ring then we call(i a K-categorvy if

Hoqf}M,N) is alwavs a K-module and the composition is K-bilinear.
If K=2% Ci is called an additive category. If A is a K-algebra,
then Aﬁxland f¥7, , the categories of left and right A-modules,

are K-categories., If T:(?——é(? is a functor  on K-categories we

call T a K-functor when the induced maps
T: Hom.,—>Ho
q e
are K-homomorphisms. For example, if P is an A-B-bimodule, where

P

A and B are K-algebras, a situation we denote by A°B, then a

necessary and sufficient condition that
a o —
Pey : p¥) >, 80

be a K-functor is that, whenever a € K and x&P, ax = xa.

If Sr(h-_qﬁg is a functor we call S an isomorphism when

there is a functor T:®-> (§ such that ST = Iy and TS R
where I(D and I@ are the identity functors, and ¥ denotes a
natural equivalence of functors. 4 property of an object or

morphism in (D_will be called categorical if it is shared by the

image under any isomorphism. We give below definitions of several
notions which make it manifest (or an easy exercise) that they are

categorical:

* All functors in what follows are covariant.
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I.

II.

For morphisms:

(a) f is an epimorphisms fg; = fg2 3 g1 = 8y

f is a monomorphism: g\ f = g,f 92y = g,

(b) f is a proper monomorphism: f is a monomorphism but

not an isomorphism (i.e. has no inverse).
(¢c) £ <g: f and g are monomorphisms and f = gh for some h.
This defines a partial ordering on the monomorphisms into a

fixed object M.

Fixed objects:

(a) M is projective: If N— N' is an epimorphism,
| -, HomA{M!N)-—éHomA(M,N') is suriective.

(a*) M is injective: dualize.
(b) M is a generator: If gy e g, N-—N' there exists
f: M—>N such that gf ¢ gyt

(b*) M is a cogenerator: dualize.

(¢) M is finitely generated: If fv is a totally ordered

family of proper monomorphisms into M there is a proper
monomorphism f into M such that f < f for all v. I.e.

the proper monomorphisms into M are inductively ordered.

Defn, P € obj(} is called a progenerator for'Clif P is a

finitely generated projective generator in‘CQ

Corollary, If T: & — @ is an isomorphism and P is a progenerator

for Q, then T(P) is a progenerator for {§ .

Finally, we define

Center C = End (1),

where I is the identity functor of(f'and End (I ) is the set of

natural transformations I —> I
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Proposition Center ,H¥3* center of A, for any ring A,

(The “homothetic% defined by an element of the center of 4
establishes the above isomorphism)

Proof. Let § € End I,. Then there exists in particular an
A-homomorphism Q(A): IA(A)-—>IA(A)(=A), and we write (1)(A) = 3y
(Note map convention) Then (a){(4) = aag, for all a € A. Now let
M be any A-module, x € M, x arbitrary and consider the map f:A —M
sending a ¢ A onto ax € M., This is an A-homomorphism, and, in

identifying I, (M) with M, IA(f) with f, we see that
a 008), 4

M__LML:ﬁfmust commute, i.e. (1)¢(A)f = (1L)£(M);

this means that x{ (M) = 3¢X

Now ¢(M) is an A-endomorphism of M, and the equation
xd () = agx asserts that (M) islinduced by left multiplication by
a® for all A-modules M. Clearly this can happen if and only if
a® is in the center of A, Retracing the above steps we see that
left multiplication by an element of the center of \ does indeed
induce an endomorphism of the identity functor. Finally we see
that left multiplication by distinct elements of a and b of the
center of A induces distinct endomorphisms ¢, $b' since in

particular @a(A) $ ®b(A)

The Morita Context

e adopt the following standard notation:
M : M is a left A-module

A
MB s M is a right B-module
AMB s M is an A-B-bimodule- i.e. AM,
MB’ and (ax)b = a(xb) for a @A, x &M, b € B,

If AO denotes the opposite ring of i, ﬁdé;»h(o .

