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1: May 9, 2008

MR will not be here next time; Prof. A will give the final lecture, on not this material but stuff
related to this course.

1.1 Continuation of last time

We make a correction from last time — a x was mis-placed in the bookkeeping — and simplify
to M = R (the general case is just like R x Z/p, but even there the bookkeeping is hard). So
M x M = R? and L?*(M) = L*(R), and we have € R with 6 # 0 (we can have § = 1,2,...; then
we get non-trivial bundles on the commutative torus).

We have Z? — R? generated by two generators m(1,0) and 7 1). We pick (1,0) — (6,0) € R? and
(0,1) — (0,1) € R2. We write e(s) def e?™ and take ¢ € S(R) C L?(R). Then

(Tr(m,n)g)(t) = e(nt) é(t —-—m-— 0)

and hence

B((m,n), (p,q)) = e(mqt)
For f € C.(Z?), or more generally in S(Z?), we have

E-NE) = D (T f(m,n)

B((m,n), (m,n)) (7—m,—a&)(t) f(m,n)
mn#) e(nt) &(t +mb) f(m,n)

(t +mb)n) £(t + mb) f(m,n)
t+m0) > e((t+mb)n) f(m,n)

n

—~ o~

= e
This looks like a Fourier mode. For g € S(Z?), we set

y(m,t) € " e(nt) g(m, n)

n

which is periodic in ¢ with period 1. (The grave accent is half a hat, because we’re only transforming
one variable.) Then

(- D) =D &t+mb) > e((t+mh)n) f(m,n) =3 &(t+mb) f(m,t +mb)
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Ok, then we have an action like C*°(T') x,, Z. We have an inner product:

(Emalm,t) = 3 e(nt) (€ Tmni) 12w
= Zé(nt) &(s) e(ns) n(s — mb) ds

R

Z/{ (s +t)n(s+t—mb)e(sn)ds
We think of £(s +t) n(s +t — mf) as some function h(s). Then we have

3 /R h(s)e(ns)ds = " h(n) = 3" hin)

by the Poisson summation formula. So
Emamt) = 3 [+ 0mls +t - mo)e(sm) ds
= Zg(n+t)77(n+t—m9)

is obviously periodic in t.

Question from the audience: The Poisson summation formula just expresses that Fourier trans-
form is an isometry? Amnswer: No, it is more subtle. For instance, L? functions aren’t defined
at points, so plugging in n doesn’t work; it uses that we are in Schwartz space, and generalizes
slightly.

Continuing on:

(fxag) (m,t) = Y elnt)>  f(p.q)glm—p,n—q)elp(n—q)f)
= Y fpa)e(gt) glm —p,n—q)e((n — q)t) e(p(n — q)6)

n7p7q

= Z f(p,q)ée(qt) g(m —p,n —q)e((n — q)(t — pf)) sum in n
n,p,q

= Z f(p,q)e(qt) g(m — p,t — ph) sum in g

This is exactly the cross-product formula for C(T') x ¢ Z, (aggb)( ) o o(t — ph):

(f %) (m, 1) pr, (m —p,t — pbh)



Now we take a leap of faith, and ask if we can find £ € S(R) so that (£,&) 4, is a projection in A. If
we have the ordinary torus, then there are no projections. Suppose that 0 < # < 1. Then we take
€ to be a bump on [0, 1] that is 0 at 0, 1 at #, and 0 again at 1 and 20. Then when translated by
0, ¢ doesn’t intersect itself. So

(€€ alp,t) =) &(t+n)&(t+n—pb)

has support only at p = —1,0, 1.

Now look for projections in C(T) x 0 Z of the form P = §_1¢ + 6o + (6_1¢)* with ¢ = v, and
¥, ¢ € C(T). Then

P2 = 5.4¢610 + d—1¢ 00% + dot) 0019 + adjoints
= 0204(0)¢ + -1 (Pv+vaf(@) +() +
need =0 want = ¢

**1 got a little lost in this next remark.** Then we have Ay with a tracial state 7 —
given f(p,t), we have 7(f) = [, f(0,t), and we can graph ¢ and 1, and what we discover is that
7(P) = [4(t) = ©. All of these projections correspond to projective modules.
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