
1 March 14, 2008

We have a problem set due today. Many have asked for more time; that is fine. We’d prefer a more
complete paper on Monday over a less complete paper today.

1.1 Twisted convolution, approximate identities, etc.

We were sketching what happens when G is locally compact but not discrete. We looked at Cc(G,A)
the continuous functions (compact support) with values in A. We have (A,G, α) with α strongly
continuous, and we look for covariant representations. For a covariant representation {π, U,H} and
f ∈ Cc(G,A), we set

σfξ =
∫
π(f(x))Uxξ dx

where dx is the left Haar measure. Then we define twisted convolution:

(f ?α g)(x) def=
∫
f(y)αy

(
g(y−1x)

)
dx

Then σfσg = σf?αg and ‖σf‖ ≤ ‖f‖1
def=
∫
‖f(x)‖A dx.

Now we look at G and Cc(G). In the discrete case, if A has an identity (and we’re using A = C),
then Cc(G) has an identity element, given by the δ function at the identity. But in the non-discrete
**indiscrete?** case, any neighborhood has infinitely many points, so the Haar measure cannot
give any point positive measure. In particular, we do not have an identity in Cc(G), ?. All this
extends to L1(G,A) by uniform continuity.

We do have an approximate identity: Let N be a neighborhood base of 1G. For U ∈ N , choose
(Uryssohn) fU ∈ Cc(G) with support in U , fU ≥ 0, and ‖fU‖1 =

∫
fU = 1. By strong continuity

of α, fU ?α g is very close to g. Then this is an approximate identity of norm 1 for L1(G).

In the more general case, if eλ is an approximate identity of norm 1 for A, then {eλfu}λ,U is an
approximate identity of norm 1 for L1(G,A).

We’ve been ducking an issue here.

σ∗fξ =
∫

(π(f(x))Ux)∗ ξ dx

=
∫
U∗
xπ(f(x)∗)ξ dx

=
∫
Ux−1π(f(x)∗)ξ dx

=
∫
αx−1(π(f(x))∗)Ux−1ξ dx

=
∫
αx
(
π(f(x−1)∗)

)
Uxξ d(x−1)
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But this isn’t quite right. f 7→
∫
f(x−1) dx is right-translation-invariant, not left-translation-

invariant. The problem is that the left Haar measure need not be right-invariant.

Definition: G is unimodular if left Haar = right Haar.

E.g. Abelian groups, compact groups (not immediately obvious), discrete groups, semi-simple Lie
groups, nilpotent Lie groups.

But there are many solvable Lie groups that are not unimodular. E.g. “ax + b” group of affine
transformations of R, for a ∈ R>0 and b ∈ R. (For more details, take Math 260.) This is the
simplest nonabelian solvable Lie group, and it is not unimodular. Exercise: explicitly compute the
left and right Haar measures; this gets into “What is Haar on R>0 with respect to ×?” — this
expression, with respect to Lebesgue measure, pops up all over.

For a non-unimodular group G, we have d(x−1) = ∆(x)dx, where ∆(x) is the “modular function”
of G. It’s nice: it sends ∆ : G → R>0 under a continuous group homomorphism. It’s not hard to
show this, but we will not. One has to make a convention, which is not always agreed upon; some
people would use ∆(x−1). Well, if G happens to be compact, then there are very few continuous
homomorphisms into the positive reals, because there are very few compact subgroups of R>0.
Hence compact groups are unimodular.

So, in the non-unimodular case, we must define the involution as:

f∗(x) = αx
(
f(x−1)∗

)
∆(x−1)

At various cases, this complicates the bookkeeping, and even worse, there are some theorems that
work for unimodular and do not work for non-unimodular groups (without becoming substantially
more complicated). Whenever someone thinks they have a theorem for locally compact groups,
they prove it for unimodular groups and then have to go back and check with the modular func-
tions.

Question from the audience: What is a solvable Lie group? Answer: Up to discrete subgroups
of the center, they are of the form: 

∗ ∗
∗

. . .
0 ∗


Nilpotent has 1s on the diagonal. You can always embed a nonunimodular group into a unimodular
one by extending by a copy of R: you let the real line act as modular automorphisms, and get a
“Type II” algebra (meaning it has traces).

Later on, one very much wants to look at homogeneous spaces G/H, which is an extremely rich
collection of manifolds. Since G acts on G/H, we can ask if there is a measure on G/H that is
preserved by the G action. This wraps up the modular functions on G and on H; ultimately, the
answer is nice, if a bit complicated.
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So anyway, we have a ∗ algebra with approximate identity of norm 1. Are there covariant repre-
sentations of (G,A, α). The operations are all arranged to that covariant representations give us
∗-representations of Cc(G,A). We have the “induced representations” from representations of A.
We did that for discrete groups; just replace sums by integrals with respect to Haar measure. This
gives a nice class of representations, which are faithful on the algebra. We can define the reduced C∗

algebra C∗
r (A,G, α) def= A×rαG, where the norm comes from just the induced representations. And

we have the full algebra C∗(A,G, α) = A×αG, which can be different. Even if A = C, we can have
C∗
r (G) 6= C∗(G); G is ammenable iff these are equal. E.g. SL(n,R) is not ammenable. We always

have a quotient map C∗(G)→ C∗
r (G), so representations of C∗

r give representations of C∗. We call
the ones that come this way tempered, but this is still a very active field of investigation. It even
got into the newspapers: a huge calculation that made progress into finding the representations of
E8. We have essentially a complete list of the semisimple Lie algebras, or at least the real forms
of them, but sorting out the representations is hard: we get into representations that are not on
Hilbert spaces, or that are not unitary. So be warned: sometimes the word “tempered” is used for
non-unitarizable representations.

Theorem: There exists a bijection between covariant representations of (A,G, α) (nondegenerate
as representations of A) and non-degenerate representations of C∗(A,G, α).

Proof:

σ is nondegenerate iff π is.

We have the mapping on one direction.

A does not need to have an identity element, but think about the multiplier algebraM(C∗(A,G, α)).
Then G and A both sit inside: G,A ↪→ M . So C∗(A,G, α), which sits inside as an essential
ideal (from the problem set), so any representation of C∗ extends to a representation uniquely
of M (by problem set), and compose with G,A ↪→M , giving a strongly continuous and non-
degenerate covariant pair. If we take its integral form, that’s actually equal to the original
representation. So we really get a bijection. �
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