R
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5.

All rings in what follows will be understocod to be K-algebras

for a fixed commutative ring K, Moreover when we write AMB we
shall understand further that tx = xt for all x€ M, t ¢ K
Finally, we adopt the following, non standard, convention,

which will facilitate our notation considerably: homomorphisms

will be written opposite the scalars. For - right modules

this is standard. However if u: M —>M?' is a homomorphism of
left A-modules, we write xu instead of u(x), and A-linearity
becomes (ax)u = a(xu). If u: M'—>M?'t is another x(uu') = (xu)ur,
This convention has several consequences, of which the following
are notable: (i) commutativity becomes associativity: (ii) a
number of opposite rings tend to disappear. In regard to (ii)

we shall take care to arrange the statements of the theorems so
as to agree with standard usage, but we invoke the convention
systematically in disdussion, as illustrated now,

Given AM , set B = HomA(M,M)O. Then AMB. For if bl’ b2: M—M

then, by our convention blb2 denotes their product in B. Let
M = HomA(M,A). Then BM*A: for b € B, ut M*, a & A we have
bua: M — A

defined for x € M-by x(bua) = ((xb)u)a. Now since the expression
xu, x ¢ M, ue M* is B-bilinear and A - A linear, it defines an
A-A-homomorphism

(,) =(,)y:MegM — 5 4 x8u—3(x,u) = xu.
Next observe that if, for x €M, u &€ M* we let [u,x] €& B be

defined, for y ¢ M, by
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I. ylu,x] = (y,u)x
then this defines a B - B-homomorphism

[,1=0,y:¥ 8 M —B,

Finally, note that if x, y € M and u,v & M* then
(y,lu,x]v) = (ylu,x],v) = ((y,u)x,v) = (y,u)(x,v) = (y,u(x,v))
and, hence,
II. [u,xlv = u(x,v)
The abave considerations provide an example of what we now

define, abstractly, to be a Morita context: this consists of

K-algebras A and B, bimodules APB and g0, , an A-A-homomorphism

(,) ¢ P@B 0 —o A
and a B - B - homomorphism

[, ]1:0n8,P—B

subject to the two axioms,
I. ylu,x] = (y,u)x for x,y € P, u &,

IT. [u,xlv = u(x,v) for x ¢ P, u, v €2,

When discussing the Morita Context, and/or the example of the
Morita Context already given, we shall consistently denote
elements of A by a, of B by b, of P by x,y,z, and of & by u,v,w.
Lemma 1: In the category AEQflof left .i-modules the following
are equivalent:

(1) P is a generator for AX?ﬂ(see page 34 for definition)

(2) :E*«* Pu=4 (i.e. (,)P is an epimorphisnm).
uepP

(3) A is a direct summand of a direct sum of copies of P.
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7

Proof., 1l)=>2: Let Ul = ZE::* PucA., Ve note that 1 is a left
ideal and we consider the gg;gnical projection m: A->A/Ln .

If 7 # O, then there exists g: P—>A such that P-£3 A-Z—bA/u1 is
not zero, But g e& P* and hence gr must be zero, Hence m = O

and Lr{ = A,

2 : Define S = Ejg* P (Note that P* is being used as an
ep

g

iﬂde; sets S is a direct sum of copies of P.,)., The map f: S —A
given by f{P = u is well-defined and surjective by 2). But A
u

is a projective A-module and hence A is a direct summand of S,
3) =>1: LetZ%ﬁPi = A ® L, and let f: M—N be a non-zero map.

