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One more comment on the theory of bounded operators:

Naimark Conjecture: (1940s)

Let A be a C∗-algebra. Suppose A has the property that, up to equivalence, A has only one
irreducible representation. Then A ∼= B0(H) for some H.

Rarely do we come across algebras that we don’t know are B0, but for neatness, this would be nice
to know. The answer is “Yes” if A is separable. In 2003, however, there was a surprise: Chuck
Akerman and Nick Weaver (both Ph.D. students of Prof. Bade, at UC-Berkeley) showed that the
answer depends on the axioms of set theory. For usual axioms **ZF definitely, and probably
ZFC?**, the question is undecidable. More specifically, If we assume the Diamond Principle, we
can construct a counterexample to Naimark’s conjecture, and Diamond is consistent with usual
axioms.

Question from the audience: What does separable mean? Answer: As a Banach space, it
is separable: there is a countable norm-dense subset. Question from the audience: If A acts
on a separable Hilbert space, does that imply A is separable? Answer: I don’t know. I’d expect
that that does imply the result, but I did not try to understand the paper, since I don’t know set
theory.

1.1 Continuing from last time

We stated this Burnside theorem:

Theorem: If A is a C∗-subalgebra of B0(H) that acts irreducibly on H, then A = B0(H).

Proof:

The action must clearly be non-degenerate. A is a C∗-subalgebra, and H is of non-zero
dimension, so A has non-zero elements, and T ∗T is non-zero if T is. So we pick out T ∈ A
with T 6= 0, T ≥ 0. Then T is compact — specturm is discrete, except perhaps 0 could be an
accumulation point —, by the spectral theorem of compact self-adjoint operators. So T has
a non-zero eigenvalue, and the projection onto the eigensubspace is in A. Thus A contains
proper projections onto finite-dimensional subspace.

So we look at all projections, and find a minimal one: Let P ∈ A be a projection of minimal
positive dimension (of range of P ). Then for any T ∈ A with T = T ∗, we look at PTP , which
is clearly self-adjoint with finite dimension. So it has spectral projections, and it’s obvious
that the spectral projections must be smaller than P (in the strongest sense: they are onto
subspaces of range of P ). These spectral projections are certainly still in A, since they are
polynomials in PTP . But P is minimal, so the only possible spectral projections for PTP
are 0 and P . Thus, there exists α(T ) ∈ R (self-adjoint implies real eigenvalues) such that
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PTP = α(T )P . By splitting operators into their real and imaginary parts, we can extend
this from self-adjoint T to all T : for any T ∈ A, we have α(T ) ∈ C so that PTP = α(T )P .

Let ξ, η ∈ range of P , with ‖ξ‖ = 1 and η ⊥ ξ. We’d like to show that η = 0, since we’re
trying to show that range of P is one-dimensional. Well, for T ∈ A,

〈Tξ, η〉 = 〈TPξ, Pη〉 since Pξ = ξ, etc.
= 〈PTPξ, η〉 since P ∗ = P

= 〈α(T )ξ, η〉
= 0

But {Tξ : T ∈ A} is A-invariant, so = H, so η = 0.

So A contains a rank-1 projection P on Cξ. Then {Tξ} are dense in H, so TP is rank-≤ 1
taking ξ to Tξ. Since A is norm-closed, if we take any vector tη 6∈ {Tξ}, we can approximate
it by such, and then look at corresponding TP , which will converge to the rank-one operator
on η. I.e., for any η ∈ H, the rank-one operator 〈η, ξ〉0 is in A. But A is closed under ∗, so
〈ξ, ζ〉0 is also in A for all ζ ∈ H. Multiplying gives 〈η, ζ〉0 ∈ A, so all rank-one operators in
B0(H) are in A, and so all of B0(H) is in A. (All rank-one are in, so all finite-rank, and we
defined B0 to be the closure of finite-rank. Remember that you have to look fairly far to find
a Banach algebra where the compact operators are not the closure of finite-rank ones, but
there are some examples, but in C∗-land they all are.) �

Question from the audience: This is a converse of Schur’s lemma. Answer: In some sense.

1.2 Relations between irreducible representations and two-sided ideal

We don’t need the full strength of a C∗-algebra.

Prop: Let A be a ∗-normed algebra, I a two-sided ideal, and assume that I has a two-sided
bounded approximate identity (for I). Let (π,H) be a continuous irreducible representation
of A. Then either

(a) π(I) = 0, or

(b) π|I is irreducible.

Proof:

If π(I) 6= 0, then look at {π(I)H} 6= 0 (meaning linear span), which is clearly A-invariant. So
it is all of A, and hence {π(I)H} = H, i.e. π|I is non-degenerate. Let {ej} be an approximate
identity for I. We showed that π(ej)ξ → ξ for all ξ ∈ H. Let K be a closed π|I -invariant
subspace. Then K is A-invariant, because: given ξ ∈ K and a ∈ A, and switching to module
notation, aξ = lim a(ejξ) = lim(aej)ξ. But aej ∈ I, so aejξ ∈ K, and since K is closed,
aξ ∈ K. �
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Prop: Let A be a ∗-normed algebra, I an ideal with approximate identity. Let (π,H) and (ρ,K)
be two irreducible representations of A. If π(I), ρ(I) 6= 0 (so π|I and ρ|I are irreducible), and
if π|I is unitarily equivalent to ρ|I , then π and ρ are unitarily equivalent.

Proof:

Let U : H → K be a unitary equivalence over I. I.e. Uπ(d) = ρ(d)U for d ∈ I, and U unitary.
Then for a ∈ A, we have Uπ(a)ξ = limUπ(a)π(ej)ξ = limUπ(aej)ξ = lim ρ(aej)Uξ =
lim ρ(a)ρ(ej)Uξ = ρ(a)Uξ. �

Theorem: Let A be a C∗-algebra and (π,H) an irreducible representation of A. If π(A) contains
at least one non-zero compact operator, then π(A) contains all compact operators. In this
case, moreover, any irreducible representation of A with the same kernel as π is unitarily
equivalent to (π,H).

We will give the proof next time.
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