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1 April 7, 2008

1.1 Some group cohomology

We had looked at the Heisenberg commutation relations in the form that Herman Weyl gave:

U arep of G (Abelian) on H, V a rep of the dual group G on H; we declare
VoUs = (s,2)UsVy

We saw, and basically gave the proof, that when G is R™, and more generally when G= G, there’s
one irreducible representation (“Schrodinger representation”) on L?(G), and every representation
comes from one of these.

Looking at this in a slightly different way, define unitary W on G x G by Wz.s) def V:Us. Then

W(x,s)W(y,t) = <S7y>W(x7s)+(y,t)

and (s,y) € T {e? €C:0cR}.
For any group G (e.g. G X G’), we can consider W : G — U('H) the unitary operators on H such that
WoWy = c(x,y)Way for ¢(z,y) € T. The associativity in G implies that c is a T-valued 2-cocycle,
meaning

c(z,yz) cly, 2) = c(xy, 2) c(x, y)
It’s natural to assume W, = 1y: c(z,e) =1 = c(e, z).

There’s a homology theory of groups (“group cohomology”). We're looking at [c] € H*(G,T),
which we won’t really define. For a function of one variable h : G — T, we define the boundary of
h by
def T~
Oh(z,y) = h(w) h(y) h(zy)

Definition: W is a projective representation of G on H with cocycle ¢

Since T is abelian, H?(G,T) is a group. If G is topological, we do not demand that ¢ be continuous.
This machinery works best when G is second-countable locally-compact, and then we want ¢ to be
measurable. Such ¢ correspond to extensions:
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This is important for physics. In QM, By(H), with pure state the vector states. Because the
only irrep is the one on the Hilbert space. But for any algebra, the pure states via GNS give an
irreducible rep for which the state is a vector state. An operator gives a projection:

(T'€,§)
(£:€)

These give one-dim subspaces of H, and PH, the projective space, is the space of states. Automor-
phisms of QM are automorphisms of PH.

Theorem: (Wigner, 1930s)

T +—

This are given by unitary or anti-unitary (conjugate-linear but length-preserving) operators
(unique up to multiplication by an element of 7.

If we have a one-parameter family of automorphisms of PH, then for each auto, U? is linear.
So anti-unitary operators only come up in discrete situations, usually as autos of order 2. For
example:

e Charge conjugation C
e Parity P — weak force does not respect parity
e Time reversal T’

Then C? = P2 =T? =1, and CPT often comes up.

In any case, we’ve found irreducible projective representations with non-trivial cocycle: H?(R?,T) #
{0}

Theorem: For G a semi-simple connected simply-connected Lie group, then H?(G,T) = {0}.

For example, SO(3) — Aut(PH). The double cover SU(2) 2, SO(3) is simply connected and semi-
simple. So any projective representation of SO(3) gives an ordinary representation of SU(2). Sim-
ilarly, the (connected component of the) Lorentz group L is covered by simply-connected SL(2,C),
so has the same story. And it’s much easier to work with ordinary representations than with
projective representations. (The story does not work with R?", which has an infinite irreducible
projective representation, even though any ordinary irrep is one-dimensional.)

Question from the audience: How do we get a cocycle? Answer: We have a : G — Aut(PH).
For each z, chose U, implementing «(z). This is only defined up to scalar multiple. U,U, =
c(z,y)Usyy. Associativity in Aut implies the cocycle condition **and the unknown scalars are
the boundaries**. When G is topological, you cannot make this choice continuous, but you'd
like to make it at least measurable. If H is separable, Aut can be given topology of a complete
metric space (not locally compact), and from that there are theorems that can go and chose ¢ to
be measureable.

Incidentally, the complete metric space for Aut makes it into a Polish space; these do not have
Haar measure, but the homology was worked out nicely by Prof Moore in our department.



We should mention another aspect of this story. Given GG and a cocycle ¢ : G — T', we can define
the convolution

(f % 9)(2) / F() 9(~) ey, v~ ) dy

This is associative iff ¢ is a 2-cycle almost everywhere. So we get a C*(G,¢), and if ¢ and ¢ are
homologous, then the corresponding algebras are isomorphic (indeed, the boundary tells how to
build the isomorphism). Look at c(s,t) = €*' on R?; then C*(R?,c) = By(L?*(R)). We can, of
course, stick in a constant, and promote the product to a dot-product: ¢(s,t) = e2mhi(sit)  This is
one view on what we’ve been doing. Even more generally, we can build C*(G, A, a, ¢) where c is
an A-valued cocycle and « a representation. There is a very nice treatment in this language of the
Quantum Hall Effect.

For the last five minutes, some special example. Let G = Z? (we use m, n for elements of G, not
the dimension). Let 8 € My(R) be a d x d matrix. Define

Cg(m, n) déf e27ri(m~9n)

This is a bicharacter, i.e. for n fixed, m +— cg(m,n) is a character (element of Z4). An easy check:
a bicharacter is a 2-cocycle. We will not prove:
Theorem: Every 2-cocycle on Z¢ with values in T is homologous to a bicharacter.

Now we will study C*(Z?,¢cg). For = 0 (or all integers), this is just C*(Z¢) = C(T?) continuous
functions on the d-dim torus. In general, C*(Z%, c) are called non-commutative tori (or “quantum
tori”). These are the easiest examples of non-commutative differentiable manifolds.
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