Then there exists a map g: 4 —M such that gf is nonezero.
- ST
This map g can be extended to a map g:/®_ P, — M and clearly
1
gf is non-zero, Hence there exists at least one i such that

gf|p 1is non-zero, and g|p is the desired map.
i i

Lemma (Dual Basis Lemma)

A left A-module P is projective iff there exist x; € P and

u, € P y -1 € I, such that

i
(a) For x &P, xu; = 0 for almost all i and
(b) For xeP, x = zz;_(xui)xi.
iel

Moreover, in this case, the families {xi} which may occur in

this way are precisely the generating sets of P,

Proof': If P is projective with generators {xi} ie I define
F =2€5 © AX; and define m: F--3P via m(X,) = x., extending by

i€l * 1
linearity. P is a direct summand of F, since it is projective,

and hence can be considered to be a submodule of F. If x &P,
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8.

then x =\> a; X. and the a. are certainly well-defined functions
VAR R | i

of x; indeed the maps u;- P->4A given via xu, = a ieI. are

i- i i
A-homomorphisms, i.e. uy e P*, Now if x € P, then =1 = ::
S X . - . .
™ = X =4;,aixi =£,ixui) x; 3 since P << F, a direct sum of copies
) ]

of ., one sees that the condition that Xuy is almost alwavs O A

is satisfied. Note finally that {#i} was an arbitrary
ieI
generating set of P.

Conversely, given the x,& P and u; é.P*, ie I, we form the
’ i 1

free module Eé AX.

i and we define a map m: F--2P via
i€l

W(Xi) =Xx; , for all i € I, and extend by linearity°* 7 is clearly
an epimorphism (note that x;€ P for all i € I). Wa» now define
a map ¢: P-—F, such that P—$~>F-¥E)P is the identity on P

this is done by setting, for x =§Z;jxui) xie;P, x0 =§::(xui)Xi.
\ |

This is clearly a homomorphism and Qomr = ng hence P is a direct
summand of F and hence projective. VWe note finally that the

{?;k is a generating set for P,
Corollary If B =#om,(P,P)® and [,1: P*8,P —5 B is defined

as in the last section, then P is a finitelr generated projective

A-module iff [,]p is an epimorphism,
Recalling that we call P a progenerator for ;ﬁlwhen P is

a finitely generated projective generator in A¥3t, we can combine
this corollary with Lemma 1 to conclude,

Proposition P is a progenerator for AKR iff both (,)P and

[,Jp are epimorphisms.

Proof of Corollary, If P is projective and finitely generated,

say by X; ... X,, then by the Lemma -

n’
x =Z. (xuy) x4 =ZX[ui’xiJP = XZ_[ui’xiJP for all x € P and
i \
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9.
. * G <
suitable uj...u, € P . Hencez_[ui, x;0p = [L1p(2_u;8x;)=1€B,
Conversely, if, for uy & P* and X4 €P, i=1...n. we have
[,1p (2 u;®x;) = 1€B, then x = xp [u;,%;] =Z‘.(xui)xi for
all x &P, and P is thus finitely generated and, by the Lemma, is

projective,

Morita I,

N
A

Theorem Suppose given a lorita Gontext: A, B, B, BQA,

(,), and [,] with the latter both epimorphisms., Then:

AKF\ and mﬂBr.

¢} is a progenerator for WA and Bm .

(1) P is a progenerator for

) and [,] are isomorphisms

(2)

(,
(3) 0 F Hom,(,P, .A) Q'HomB (Pg, Bp)

A(.". > A

and_

a4

P = Hom,(7;,4,) = Homg (5@, gB)

as bimodules.
(4) A= Homg (g0, p0)° = Homg(Pg, Pp)

and

(.P P)°

B = Hom, (", s Py

A,”A)'E’Hom

as K-algebras.

(5) P8y : Bﬂl"%ﬁaﬂ and '8 : Amﬂ‘"fﬁl re inverse X-isomorphisms.
Similarly for @ P: mA“)KﬂB and QBQ:KMB-“}W%.

