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1.1 Irreducible representations of algebras Aθ

Let H = L2(R), and pick θ ∈ R r {0}. Let U be the operator that translates by θ:

(Uξ)(t) def= ξ(t− θ)

Let V be the operator that multiplies by a phase:

(V ξ)(t) def= e2πitξ(t)

Then the C∗ algebra generated by V is C(T ), where T is the circle T = R/Z.

Question from the audience: Why? The closure is dense in the sup norm, not the operator
norm. Answer: The sup norm is the operator norm for any of these pointwise multiplication, as
long as your measure has full support.

Then, if f ∈ C(T ), we have Vf = f × (−). And UVf = Vα(f)U , where (α(f))(t) def= f(t − θ). In
particular, taking Vf = V itself, i.e. f = e2πit, then we conclude the commutation relation:

UV = e−2πiθV U

So we let W (p, q) def= UpV q, and W (p, q)W (p′, q′) = UpV qUp
′
V q′ = e2πiqp

′θW (p + p′, q + q′). This
generates the C∗ algebra:

C∗(Z2,

(
0 0
θ 0

)
)

or perhaps the transpose of that matrix. But iterating the action α, it’s clear that this algebra is
a crossed product:

C(T )×α Z

Given a discrete group G, and α and action of G on M compact, we get an action α on C(M).
Hence, we can form C(M)×α G. How can we construct some irreps of this algebra?

Well, pick some point m0 ∈ M , and consider its orbit Om. We have a bijection G/Gm0 → Om,
where Gm0 is the stabilizer subgroup. Of course, the orbit might be infinite, so will have limit
points. We form `2(G/Gm0), which we view as `2(Om), with the counting measure — this gives
the measure of a compact space to be ∞. In any case, we can pull back continuous functions to
bounded functions, and hence to bounded operators (multiplication):

C(M) //

π: f 7→f×(−)

22
Cb(Om) // B(`2(G/Gm0))
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Then the π(f)s separate points of G/Gm0 , and so we get a covariant rep of C(M), G. Exercise:
this representation is irreducible.

E.g. θ is irrational. Then there are uncountably many different orbits, and each will give a different
irrep of C(T ) ×α Z above. Similarly, for L2(T,Lebesgue); this is a different Hilbert space, but we
can play the same game, so we get more irreps inequivalent to any of these. Classification theorem:
you will never explicitly construct all irreducible representations.

**comment on von Neuman algebras, that I missed**

These algebras — C(T )×αZ — are called rotation algebras. Even the rational rotation algebras are
interesting, although not as much as the irrational ones. More generally, we can look at C(Tm)×θZn
where these rotate at different speeds; this is a special case, because on each of C(Tm) and Zn have
commuting generators.

Question from the audience: Does any measure on the circle give an irrep? Answer: No, I
need it to be invariant under the rotations.

We saw that UmUnU∗m = ρθ(m,n)Un, with perhaps a different convention last time, where ρθ is
a bicharacter, and ρθ(m,n) = αρθ(m,n). Let Zρθ

def= {m : ρθ(m,n) = 1 ∀n}; then Um ∈ Z(Aθ) the
center iff m ∈ Zρθ . **Lecture uses the same symbol for the integers Z and the variable
Z; either is reasonable in this context.** Un is central iff αt(Un) = Un for any t ∈ Hρθ . Recall
αt(Un) = 〈n, t〉Un. We defined

Q(a) =
∫
Hρ

αt(a) dt

and so

Q(Un) =
{
Un, n ∈ Zρθ
0, n 6∈ Zρθ

This requires a little bit of Fourier analysis. **Recall that H is the closure of the image of
Zd in T d under the pairing ρθ.**

In any case, Zρθ is a subgroup of Zd, and Range(Q) ⊆ C∗(Zρθ) ⊆ Z(Aθ) the center, and if a ∈ Z(Aθ),
then Q(a) = a. Hence C∗(Zρθ) is exactly the center of Aθ.

Ok, so we now can decompose the algebra Aθ as a field of algebras over the center, and it turns
out that each of the fibers is one of these simple algebras.

1.2 Differentiation

Smooth structures, in our experience, come from differentiation. We have Aθ and an action α of
T d. We have a surjection Rd → T d. Let’s generalize a little.

Let B be a Banach space, and α a strongly continuous action of R on B. We don’t really need this,
but for simplicity, let’s think of this action as by isometries. Let b ∈ B, and look at t 7→ αt(b), which

2



is norm-continuous on R with values in B. Is this function once-differentiable (at 0 is enough)?
I.e., we want to know if

lim
t→0

αt(b)− b
t

exists for the norm ‖ · ‖B on B. In other words, does this limit equal some c ∈ B? Certainly, we’ll
want B to be complete. If the limit exists, we’ll say that b is differentiable, and we’ll write the limit
at D(b).

If D(b) exists, we can ask whether D(b) is differentiable. I.e. D(D(b)). And so on: does Dn(b)
exist?

**Picture this as B = C(R) and α is by translation.**

Let V be a finite-dimensional vector space over R (which we think of as Rd, but we don’t want
to be prejudicial about the basis). Let α be an action of V on B. For v ∈ V , we can ask for the
directional derivative in the direction of v:

Dv(b)
def= lim

αtv(b)− b
t

if the RHS exists. Given v1, . . . , vn, we can talk about Dvn . . . Dv1b.

We won’t need this generality, but it really does work: Let G be a connected Lie group, and take
G ⊆ GL(n,R) closed connected (we can do this up to a discrete subgroup). Then the Lie algebra
g of G is

g
def= {X ∈ gl(n,R) : exp(X) ∈ G}

There are substantial theorems about this. Then t 7→ exp(tX) gives a 1-parameter subgroup of G
for each X.

Let α be an action of G on B. Restrict to t 7→ exp(tX). We can define, if it exists:

DX(b) def= lim
αexp(tX)(b)− b

t

If DX(b) exists, we can ask about its differentiability, and so on, and let

B∞ = {b ∈ B : DXn . . . DX1b exists for all n and all X1, . . . , Xn}

Theorem: (Gärding **sp?**)

B∞ is dense in B.
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