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1: May 5, 2008

1.1 Some K theory

It’s been asked that we define K1.

When φ : A → B, we get a map K0(A)
φ→ K0(B), because if [Ξ1] − [Ξ2] ∈ ker(φ), then [φ(Ξ1)] ∼

[φ(Ξ2)] in K0(B).

On the other hand, given an isomorphism φ(Ξ1) ∼= φ(Ξ2) over B, one can ask whether we can lift
this to an isomorphism over A between Ξ1 and Ξ2. What this comes down to is whether given an
invertible element S of Mn(B), is there an invertible element T of Mn(A) so that φ(T ) = S. I.e.

“can you lift invertible elements?” We’re asking to what extent the map GLn(A)
φ→ B is onto.

More or less, vaguely, K1 measures the invertible elements that cannot be lifted. This is a very
vague statement.

Let’s make it more precise. We look for universally liftable elements of GLn(A) (which was the B
up above). We want φ : A→ B to be onto, and for the moment these are unital algebras without
topology. Let’s give some examples: 

1 0
1 rij

. . .
1


These clearly can all be lifted, since A→ B is onto, and is invertible for any single value rij . Call
the (normal) subgroup generated by such things Eln(A): then

GLn(A)/Eln(A)→ GLn+1(A)/Eln+1(A)→ · · · → limit = GL∞(A)/El∞(A)

under

T 7→
(
T

1

)
and

GL∞(A) =


invertible

1
1

. . .


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and we can look at the image of Eln(A) in GL2n(A), which sits in [GL2n(A), GL2n(A)] ⊆ El4n(A).
Then we define

Kalg
1 (A) def= GL∞(A)/[GL∞(A), GL∞(A)]

The denominator is the commutator subgroup, so this is abelian.

There is no good algebraic definition of K1 for non-unital algebras. One way to do it is to use an
ideal J ≤ A, and then writing down the sequence

Kalg
1 (J,A)→ Kalg

1 (A)→ Kalg
1 (J)

but it becomes even harder to get K2, etc., indeed someone won a Fields Medal for such stuff.

For unital Banach algebras, again we look for universally liftable elements of Mn(A). If T ∈Mn(A)
with an appropriate Banach norm on Mn(A), and if ‖T − 1‖ < 1, then we can use holomorphic
functional calculus to define log(T ) = S. Then T = eS , and any eS is liftable, because S is just some
matrix and we have a Banach homomorphism that’s onto. So everything close to 1 is universally
liftable; this is an open neighborhood of 1 in the group of invertible elements. And the point is that
the connected component of 1 in GLn(A) is algebraically generated by any open neighborhood of
the identity. Thus everything in GL0

n(A) is universally liftable. So in this context we define the
topological K1 by the sequence of discrete groups:

GLn(A)/GL0
n(A)→ GLn+1(A)/GL0

n+1(A)→ · · · → GL∞(A)/GL0
∞(A)

and, of course, [GL∞, GL∞] ⊆ GL0
∞. What happens is that we’re deviding out by more: Kalg

1 �
Ktop

1 . And

K1(non-unital A) = ker
(
K1(Ã)→ K1(field)

)
Then we have the famous

Bott periodicity theorem: If we are over C, then K2(A) ∼= K0(A).

So we don’t have to worry about K2 and higher. The surprise is that the following six-term sequence
is exact everywhere:

J A A/J

K1 • // • // •

��
K0 •

OO

•oo •oo

Over R, the iso is K8(A) ∼= K0(A), because you get tied up in quaternions and Clifford alge-
bras.

Good questions: if G is discrete and we take C∗(G) or C∗r (G), what are the K-groups of these?
By now there is a large literature using non-commutative geometry in intense ways, e.g. Dirac
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operators, to answer those questions at least for large classes of groups in a way that you could
imagine you might be able to actually compute these. Part of the difficulty is figuring out what all
the projective modules over these, e.g. Z10 no one has in an effective way shown how to list all of
the projective modules over the commutative 10-torus.

1.2 Return to tori and projective modules

For Ẑ2 = T 2, we have a commutative C∗-algebra A = C(T 2), where T 2 = R2/Z2. Then we skip
the proofs, and have:

Ξ(q, a) def= {ξ ∈ C(R2 → C) : ξ(s+ q, t) = ξ(s, t), ξ(s, t+ 1) = e2πiasξ(s, t)}

Theorem: Every projective module over C(T 2) is a free module or isomorphic to a Ξ(q, a). And
when a ≥ 0, the Ξ(q, a) are all isomorphic.

This does not give a particularly good clue how to deal with non-commutative tori. We have Zd
and a matrix θ ∈Md(R), and we form Aθ as before in terms of the bicharacter cθ.

In any case, Zd fits inside Aθ, not comfortably as a subgroup, because of the twisting, but as a
subgroup. And precisely this means that a projective module will give a “cθ-projective represen-
tation of Zd”, although we don’t have a Hilbert space. (This is a way of thinking of this stuff in
hindsight.) We can look for cθ-projective representations, and there aren’t a lot of ways to construct
these:

Let M be a locally compact Abelian group, and M̂ its dual group. Let G = M × M̂ ; then on
L2(M) we have

(π(x,s)ξ)(y) def= 〈y, s〉 ξ(y − x)

the “Schrodinger representation.” Then π is a projective representation of G on this Hilbert space,
with bicharacter β (easily enough computed).

Strategy:

• Find embeddings of Zd into M × M̂ such that β|Zd = cθ.

• If Zd is a lattice in M×M̂ , restrict attention to Cc(M); then this leads to a projective module.

The difficulty: this gives zillions of projective modules, and it’s hard to figure out when two such
things are isomorphic.
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