(6) The lattice of A-submodules of P is isomorphic to the
lattice of left ideals in B, with A-B-submodules corresponding to
two sided ideals. Similar statements follow from symmetry. In

particular, A and B have isomorphic lattices of two sided ideals.
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10.
(7) Center of A = Center of B,

Proof: (as before, we shall write consistently, x, ye P,
u, v €0, aci, beB)

(1) Each element u & {) induces an A-homomorphism (,u):P >4,
Since (,) is surjective, there exist x; € P, u;¢" guch thag
z:]xi,ui) =1¢& A, By Lemma 1 we see that P is a generator
for Amﬂ. In exactly the same wayv, exchanging [,] for (,). we see
that P is a generator for ﬁﬂB. Since

[,] is surjective, there exist v,€", v, €P, such that}t%[vk,yk]

=1 € B, Hence, for xéP, x = x -1 = ;{:(x,vk)yk, and by Lemma 2
P is a finitely-generated projective ?eft A-module, In exactly the
same way, exchanging (,) for [,], one sees that P is a finitely
generated projective right B-module. This proves the assertion
for P, and that for (. is proved by symmetry.

!migt us, for the rest of the proof, hold fast to the notation
E____;(xi,ui) =1 é& A,}j_ﬁ[vk,yk] =1 €B |

SR |

(2)  We show that Ker (,) is zero. 1Indead, if zjéE% wiE "

J
8 Wy S—(x.

1 1

———

< —_
s.t. L..-JT‘ (Zj’ Wj) = O’ then ZJ"“Z -8 W. &

J J B
= 2 z.@[w.,x.] u, 2 z.[w.
ORI

. . ’
i, JJ

oui)

J Zj
- ST\
x;] 8uy = 2%_(<?ﬁzj,wj) xi8u£f 0

It is clear that an exactly analogous proof shows that Ker [, ]
is zero. Since (,) and [ , ] are onto by hypothesis, we see that
[,] and (,) are isomorphisms as asserted.

("> (3) We show that 7 ¥ Hom, (3P, ,A), via u—=) (Lu)* that

(,u)* P—1 is an element of Homq(AP,qA) is clear by hvpothesis.
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11.

We show that the map u—>(,u) is an isomorphism,

Suppose (x,u) = O ‘{xc P, Then u = l'u=§%£vk,yk]u
=§::vk(yk,u) = 0, Hence the map is injective.
k

Let f € Hom,(,P, ,A); we show £ = ( ,2 v, (y,fl.
k /
Indeed (x,Z%vk(ykf)) = ZIXX Vi) (7 ) E%jx V)V E =

bczivk,yk])f = xf'. Hence the map is surjective. Finally note
that this is a B - A-homomorphism, since (x,bua) = (xb,u)a.
In exactly the same way isomorphisms are established
between 7 and Homg(Pp, Bg) via u—>[ u,l,
& P and Homg(gh, gB) via x—=[ ,x],
and % P and HomA(QA, AA) via x = (x, ).

(4) There is a map from A to HomB(PB,PB) given bv left

multiplication., /e show it is an isomorphism,

Injective: If ax = O for all x€P then a = a«l = afijxi,ui)=
Sz:jaxi,ui) =0
Surjective: Let f &-HomB(PB,PB); we show that f is given by
left multiplication by}Zﬂﬂgi,ui). Indeed S:}fxiui)x =
E:fxi[ui,x] = £ E::xi[ai,x]) = f(EZ;(xl,u.)x) = fx,

Hence A = Hom mg (Pg,Pg), and similarly B= Hom (0:0), via left
multiplication by elements of B,

Finally, there is a map from A to HomB(BO,BC)o given by right
multiplication, just as explained following the definition of the
Morita Context., ‘e see, just as in the previous two cases, that
(AP’ P)°. The commuting of elements
of K with those of P and (] guarantees that the above are K-algebra

A ?'HomB(BD,BQ)O and B ¥ Hom,

isomorphisms.
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12,

I

(5) Let S =08, : 0¥ Iz and
T=rey 0o,
Then for M a left A-module.
M TsS(M)= P@B (OQAM)

= (Pgy0)8 M
= A ® M using the isomorphism, (,)
= M,

Similarly ST = I . S and T are K-isomorphisms since the elements
B

of K commute with those of P and .

