
Problem Set 2
Theo Johnson-Freyd

A. Fields of C∗-algebras.

B. An important extension theorem. Prove that if I is a ∗-ideal of a ∗-normed algebra
A, and if I has an approximate identity of norm one for itself, then every non-degenerate
∗-representation of I extends uniquely to a non-degenerate representation of A.

We begin with uniqueness, as that usually tells us how to do a construction. Recall that
(φ,H) a representation on I is non-degenerate if span{φ(j)ξ : j ∈ I, ξ ∈ H} is dense in H.
But then if continuous T, S satisfy Tφ(j)ξ = Sφ(j)ξ for every j and ξ, then T = S; we can
clearly strip the ξ from this. So let σ, τ : A → End(H) be representations, with σ|I = τ |I
non-degenerate. Then σ(a)σ(j) = σ(aj) = σ(aj) = τ(a)τ(j) = τ(a)σ(j) for every a ∈ A,
j ∈ I, so σ = τ as functions on A.

Conversely, if φ : I → End(H) is non-degenerate (and continuous), and I has an approximate
identity eλ, then φ(eλ)φ(j) = φ(eλj) −→

λ
φ(j) for every j ∈ I, so φ(eλ) −→

λ
1H. We extend

φ to A by φ(a) def= limλ φ(aeλ) = limλ φ(eλa) (the last equality follows from some expeditious
limit-swapping). The check that this is a homomorphism is immediate, and non-degeneracy
is trivial since it is there restricted to I.

C. The non-commutative Stone-Čech compactification. Let M(A) denote the set of dou-
ble centralizers of A, i.e. pairs (S, T ) of operators on A so that for all a, c ∈ A, we have
S(ac) = S(a)c, T (ac) = aT (c), and aS(c) = T (a)c.

1. Using the example of A as ideal in B as motivation, define operations on M(A) making
it into an algebra, with a homomorphism of A onto an ideal of M(A).

If (S, T ) and (S′, T ′) are double centralizers, then by linearity (S + S′, T + T ′) is also
a double centralizer, as is any product of (S, T ) by an element of the center Z(A) of
A. We can multiply double centralizers by (S, T )(S′, T ′) = (SS′, T ′T ), where the inner
multiplication is composition as operators. (This ordering agrees with the ordering in
the example of B acting on A ⊆ B as an ideal.)

For any a ∈ A, the pair of left- and right-multipliers (La, Ra) : b 7→ (ab, ba) is a dou-
ble centralizer, and the addition and multiplication in M(A) is such that we have a
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homomorphism A→M(A) by a 7→ (La, Ra). This is an ideal:

(S, T )(La, Ra)(b) = (SLa, RaT )(b)
= (S(La(b)), Ra(T (b)))
= (S(ab), T (b)a)
= (S(a)b, aS(b))
= (LS(a), RS(a))(b)

hence (S, T )(La, Ra) = (LS(a), RS(a))
(La, Ra)(S, T )(b) = (La(S(b)), T (Ra(b)))

= (aS(b), T (ba))
= (T (a)b, bT (a))

hence (La, Ra)(S, T ) = (LT (a), RT (a))

Unless A has elements a 6= 0 so that for every b ∈ A, ab = ba = 0, this map is injective.

2. Show that if A is a Banach algebra with approximate identity of norm one, and if we
require S and T to be continuous (which actually is automatic), then M(A) can be made
into a Banach algebra in which A sits isometrically as an essential ideal. Show that
if A is a ∗-Banach algebra, then its involution extends uniquely to make M(A) a ∗-
algebra. Note then that the theorem of problem B. above says that every nondegenerate
∗-representation of A extends to M(A).

