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1 April 23, 2008

I keep forgetting, you need to turn in a third problem set, and I don’t want it at the end of the
semester. Is it unreasonable to ask for it on Monday? If you won’t be turning it in on Monday,
please talk to me.

1.1 We were doing somewhat strange things

We have T d and α an action on C∗-algebra A. This gives us a smooth algebra A∞, which sort of
looks like the Schwartz space, except for functions values in An. Then we get subspaces An ⊆ A∞
for n ∈ Zd. We had (π, U,H) a covariant representation of (A, T d, α), and we assume π is faithful.
Then we have Hilbert spaces Hn, and if m 6= n, then Hn ⊥ Hm. Exactly the same proof that
eigenspaces of self-adjoint operators are orthogonal.

Question from the audience: The direct sum of Ans is dense in A∞? Is it all of it? Answer: A∞

is the set of sequences {an} where each an ∈ An, and where the map {n 7→ ‖an‖} ∈ S(Zd) ⊆ `1(Zd).
For any a we can get a sequence of an, but it’s almost impossible to say what sequences come from
general functions. So the direct sum is dense, but not complete in the Frechet topology; the direct
sum is all the finite ones. Question from the audience: A∞ is the sums of these sequences?
Answer: Yes. Or define the space of these sequences as a graded algebra, and there’s a bijection
between A∞ and these sequences, by summing in one direction, and in the other direction by taking
Fourier modes.

In the non-commutative case, it’s more complicated, but you still get a decomposition of the C∗

algebra of functions via the group action. Question from the audience: With a non-compact
Lie group? Answer: For each irreducible representation, you can define a space An. Where you
get into trouble: if we multiply two characters, you get a character, but in higher dimension the
tensor product of two irreducible representations may not be irreducible, and the bookkeeping gets
harder.

So, given θ ∈Md(R) and cocycle cθ. For any ξn ∈ Hn, and am ∈ Am, define

πθ(am)ξn
def= π(am)ξncθ(m,n)
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For any ξ ∈ H, we have ξ =
∑
ξn.∥∥∥∥∥∥πθ(am)

∑
‖n‖≤M

ξm

∥∥∥∥∥∥
2

=
∥∥∥∑π(am)ξncθ(m,n)

∥∥∥2

=
∑
‖π(am)ξncθ(m,n)‖2 by orthogonality

≤
∑
‖π(am)‖ ‖ξn‖

= ‖π(am)‖ ‖ξ‖ where ξ =
∑
ξn

So
∑

n∈Zd π
θ(am)ξn converges, and we call the limit πθ(am)ξ.∥∥∥πθ(am)ξ

∥∥∥ ≤ ‖π(am)‖‖ξ‖ ≤ ‖am‖‖ξ‖

Thus for a ∈ A∞, set
πθ(a)ξ def=

∑
πθ(am)ξ

and πθ(am) is `1. Then

πθ(am)πθ(an)ξp = πθ(am) (π(bn)ξpcθ(n, p))
= π(am)π(bn)ξpcθ(n, p)cθ(m,n+ p)
= (π(am)π(bn)cθ(m,n)) ξpcθ(m+ n, p)

So, on A∞, we define a product

a ?θ b =
∑

am bn cθ(m,n)

and since these sequences in norm are `1, we see that this series converges without any difficulty.
Then

πθ(a)πθ(b) = πθ(a ?θ b)

Moreover, the ∗: (
πθ(an)

)∗
= a∗ncθ(n, n) def= a∗θn

In any case, this gives a ∗-algebra structure on Aθ and a ∗-rep on H. We want π faithful. Then
we get a C∗-norm on A∞. Complete this to get a C∗-algebra Aθ. This is not the same as Aθ from
earlier.

Question from the audience: Why do you do this just for A∞ and not all of A? Answer: The
twisted C∗ norm is not continuous for all of A. E.g. A = C(T d), then Aθ = Aθ, but the norm on
Aθ is not equivalent to the sup norm on A, just on A∞. Well, we could work on `1.

A bit of context: where does this come from? θ defines a “Poisson bracket” on A∞ in the obvious
sense: choose an orthonormal basis for Rd = Lie(T d), which might as well be the “standard” basis
{Ej}. Then the Poisson bracket of a and b is

{a, b}θ,α
def=
∑

θjkDEj (a)DEk(b)
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This is really best after we change so that θt = −θ is skew-symmetric. If M is a manifold, and T d

acts smoothly on M , then T d acts on C∞(M), and it’s very natural to define a Poisson bracket
{f, g} =

∑
θjkDEj (f)DEk(g). The first person to do our more general case carefully was a student

of Alan Weinstein’s, by the name of **missed**.

When A = C∞(M), we have Aθ, which we should view as a “quantization” of C∞(M) in the
direction of the Poisson bracket. To make this precise, we need to get Plank’s constant ~ ∈ R in
here. Then ~θ is again skew-symmetric, so we can define A~θ. I.e. ~ 7→ A~θ is a one-parameter
family of algebras, and when ~ = 0 we get the original algebra. Then for a, b ∈ A∞,∥∥∥∥a ?~θ b− b ?~θ a

~
− 2i{a, b}θ

∥∥∥∥ ~→0−→ 0 (1)

Says that the “semi-classical limit” of the A~θ is A equipped with the Poisson bracket {}θ.

So if you take the opinion that the world is quantum, then in the classical limit, the remnant of
the quantum world is the Poisson bracket in the ordinary world.

Another way of putting equation (1):

a ?~θ b = ab+ i~{a, b}+O(~2)

The limit (1) is often called the “correspondence principle”.

For Rn acting on A, we again have A∞, and for θ we can define a ?θ b. This is technically more
difficult, because we don’t have subspace An.

By the same formula as before, T d acts on Aθ by multiplying by the corresponding character
independent of θ. We see that (Aθ)∞ = A∞. And so given θ1, θ2, via the Rd action,(

Aθ1
)θ2

= Aθ1+θ2

and in particular we can twist by θ and then twist back by −θ.

These are “uniform deformation formulas”, also called “deformation quantization”. There are other
kinds of quantization, e.g. by approximating an algebra by an algebra of matrices. Want: for any
Lie group G with “compatible” Poisson bracket, i.e. for any “Poisson Lie group”, and any action
α of G on a C∗-algebra A, we would want a construction to deform A∞ in the direction of the
Poisson bracket.

Most quantum groups people construct are made by doing this at the purely algebraic level, where
a Lia algebra acts on an algebra. At this algebraic level, that’s tough. It’s even tougher in our
analytical context. Some interesting papers exist, but it’s presently under research.
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