(6) Since T is an isomorphism , the (left) B-submodules of
of B are lattice isomorphic to the A-submodules of T(B) = P,

with the B-B submodules of B corresponding to A-B-submodules of P

(7) Using an earlier proposition

Center A = Center AUKig’Center é&ﬁ.%’Center B.

This concludes the proof of Horita I.
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13.
Morita II

Theorem Let S:AGUb'—9BEUl and T: Bdfl-—%AUKl be K-isomorphisms.

Then if P = T(B) and Q = S(A) we have APgs B°, » and

S = 08 and T ?’PQB

A

as functors.

Proof: P is a progenerator for Aﬂlsince BB is a progenerator
for BKUL and T is an isomorphism.

Moreover
N Homg ( B, n)';'HomA(T(B), T(C)

Q’HomA (P, TS(A) Hom , (P,4),

and these are all bimodule isomorphisms. Further T defines
an isomorphism

B ¥ Homg (gB,5B) ®——3 Hom,(P,P)° ,

the isomorphism thus being given by right multiplication. Now

since P is a progenerator for A\ we can apply Morita I to P,

HomA(P,P)o'g'B , and Hom, (P, A) T ¢ and conclude, in particular,that
Q?’HomB (P,B)

as a bimodule. We thus obtain the following isomorphisms of
functors gﬂﬂ—%ﬂﬂﬂ ¢ let M be a left B-module° then

PGBM = P@B HomB(

HomB(HomB(P,B), M), since P is a
finitely generated projective B-module™

B,M)

=

* We are using the following identity in the situation PB,
cMps N. The natural transformation P®gHom (M, M)

Hom, (Homg (P,M) ,N) defined by ¢(p8f)(g) = fgp is clearly an

isomorphism for P = B, and hence for P finitely generated projec-
tive right B-module, by additivity.
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ll};.
= Homg (7,M), by the remark above
T Ham (T(7),T(M) , via T

r~

=" .Ham, (A,T(M)) , since T(")=T(S(4)) = A.

Morita III.

Defn: If A and B are K-algebras, an j - B-progenerator is a

module APB such that P is a progenerator for &ﬂﬂ and right
multiplication defines an isomorphism B ——%vHomA(P.P)O.

(As always, elements of K commute with those of P,)

It follows from Morita I that this definition is in fact
symmetrical.

Theorem : APB-~--~>PQB defines a bijection between the
(isomorphism types of) A-B-progenerators and the (isomorphism
types of) K-isomorphisms ]3051—%ﬁ51. Composition of isomorphisms
corresponds to tensor products of progenerators.

Proof': Clearly an i-B isomorphism P —2P' induces an isomorphism
P8y -——=> P'®y of functors BKUY‘QAMR . Moreover, by Morita I.

P@B is an isomorphism for P an A-B-progenerator. Hence our
mapping is well defined. By Morita II it is surjective. Finally,
it is an easy exercise to conclude from an isomorphism of P@B

with P'@B as functors 3 an A-B-isomorphism of P with P¢.

A

and this shows the mapping is injective.
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15.

Applications:

We now proceed to indicate how to subsume certain classical
theorems in the theory of algebras and their arithmetics in the
preceding circle of ideas.

Wedderburn Structure Theory :

Let A be a simple aArtinian ring. Then every non zero finitely
generated A-module P is projective (A is semi-simple) and a
generator (since Im (,)P is a non zero two sided ideal and A is
simple). Hence, if D = HomA(P,P)o we may conclude from Morita I

that:
(a) P is a D-progenetiator (condition 1)

(b) D is a simple Artinian ring (condition 6)
(c) Center D = center A (condition 7)

(d) A Q'HomD(P,B) (Bondition 4)

Theorem l: If A is a division ring the ring of nxn matrices
over A is a simple Artinian ring with the same center as A.
Proof: P is a vector space of some dimension, n, and D is the
ring of nxn matrices over A,

Theorem 2. If A is a simple Artinian ring and P is a simple left
A-module, then D = HomA(P,P)o is a division ring (Schur), P is a
finite dimensional D-space, and A g'HomD(PqP).

