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1.1 Further comments on deformation quantization

SO(n+ 1) acts on Sn in a natural way, and so long as n ≥ 3, we can find inside SO(n+ 1) two or
more copies of the rotation group:

cos 2πr sin 2πr
− sin 2πr cos 2πr

cos 2πs sin 2πs
− sin 2πs cos 2πs

. . .


So we have roughly a (n + 1)/2-dimensional torus acting on Sn, so pick a θ and build (Sn)θ.
M.R. had described our deformation quantization in general; Alain Connes became interested in
examples, and in particular the quantum spheres (Sn)θ.

Moreover, M.R. gave the prescription for building quantum groups like (SO(n+ 1))θ, a quantum
group, but others did the examples, and (SO(n+ 1))θ acts on (Sn)θ. This is a relatively tame
situation.

Question from the audience: So when you deform a group to get a quantum group, you have
different multiplication by same comultiplication? Answer: Well, there are different versions. If
we have a compact group, we use

C(G) ∆→ C(G) ⊗
C∗
C(G) = C(G×G)

f 7→ (∆f)(x, y) def= f(xy)

Then the comultiplication encodes the group structure, and a quantum group is some algebra with
a coassociative comultiplication.

1.2 Differential forms

Let G be a Lie group, α and action on A. Then we have A∞, αX = DX for X ∈ g = Lie(G). Given
a ∈ A∞, define da : g→ A∞, i.e. da ∈ g′ ⊗A∞ (where g′ is the dual algebra of g **why not use
ĝ?** by

(da)X def= αX(a)

Then
d(ab)X = αX(ab) = αX(a)b+ aαX(b) = ((da)b+ a(db)) (X)
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Definition: For any algebra A, a first-order differential calculus over A is a pair (Ω1, d) where Ω1

is an A-bimodule and d is a map d : A→ Ω1 satisfying the Leibniz rule d(ab) = a db+ da b.

Often, we require additionally that Ω1 be generated as a bimodule by d(A). In this case, if
1 ∈ A, the Leibniz rule provides that Ω1 is generated by d(A) as a left (or as a right) module.

Every A (with 1) has a universal first-order calculus: we let Ω1 is (a subspace of) the algebraic
tensor product A ⊗ A, where da def= 1 ⊗ a − a ⊗ 1. Then in particular a db = a ⊗ b − ab ⊗ 1. We
have the algebra multiplication a map m : A ⊗ A → A, and then m(a db) = 0. You can check:
span{a db} = ker(m). Sometimes people define Ω1 as this kernel, but this, at a philosophical level,
is from convenience rather than general principles.

Question from the audience: In what notion is this universal? Answer: Any other first-order
differential calculus is a quotient of this one.

In any case, above (Lie group) is an example. In non-commutative geometry, the notion of “tan-
gent space” becomes less useful. Any algebra A might have lots of derivations, but the space of
derivations is not really a module over A. By non-commutativity, if D is a derivation, then aD
probably is not.

But here we have cotangent spaces: differential forms. Indeed, we have a proliferation of them.
Without getting too deep, we certainly have higher-order differential calculi:

A // Ω1 d // Ω2 d // Ω3 d // . . .

where we demand that d2 = 0. Once we have this type of structure, we can define a cohomology
for our differential calculus: Zn

def= ker(Ωn d→ Ωn+1) and Bn def= ker(Ωn−1 d→ Ωn), and Hn def=
Zn/Bn.

For the universal calculus, we can take Ω2 as the span of symbols of the form a0 da1 da2, manipulated
in the obvious way (where we be careful about keeping the order in tact, as we are noncommutative).
For G and an action α on A, we can use Ωn = (

∧n g′) ⊗ A∞. Question from the audience:
Normally we let the wedge product be anti-commutative. In the non-commutative case, shouldn’t
this be worse? Answer: Well, we want n-linear alternating A-valued forms on g. The Leibniz rule
is complicated:

d(ωpω) = (dωp)ω + (−1)pωp(dω)

where ω can be any form, and ωp is homogeneous of degree p.

Well, this is all somewhat weird. I’m sure you’ve heard that even in ordinary differential geometry,
as soon as you get to dimension 7, the 7-sphere and higher have exotic differential structures. This
happens in non-com-land, e.g. for non-commutative tori, when n ≥ 4: On T 4, we can have θ1 and
θ2 where Aθ1 ∼= Aθ2 but A∞θ1 6∼= A∞θ2 . Finding the right invariants to show all this is hard, and gets
into K-Theory. It is in the direction we want to go in.
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1.3 Vector Bundles

We won’t assume that you know too much about vector bundles in detail, but the general picture is
that you have some space M and a bundle of vector spaces over M **a standard picture**

E

��
M

so that locally E ∼= O × Rn or Cn, i.e. local triviality. We can think about smooth cross-sections.
We write Γ(E) for the space of continuous cross-sections, and by local triviality we can take bump
functions, giving lots of continuous cross-sections (certainly we also have the 0-section).

Take M compact for simplicity. Then we have C(M), and given f ∈ C(M) and ξ ∈ Γ(E), we can
define fξ in the obvious way. By looking at an open neighborhood of each point, it’s clear that
this again is a continuous cross-section. Written briefly: Γ(E) is a module over C(M).

In fact, these are somewhat special modules. We know from working with vector spaces that it’s
useful to have inner products. Since we’re assuming compactness, we can cover M with a finite
number of open sets O1, . . . ,Ok over which E is trivial. Then we can find a continuous partition of
unity {φj} subordinate to {O1, . . . ,Ok}: i.e. the support of φj is contained in Oj for each j, and∑
φj = 1 and 0 ≤ φk ≤ 1.

Then for ξ, η ∈ Γ(E), we look at E over Oj , over which it looks like Oj × Rn (or perhaps Cn),
then we can view ξ, η|Oj as living in Oj × Rn, and then we can form the standard inner product
in terms of our choice of trivialization and get a function 〈ξ, η〉Rn . Multiplying by φj gives us a
function that’s 0 near the boundary, and so extends to the whole space. Then we can get a global
inner product:

〈ξ, η〉C(M)
def=

∑
j

φj〈ξ|j , η|j〉Rn (1)

This is a continuous function, i.e. it is an element of C(M). This is a good example of an “A-valued
inner product” (for A = C(M)) on Γ(E). In the real case, these are called “Riemannian metrics”
on the bundle, and in the complex case called “Hermetian metrics”. A good neutral term is bundle
metric.

We should set this machinery up to avoid the following stupid possibility: A = C([0, 1]) and
E = [0, 1] × Rn, and we could set 〈ξ, η〉A(t) = t〈ξ(t), η(t)〉. This is an inner product, and has
the property that if 〈ξ, ξ〉 = 0 then ξ = 0. So this A-valued inner product satisfies all the right
conditions for an inner product, but it seems wrong to have the zero inner product even at a point.
What’s wrong is that it’s not self-dual. Our earlier inner product (1) is self-dual in the sense that
if F ∈ HomA(Γ(E), A) then there is (unique) η ∈ Γ(E) such that F (ξ) = 〈ξ, η〉A for every ξ. (We
are in the commutative case, so the order we write in doesn’t really matter.) These modules are
called projective.
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