
1 Problem Set 2:
Due March 14, 2008

**The problem set was given out typed. I’ve retyped it, partly so I could submit
my answers set between the questions. I have corrected some typos, and no doubt
introduced even more. In doing so, I have changed the formatting slightly.**

A. Fields of C∗-algebras. Anytime the center of a C∗-algebra (i.e. the set of its elements
which commute with all elements of the algebra) is more than one-dimensional and acts non-
degenerately on the algebra, the C∗-algebra can be decomposed as a field of C∗-algebras over
the maximal ideal space of the center (or of any non-degenerate C∗-subalgebra of the center).
For simplicity we deal here with unital algebras, but all of this works without difficulty in
general. So let A be a C∗-algebra with 1, and let C be a C∗-subalgebra of the center of A
with 1 ∈ C. Let C = C(X), and for x ∈ X let Jx be the ideal of functions vanishing at x. Let
Ix = AJx (closure of linear span), an ideal in A. Let Ax = A/Ix (“localization”), so {Ax}x∈X

is a field of C∗-algebras over X. For a ∈ A let ax be its image in Ax.

1. Prove that for any a ∈ A the function x 7→ ‖ax‖Ax is upper-semi-continuous. (So {Ax}
is said to be an upper-semi-continuous field.)

2. If x 7→ ‖ax‖Ax is continuous for all a ∈ A, then the field is said to be continuous. For
this part assume that A is commutative. Note that then one gets a continuous surjection
from Â onto Ĉ. Find examples of As and Cs for which x 7→ ‖ax‖ is not continuous. In
fact, find an attractive characterization of exactly when the field is continuous, in terms
of the surjection of Â onto Ĉ and concepts you have probably met in the past. (It can
be shown that an analogous characterization works in the non-commutative case, using
the primitive ideal space of A.)

3. Let

A1
def=

{
f : [0, 1]→M2 continuous, with f(1) =

(
α 0
0 α

)}
A2

def=
{
f : [0, 1]→M2 continuous, with f(1) =

(
α 0
0 β

)}
and let Ci

def= Z(Ai) be the center of Ai. Are the corresponding fields continuous? Are
all the fiber algebras Ax isomorphic? Show that A1 and A2 are very simple prototypes of
behavior that occurs often “in nature”, but with higher-dimensional algebras, and more
complicated boundary behavior.

4. Determine the primitive ideal space of each of these two algebras, with its topology.

B. An important extension theorem. (This will be used in the lectures.) Prove that if I
is a ∗-ideal of a ∗-normed algebra A, and if I has an approximate identity of norm one for
itself, then every non-degenerate ∗-representation of I extends uniquely to a non-degenerate
representation of A.
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C. The non-commutative Stone-Čech compactification. (At a few points in the course I
may use the results of this problem.) Motivation: If the locally compact space X is an open
subset of the compact space Y , then C∞(X) “is” an ideal in the C∗-algebra Cb(Y ) of bounded
continuous functions on Y . Then X is dense in Y exactly if C∞(X) is an essential ideal in
C(Y ), where by definition, an ideal I in an algebra B is essential if there is no non-zero
ideal J in B with IJ = 0 or JI = 0. Thus the Stone-Čech compactification of an algebra A
without 1 should be a “maximal” algebra with 1 in which A sits as an essential ideal. If B is
any algebra in which some (probably non-unital) algebra A sits as an ideal, then each b ∈ B
defines a pair (Lb, Rb) of operators on A defined by Lba = ba, Rba = ab. These operators
satisfy, for a, c ∈ A, Lb(ac) = (Lb(a))c, Rb(ca) = c(Rb(a)), and a(Lb(c)) = (Rb(a))c.

Definition: By a double centralizer (or multiplier) on an algebra A we mean a pair (S, T ) of
operators on A satisfying the above three conditions. Let M(A) denote the set of double
centralizers of A.

1. Using the example of A as ideal in B as motivation, define operations on M(A) making
it into an algebra, with a homomorphism of A onto an ideal of M(A).

2. Sow that if A is a Banach algebra with approximate identity of norm one, and if we
require S and T to be continuous (which actually is automatic), then M(A) can be
made into a Banach algebra in which A sits isometrically as an essential idea. (This
is quite useful for various Banach algebras which are not C∗-algebras. For example,
if A = L1(G) for a locally compact group G, then it can be shown that M(A) is the
convolution measure algebra M(G) of G.) Show that if A is a ∗-Banach algebra, then its
involution extends uniquely to make M(A) a ∗-algebra. Note then that the theorem of
problem B above says that every nondegenerate ∗-representation of A extends to M(A).

3. Show that if A is a C∗-algebra, then so is M(A).

4. Let A be a C∗-algebra, and let X = AA as a right A-module, with A-valued inner
product as defined in class. Let BA(X) be the algebra of all continuous (which actually
is automatic) A-module endomorphisms of X that have a continuous enomorphism as
adjoint for the A-valued inner product (which is not automatic). Show that in a very
natural way M(A) = BA(X).

5. For A a C∗-algebra, show that if B is any C∗-algebra in which A sits as an essential
ideal, then B can be identified as a subalgebra of M(A), so M(A) is maximal in this
sense, and thus ban be considered to be the Stone-Čech compactification of A.

6. Determine M(A) when A = C∞(X), and when A = B0(H), the algebra of compact
operators on a Hilbert space H.

D. Morphisms. If X and Y are locally compact spaces and φ is a continuous map from X
to Y , then φ determines a homomorphism from C∞(Y ) to Cb(X), the algebra of bounded
continuous functions.

1. Give a characterization of those homomorphisms from C∞(Y ) to Cb(X) which arise in
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this way from maps from X to Y . Your characterization should be phrased so that it
makes sense for non-commutative C∗-algebras. (Hint: recall the definition of a repre-
sentation being non-degenerate.) Such homomorphisms are then called “morphisms”.
That is, define what is meant by a morphism from a (non-commutative) C∗-algebra A
“to” a C∗-algebra B.

2. For the non-commutative case explain how to compose morphisms.
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