If A is Banach with two-sided approximate identity {eλ} of norm 1, then we take

‖(S, T )‖ def= lim
λ
‖S(eλ)‖

Let µ and λ be two variables ranging over the index of the approximate identity. Then,
assuming S and T commutative:

‖eµS(eλ)‖A µ
//

‖

‖S(eλ)‖A
λ

// ‖S‖M(A)

‖T (eµ)eλ‖A
λ

// ‖T (eµ)‖A µ
// ‖T‖M(A)

This justifies the choice in the definition of the norm on M(A). We also have the Banach
condition:

‖SS′‖ = lim
λ
‖S(S′(eλ))‖A = lim

λ
lim
µ
‖S(eµS′(eλ))‖A = lim

λ
lim
µ
‖S(eµ)S′(eλ)‖A

≤ lim
λ

lim
µ
‖S(eµ)‖A‖S(eλ)‖A = ‖S‖‖S′‖

Moreover, under a 7→ (La, Ra), we have ‖La‖ = limλ ‖aeλ‖A = ‖a‖A, so A ↪→ M(A)
isometrically. We observe that S(eλ)a −→

λ
S(a) and aT (eλ) −→

λ
T (a).
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We must check that M(A) is closed under this norm. But if (Sn, Tn) is a Cauchy se-
quence, then for any a for large enough λ, ‖(Sm − Sn)a‖ ≈ ‖(Sm(eλ) − Sn(eλ))a‖ ≤
‖Sm(eλ)− Sn(eλ)‖‖a‖ ≈ ‖Sm− Sn‖‖a‖. Hence Sn(a) is a Cauchy sequence, as is Tn(a),
and it is easy to check that (S∞, T∞) : a 7→ (limn Sn(a), limn Tn(a)) is a double central-
izer.

When A is a ∗-algebra, we define S∗ : b 7→ (S(b∗))∗; then we have an involution on M(A)
given by (S, T )∗ def= (T ∗, S∗). It’s trivial to check that this is also a double centralizer,
and that, if A is ∗-Banach, then ‖S‖ = ‖S∗‖.

3. Show that if A is a C∗-algebra, then so is M(A).

We have only to check the C∗ identity that ‖x∗x‖ = ‖x‖2. But

‖(S, T )∗(S, T )‖ = ‖(T ∗S, TS∗)‖ = lim
λ
‖T ∗(S(eλ))‖ = lim

λ
lim
µ
‖T ∗(eµS(eλ))‖

= lim
λ

lim
µ
‖T ∗(eµ)S(eλ)‖

Now, T ∗(eµ) = (T (e∗µ))∗, and e∗ν is a two-sided approximate identity, so S(eλ) =
limν e

∗
νS(eλ) = T (e∗ν)eλ. So, using the C∗ identity in A, and taking a limit along µ = ν:

‖(S, T )∗(S, T )‖ = lim
λ

lim
µ
‖T ∗(eµ)S(eλ)‖ = lim

λ,µ,ν
‖(T (e∗µ))∗ T (e∗ν)eλ‖

= lim
µ
‖(T (e∗µ))∗‖‖T (e∗µ)‖ = ‖T ∗‖‖T‖

4. Let A be a C∗-algebra, and let X = AA as a right A-module, with A-valued inner
product as defined in class. Let BA(X) be the algebra of all continuous (which actually
is automatic) A-module endomorphisms of X that have a continuous enomorphism as
adjoint for the A-valued inner product (which is not automatic). Show that in a very
natural way M(A) = BA(X).

Ignoring issues of continuity, this is exactly an unpacking of definitions. The inner prod-
uct on X is that 〈a, b〉 def= ab ∈ A; then S ∈ BA(X) if it is (1) a module map, i.e. S(ab) =
S(a)b, and (2) if there is a left-adjoint T , i.e. aS(b) = 〈a, S(b)〉 = 〈T (a), b〉 = T (a)b.
Thus, S ∈ BA(X) with adjoint T if and only if (S, T ) ∈ M(A), and the multiplication
agrees in the two settings.

5. For A a C∗-algebra, show that if B is any C∗-algebra in which A sits as an essential
ideal, then B can be identified as a subalgebra of M(A), so M(A) is maximal in this
sense.

