WHAT IS AN OPERATOR SPACE?

WILLIAM ARVESON

ABSTRACT. These are notes for a lecture delivered on 12 May, 2008,
in a graduate course on operator algebras in Berkeley. The intent was
to give a brief introduction to the basic ideas of operator space theory.
The notes were hastily written and have not been carefully checked for
accuracy or political correctness.

1. AN OVERVIEW OF OPERATOR SPACES

Operator spaces are a subtle refinement of the notion of Banach spaces.
They embody the notion of noncommutativity in an essential way.

An operator space is a complex-linear space S C B(H) of operators on
some Hilbert space that is closed in the norm of B(H). Operator spaces
are the objects of a category, but we have not yet defined the maps of this
category. In particular, we have not said precisely when two operator spaces
S1 and Sy are considered equivalent.

For example, one might consider §; C B(H;) and S; C B(Hz) to be
equivalent if they are isometrically isomorphic as Banach spaces. This is the
notion of equivalence that results from declaring the maps of hom(S;, S2)
to be linear mappings L : S — Sz such that [|L(A)| < ||A|| for all A € S;.
As we will see, however, that category is only a disguised form of the more
familiar category of Banach spaces (with contractions as maps).

In fact, once we have made a proper definition of the maps of the category
of operator spaces, we will find that operator spaces are a subtle refinement
of Banach spaces, whose objects S carry along with them nonclassical fea-
tures that are connected with noncommutativity of operator multiplication.
Some analysts like to think of operator space theory as “quantized functional
analysis” in the sense that the resulting category is a noncommutative re-
finement of the classical category of Banach spaces.

2. COMPLETELY CONTRACTIVE MAPS

We now turn to the issue of properly defining the maps of the category of
operator spaces so as to cause these remarks to have some concrete meaning.
Let S C B(H) be an operator space. For every n =1,2,..., we can form
the direct sum n-H = H®---® H of n copies of H. If one considers vectors
of n - H as column vectors of height n with entries in H, then operators on
n - H can be realized as n X n matrices with entries in B(H) in the usual
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way. In particular, we can define an operator space M, (S) C B(n - H) as
the space of all n x n operator matrices with entries in S.

This is a very significant step. Starting with a single operator space
S C B(H), we have associated an entire sequence of operator spaces

M,(S)C B(n-H), n=12...,

and each term of the hierarchy M, (S) is endowed with the norm it inherits
from B(n - H). Notice that there is no way of constructing such a hierarchy
if we had started with simply a Banach space § that was not presented as
a subspace of some B(H).

Given a linear map ¢ : §; — Sy between operator spaces S, C B(Hj) and
given an n = 1,2,..., we can define a linear map ¢, : M, (S1) — My (S2)
by applying ¢ element-by-element to a matrix (A;;) € My(S):

On : (Aig) = (9(Aij))-

Definition 2.1. A linear map ¢ : S — Sa is said to be completely contrac-
tive if ||¢p|| < 1 for every n =1,2,....

One checks that a composition of completely contractive maps is com-
pletely contractive, and hence we obtain a category of operator spaces by
declaring the morphisms to be completely contractive maps.

There is a broader category of operator spaces that is associated with
completely bounded maps, which means ||¢||s < oo where

@[l = sup ||¢n]| < oo.
n>1

Notice that the completely contractive maps are those with ||¢| < 1. To
keep this discussion as simple as possible, we will confine attention to the
category associated with completely contractive maps. The isomorphisms
of this category are linear isomorphisms ¢ : S; — Sa such that ||¢,|| is an
isometry for every n, and such maps are called complete isometries of oper-
ator spaces. Perhaps it is unnecessary to point out that there is no notion
of complete isometry in the classical category of Banach spaces; and this is
the fundamental difference between operator spaces and Banach spaces.

3. EXAMPLES

Fix p = 1,2, ..., consider the p-dimensional Hilbert space CP, and con-
sider the “row” and “column” operator spaces R,C C B(CP):

21 22 ... Zp z2 0 ... 0
R:{ . . . ZZkEC}, C:{ : : : zkE(C}

0 0 ... 0 2 0 ... 0
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Simple calculation shows that the operator norm of a row operator in R is
the same as the operator norm of the corresponding column operator in C,

Z1 Z2 ... Zp z2 0 ... 0

O 0 ... O z 0 ... 0O 5 5
T =0T T = al e sl

0 0 ... 0 z 0 ... 0

and in particular both R and C are isometrically isomorphic to the p-
dimensional Hilbert space CP. In particular, R and C are indistinguishable
at the level of Banach spaces.

