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Theorem from last time: B0(H) has one (up to equivalence) irreducible representation, namely
B0 : H → H. And every (non-degenerate) representation is a direct sum of these.

Proof, continued from last time:

Last time, we defined some rank-one operators 〈ξ, η〉0, which we view as a B0-valued inner
product. For bookkeeping, we let 〈·, ·〉H be C-linear in the second variable.

Let (π, V ) be a non-degenerate representation of B0(H). For vectors in H we will use ξ, η, . . . ,
whereas for vectors in V we will use v, w, . . . ; we will not carry the “π” around, preferring
“module notation”: Tv def= π(T )v for v ∈ V and T ∈ B0(H). We take 〈·, ·〉V to be linear in
the second variable.)

Of course, B0(H) is a C∗-algebra, and in particular it is complete. Thus, the representation π :
B0(H)→ B(V ) is a ∗-homomorphism of C∗-algebras, and hence is continuous. Furthermore,
B0(H) is topologically simple: there are no closed two-sided ideals. Thus π is injective (its
kernel is closed, since it is continuous).

So choose ξ ∈ H with ‖ξ‖ = 1. Then 〈ξ, ξ〉0 is the rank-1 self-adjoint (and hence orthogonal)
projection onto ξC. So π(〈ξ, ξ〉0) is also a (self-adjoint orthogonal) projection on V (being a
projection is an algebraic property), and it is not the 0 projection. So choose v0 with ‖v0‖ = 1
in the range of this projection.

Thus, define Q : H → V by
Q : η 7→ 〈η, ξ〉0v0

This is obviously continuous.

〈Qη,Qζ〉V = 〈〈η, ξ〉0v0, 〈ζ, ξ〉0v0〉V
= 〈v0, 〈ξ, η〉0〈ζ, ξ〉0v0〉V since π is a ∗-representation

=

〈
v0,

〈
〈ξ, η〉0ζ︸ ︷︷ ︸
=ξ〈η,ζ〉H

, ξ

〉
0

v0

〉
V

= 〈η, ζ〉 〈v0, 〈ξ, ξ〉0v0〉
= 〈η, ζ〉

So Q is isometric. Moreover, for T ∈ B0(H),

Q(Tη) = 〈Tη, ξ〉0v0
= T 〈η, ξ〉0v0
= T Q(η)

So Q : H → V intertwines π with the representation of B0(H) on H. Thus, the range of Q is
a closed subspace of V carried into itself by the action π : B0(H)→ B(V ). The representation
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π restricted to this subspace is unitarily equivalent to the representation of B0(H) on H. If
π itself is irreducible, then range of Q must be all of V , establishing the first part of the
theorem. If the representation is not irreducible, take Q(H)⊥, which is still a representation,
and rinse and repeat (with Zorn **the best brand of conditioning shampoo**). �

**This paragraph was said after the next few, but belongs here.** B0(H) has only one
irreducible representation, but any pure state gives an irreducible representation a la GNS. So take
any pure state, do the GNS, and you’ll get the representation on H, with a cyclic vector. So every
pure state of B0(H) is represented by a vector ξ ∈ H with ‖ξ‖ = 1, i.e. µ(T ) = 〈Tξ, ξ〉. Multiplying
this vector by something in S1 ⊂ C does not change the state; the pure states are represented by
rank-1 projections p, via µ(T ) = tr(pT ). We in fact have a bijection {pure states of B0(H)} ↔
{rank-1 projections} = PH the “projective Hilbert space”. This is the setting for the quantum
physics of finitely many particles. Moreover, the convex hull S(B0(H)) = {“mixed states”} =
{density operators} = {D ∈ B(H) : 0 ≤ D, tr(D) = 1} where the corresponding state has µD(T ) =
tr(DT ). Question from the audience: Does ≤ 1 follow from that? Answer: Yes, but tr = 1
is the interesting part So, with a quantum-mechanical system, it is the state that evolves, not
the vector; i.e. it is the point in PH. This often confuses people. Important questions include
“What are the automorphisms of PH?” Well, these include automorphisms of H and also anti-
automorphisms. These anti-linear operators do occur, e.g. Time and Parity reversals.

A theorem of Burnside says that if a subalgebra of the algebra of operators on a finite-dimensional
vector space acts irreducibly, then the subalgebra is the whole algebra. For example, at the purely
algebraic level, then C and Mn(C) have only one irreducible representation, and more generally,
for any ring R, R−Mod and Mn(R)−Mod are equivalent as categories, under

RV 7→Mn(R) R
n
R ⊗R RV

This is the notion of Morita equivalence.

The general picture for C∗-algebras is similar. For our example, we have 〈·, ·〉B0(H), B0(H)HC,
and 〈·, ·〉C. And in general, we will have 〈x, y〉Az = x〈y, z〉B and a module AXB, plus some
nondegeneracy axioms, and this will give “strong Morita equivalence.” Two non-commutative
spaces that are strong Morita equivalent will have the same homology and cohomology.

Theorem: (analogous to a theorem of Burnside, moving towards a Stone-Weierstrass theorem)

Let A be a sub-C∗-algebra of B0(H) and suppose that H is an irreducible module of the action
of A. Then A = B0(H).
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