The Brauer Group:

Let K be a commutative ring, 4 a K-algebra. We write
A® = A@KAO. Then a left A®-module is just an A-A-bimodule,
(K, as always, commutes with everything.) In particular A is a

left A®-module and we call A a separable K-algebra if it is
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16.
Aeeprojective. A is central if center A = K-1 % K.
If M is an Ae-module, then f——>f(1) defines a natural

isomorphism of Hom _(A,M) with the %“fixed points® c¢*

e
A
M =~(m€ M| am = ma for all a € A} . In particular, if M and N

are left A-modules then HomK(M,N) is an A-A-bimodule whose fixed
points are HomA(M,N)j i.e.

Hom _(4, Homy (M;N)) = Hom, (M.N) .
A &

It follows that if K is a field (so Homy is exact), and if A is

separable (so Hom _(A}) is exact), then HomA is exact. so A is a

Ae(
semi-simple Artinian ring. If, in addition, A is central, therefore,
A must be simple:

Propositiene If K is a field, a central separable K-algebra is central

simple.
Now suppose A is central and separable, but K is

arbitrary. Then Auslander and Goldman show, using this Proposition,
that every two sided proper ideal in A® is contained in §§14°® for

some maximal ideal 00l €K, and from this it follows that Im (,)A

is the unit two sided ideal in AS.

Proposition: (Auslander-Goldman) A central separable K-algebra

A is an Ae-progenerator.

Finally, to apply llorita I, we state the following lemma,
which is contained in the remarks above in fixed points.,
Lemma For any K-algebra A,

Hom _(A.A) = center A.
IC

Putting this together, if A is a central separable K-algebra

then A is an Ae-progenerator and Hom (A,A) = K. We applv Morita I

A€

and conclude,
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17.

Theorem: Let A be a central separable K-algebra. Then

(a) A is a K-progenerator.
(b) Ae';'HomK(A,A

)

(¢c) K = center K = center A®
(d) UL — N A® defines a bijection between the ideals of K
and the two sided ideals of a°.

(e) A@K : KEEI-—>e§n_is an isomorphism of categories which
A

converts 8K into QA’

The Automorphisms of , m

Let A be a K-algebra. We shall write

Sk-N(4) = K-Aut(A) /1n syt (a)

where K-Aut(A) is the group of K-automorphisms of A, and
In Aut (A) the normal subgroup of inner automorphisms. Further, let

K-aut (,§50)

denote the group of isomorphism types of K-automorphisms of the
K-category AEEK. This is indeed a group (the only issue being

that it is a set) since, by Morita III,
Theorem K-Aut(AKKI) is isomorphic to the group of isomorphism

classes of A-A-progenerators, P, where the group operation is
induced by @A, the identity is the class of A, and the inverse of
the class of P is that of HomA(AP?AA), which, by Morita I. is

A-A-isomorphic to Homq(P A

ar A
Recall that, as always, K commutes with the elements of the
modules P as above. Hence, an A-A-bimodule with this property is

just a left Ae-module, where A® = A@KAO.
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18,

Now let S be an automorphism of AﬁBT, and suppose P = S(A)
is isomorphic to A as a left A-module., Such a left A-isomorphism
may fail to be an A-A-isomorphism, and this failure is measured
by an automorphism, a , of A, since A, via right multiplication,
is isomorphic to both. HomA(AA?AA) and HomA(APlﬁP). It is
straight-forward to verify that if another left A-isomorphism
A-——P is chosen then a varies only in its coset modulo In Aut(A)
and that A and P are A-A-isomorphic iff aeIn Aut(A). Now let
T be another automorphism of AGKlsuch that 0 = T(4) is left
isomorphic to A, Then P = S(A) is left isomorphic to S(Q) and
if [ € Ke~Aut(A) measures the failure of 4 and O being
A-A- isomorphic, it does likewise for P and S(). Hence fa
measures the failure of a4 and ST(A) being isomorphic.