On the other hand, we now show that they are far from being completely
isometric at the level of operator spaces. For z = (z1,...,%,) € CP, let us
write R, and C, for the row and column operators associated with z

zZ1 22 Zp z1 0 0

0 O 0 z2 0 0
RZ: 5 Cz: . )

0 0 ... 0 z 0 ... 0

and consider the map ¢ : R — C defined by ¢(R.) = C, z € CP. Obviously,
¢ is isometric. Is it a complete isometry?

In order to answer that question we have to pass through the matrix
hierarchies over R and C. Fix n = 1,2,.... We can realize the operator
spaces M, (R) and M,(C) as subspaces of operators acting on a direct sum
of p copies of C™ as follows

A Ay LA, A 0 ... 0
0O 0 ... 0 Ay 0 ... 0
Mn(R) = { : : : boe={ o : 5
0o o0 ... 0 A, 0 ... 0
where Ay, ..., A, are complex n x n matrices - i.e., operators on C". This is

simply a matter of choosing an appropriate orthonormal basis and looking
at operators as operator matrices. Notice that the map ¢, carries a row
matrix with entries Ay,..., A, to the corresponding column matrix with
entries Ay,..., Ap.

In order to show that ¢, is not isometric, we calculate the norm of a
typical operator in the first space as follows. Since in any C*-algebra we

have ||z||? = ||zz*|, we take x for the row operator with entries A4y, ..., 4,
to obtain

Ay Ay Lo A

0 0

... 0 ) . .
I =l 4+ 4,4
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Similarly, using ||ly||> = ||y*y|| and taking y to be the column operator with
entries Ai,..., A, we obtain

A 0 ... 0
Ay O

o 0 . i
A, 0 ... 0
So if n is sufficiently large (n > p will do), then we can find partial isome-
tries A, ..., Ap € B(CP) such that A7Ay, ..., Ay A, are mutually orthogonal

projections of the same rank and A; A7 = --- = A, A7 is a single projection
(of the same rank). With this choice of Ay,... A, it follows that
[ALAT + -+ AL =p,  |AJAL+ -+ AJ A =1

We conclude that ¢,, carries an operator of norm ,/p to an operator of norm
1. By replacing each partial isometry Ay with its adjoint A}, we obtain
another operator of norm 1 in M, (R) that is mapped to an operator of
norm ./p in M, (C).

Conclusion: If n > p then we have ||¢,| > |/p and ot > /D

This particular isometry ¢ : R — C is not a complete isometry. But it is
conceivable that some other isometry of R to C is a complete isometry. It is
a good exercise to show how the above construction can be adapted (hint:
there is an easy way) to show that this is not true, and in fact The operator
spaces R and C are not completely isometric.

We conclude from this discussion that, while viewed through a “classical”
lens the spaces R and C are indistinguishable because they are both isometric
to a p dimensional Hilbert space, they are actually very different at the
operator space level. In particular, a given Banach space may have many
(inequivalent) realizations as an operator space. Moreover, as the above
examples show in a rather concrete way, the reason why operator spaces are
different from Banach spaces arises ultimately from the noncommutativity of
operator multiplication. This represents a dramatic shift in perspective, and
the consequences of the operator space point of view are still being worked
out today.

4. STINESPRING’S THEOREM

The first penetration into noncommutative Banach space theory was made
(perhaps inadvertently) by W. Forrest Stinespring in the mid-fifties [Sti55].
Stinespring wanted to explain two rather different representation theorems
in terms of a more general construction. His theorem was seen as a nice
bit of work, but a piece of work that was peculiar enough that while many
functional analysts learned it in their graduate courses in Chicago, Berkeley,
UCLA and Penn, they did not really take it in as part of their toolkit.
Indeed, this theorem was not fully appreciated for fifteen years, and even
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after it was fully understood, it was slow to make an impact in the larger
community. I have heard that Stinespring was motivated to look for the
theorem he found because of the basic mathematical values that motivate
all of us - namely a desire to find the “right” proof of several intriguing
ancillary results that seem connected. In the end, however, it provided the
stepping-off point of noncommutative functional analysis - an event that was
unforseen in the 1950s and would not emerge for many years.