If A ↪→ B as an ideal, then b ∈ B acts from the right and left as endomorphisms of
A: i.e. b 7→ (Lb, Rb) is a homomorphism B → M(A). If A is an essential ideal of B,
then there is no b ∈ B so that Lb and Rb both act as the zero map on A, and so this
homomorphism B →M(A) is an injection.
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6. Determine M(A) when A = C∞(X), and when A = B0(H), the algebra of compact
operators on a Hilbert space H.

When A = C∞(X), we expect M(A) = C(βX), where βX is the Stone-Čech compact-
ification of X. Indeed, since M(A) is unital (we take 1M(A) = (1A,1A) to be the pair
of identity operators on A). If A is commutative (and, say, Banach with approximate
identities) then, since S(ab) = S(a)b = bS(a) = T (b)a = aT (b) = T (ab), so S = T
and (S, S)(S′, S′) = (SS′, S′S), so SS′ = S′S and M(A) is also commutative. Thus, if
A = C∞(X), then M(A) is commutative with unit, so it’s C(Y ) for some compact Y ,
and the universal property in the previous subproblems translates to the universal prop-
erty of βX. We can describe this algebra another way: M(C∞(X)) = C(β(X)) = Cb(X)
is the algebra of bounded functions on X.

As for the A = B0(H) case: B0(H) ↪→ B(H) (all bounded operators) as an essential ideal,
and this later algebra has a unit. Thus B(H) ⊆ M(B0(H)). Conversely, a continuous
centralizing pair on B0(H) is determined by its action on the rank-1 operators, which
are in nice correspondence with H, so M(B0(H)) ⊆ B(H).

D. Morphisms.

1. Give a characterization of those homomorphisms from C∞(Y ) to Cb(X) which arise
from maps from X to Y (“morphisms”). Your characterization should be phrased so
that it makes sense for non-commutative C∗-algebras. (Hint: recall the definition of a
representation being non-degenerate.)

Given Y
φ←− X, the usual pull-back map f

φ7−→ f◦φ on functions takes bounded functions
to bounded functions. Thus, the map in the exercise is in fact C∞(Y ) ↪→ Cb(Y ) →
Cb(X). (Of course, the example of [0, 1]←↩ (0, 1) shows that we cannot achieve C∞(X)
as the range of any such pull-back, except if X is compact.) From the previous exercise,
we recognize Cb(X) = C(βX) = M(C∞(X)) is the algebra of functions on the Stone-
Čech compactification of X. Of course, by the universal property, any map Y ← X
extends uniquely to a map βY ← βX. In any case, to understand homomorphisms
C∞(Y )→ Cb(X) that arise from continuous maps, we need only to understand them in
the compact case.

When X is compact, we have the following dictionary, via Algebraic Geometry, between
X and C(X):

Topology Algebra

closed set S ⊆ X primary ideal JS
def= {f s.t. f |S = 0} ⊆ C(X)

point x ∈ X maximal ideal Jx ⊆ C(X)

Then C(Y ) → C(X) is a map Y ← X of points only if the inverse image of a maximal
ideal is maximal. In this case, a partition-of-unity argument shows that any function of
points Y ← X that takes all continuous functions to continuous functions C(Y )→ C(X)
is automatically continuous.
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In the non-commutative case, the correct generalization of “maximal” (i.e. the kernel of
an irreducible one-dimensional representation) is “primitive” (the kernel of an irreducible
representation), so we define a morphism from A (C∗ with unit) to B (C∗, probably non-
unital) to be a homomorphism B → A that extends to a homomorphism M(B) → A,
for which the inverse image of any primitive ideal is primitive. If A is not unital, then by
passing to M(A) we’ve described maps into the Stone-Čech compactification. Pushing
functions forward is hard, so I’m not likely to do better.

2. For the non-commutative case explain how to compose morphisms.

The condition that “the pull-back of an orange ideal is orange” is preserved under com-
position of homomorphisms, for any value of “orange”.
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