The above remarks are intended as a sketch of the proof that
Theorem: The group of K-automorphisms of Aﬂﬂ.which fix the left
isomorphism type of A is isomorphic to Sk-N(A). Morecover the
cosets of this group in K-Aut(,8%1) is in bijective correspondence
with the left isomorphism classes of A-A-progenerators.

Remarkss: (1) The argument above yielded an anti-isomorphism.
but any group is anti-isomorphic to itself.

(2) We have viewed K—Aut(Aﬁﬂl) as acting on the left
isomorphism types of A-.\-progenerators and identified Sk-N(A)
with the stability subgroup of AA' Hence the cosets correspond
to the orbit of a4 under this action, so the last assertion follows
since the group operates transitively: given P, P@A carries A
into P, Moreover, this observation shows that Sk-N corresponds to

a well defined conjugacy class of subgroups of K-Aut(ﬁKKl).
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Now suppose 4 is a central separable K-algebra, and let P
be an A-A-progenerator. We know by the Brauer group theorem
(condition (ej) that A@K: KKET“%gﬂR is an isomorphism of categories.
Hence,.as a left Ae-module,P Q’AgKE for a projective K-module E.
determined uniquely up to isomorphism, and for which

Homy (E,E) = Homﬁe(P,P) = K.

Hom e(P,P) = K follows from the fact that any Ae-endomorphism of
theAprogenerator P is induced by a right multiplication by a
unique a € A (Since an A®-endomorphism is, a fortiore, a left
A-endomorphism), which must commute with all right multiplications:
hence a €& K.

Conversely, if E is a finitely gencrated projective
K-module with HomK(E,E)’glK, then P = A8E is clearly an
A-A-progenerator.

Finally, since the category isomorphism converts @A into @K

it defines a group isomorphism
K-aut (,07) — ()

by P —> E, where GRK) is the group (under 8y) of isomorphism
types of finitelv cenerated projective K-modules with endomorphism
ring K. In particular:

K-Aut(Abﬁ() is abelian, and depends only on K, for A

a central separablc X-algebra,.
Hence, in the thecorem above, we see that the subgroup Sk-N(A)
must be normal, and therefore that 8A induces a group structure
on ﬁ%(A), the set of left isomorphism classes of /i-1-progenerators.

Moreover the theorem above then yields
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Theorem: (Rosenberg-Zelinsky) If A is a central separable

K-algebra then there is an exact sequence

1 sk-N(4)— §(K) — §.(a) —> 1.

Corollary: (Skolem-Noether) If @(K) = {1} all K-automorphisms

of a central scparable K-algebra are inner,

The Commutative Case

Let A be a commutative K-adgebra. Then there are no inner

automorphisms, so
Sk-N{(4) =O}(A/K) ,
the ‘'galois group* of K-automorphisms of A, If P is an
/-A-progenerator we call P symmetric if ax = xa for all a 4,
There is an obvious procedure for writing an arbitrary P
uniguely in the form
P = QQA Aa

as a bimodule, where ¢ is symmetric, a € C%(A/K), and i 1is an
A-A-module left isomorphic to A on which 4 right multiplies via c.

This decomposition amounts to exhibiting a split exact sequence

L3 (3) == k-dut (4) = 00 —1
(Note that this is a reversal of the Rosehberg-Zelinski sequence.)
Moreover, it is easv to verify that the action of LR(A/K) on
6%<UU is defined by letting an a "“twist® the operation of A on
a projective left A~ module P.

As an exampls, let K = 2 and let 4 be the algebraic integers in

a number field L over {E . Then 0%(3) is known to be the class
group, C(L), and é&(A/Z) =L§(LQ}\). Moreover the action above is

the usual action of the galois group on the class group.
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We conclude:
Theorem: If A is the ring of integers in an algebraic number
field L, then
Aut (QEKB)
is the split extension of the class group, C(L), of L, by the

absolute ‘Galois greup, \J&(L/G} ), where C(L) is viewed as
a C%(L/G},) module in the usual way,
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