In order to discuss Stinespring’s theorem, we return to a general setting
in which A is a C*-algebra with unit 1. The GNS construction implies that
every positive linear functional p: A — C can be represented in the form

pla) = (m(a)é, &),  a€A4,
where 7 : A — B(K) is a *-representation of A on a Hilbert space K and &
is a vector in K. A related theorem of Bela Sz.-Nagy asserts that if X is a
compact Hausdorff space and

¢:C(X)— B(H)

is a linear map satisfying f > 0 = ¢(f) > 0, then ¢ can be represented
in the form

o(f) =Vm(f)V,  [eC(X),
where 7 : C(X) — B(K) is a *-representation and V : H — K is a bounded
operator. These two theorems are both special cases of a more general, as
we now describe.

Returning to the general setting in which A is a unital C*-algebra, recall
that for every n = 1,2,... there is a unique C*-norm on the x-algebra
M, (A) of n x n matrices over A. Note too that for every operator valued
linear map ¢ : A — B(H) we can form a sequence of operator valued linear
maps

¢n : Mp(A) - M, (B(H)) = B(n- H), n=12...
exactly as we did in the previous section.

Definition 4.1. ¢ is said to be completely positive if for every n = 1,2, ...,
¢n, maps positive elements of M, (A) to positive operators in B(n - H).

Here is the essential statement of Stinespring’s theorem [Sti55]:

Theorem 4.2. Every completely positive map ¢ : A — B(H) can be repre-
sented in the form
(4.1) o(a) = V*r(a)V, a€ A,

where T is a representation of A on some other Hilbert space K and V is a
bounded operator from H to K.

Sketch of proof. Consider the algebraic tensor product of complex vector
spaces A® H, and consider the sesquilinear form (-, -) that is uniquely defined
on it by requiring

(a®&ben) = (6(b"a)s,n), abeA, &EneH.
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Because ¢ is completely positive, one can check that this is a (semidefinite)
inner product, and after dividing out by the subspace

{ue A® H : (u,u) =0}

and completing, one obtains a complex Hilbert space K. For every a € A
there is a unique operator m(a) € B(K) that extends the left multiplication
operator b® &£ — ab® & (one must check the details carefully here, but there
are no surprises), and similarly one can define an operator V : H — K by
defining V& to be the coset of 1 ® £ in K. Finally, it is a consequence of
these definitions that

(m(@)VE, V) = (p(a)§,n),  acA, &neH,
and (4.1) follows. O

It is an instructive exercise to show that, conversely, every linear map
¢ that can be represented in the form (4.1) is completely positive. Notice
that the GNS representation of states follows from the special case in which
H = C; indeed, in that case the operator V' maps the vector 1 € C to some
vector ¢ € K, and (4.1) becomes the familiar formula

¢(a) = (m(a)(,C),  a€A
It is a more challenging exercise to show (as Stinespring did in his original
paper) that a positive linear map of C'(X) into B(H) is already completely
positive; and therefore Sz.-Nagy’s theorem also follows from Theorem 4.2.

5. OPERATOR SYSTEMS AND COMPLETE POSITIVITY

The fundamental tool that makes functional analysis useful is the Hahn-
Banach theorem: A linear functional defined on a subspace of a Banach
space can be extended to a linear functional on the ambient space without
increasing its norm. We now show that the theory of operator spaces has a
corresponding tool. That fact is based on an extension theorem for positive
linear maps that we now describe.

An operator system is an operator space S C B(H) with two additional
properties that allow one to speak of positivity:

(i) (Self-adjointness) S* = S.

(ii) (Identity operator) 1 € S,
where of course, 1 denotes the identity operator of B(H). Notice that in any
operator system S, it makes sense to speak of positive operators in S. For
example, every operator of the form 1 — X with X a self adjoint operator
in S satisfying || X|| <1 is a positive operator in S. If one is given a unital
C*-algebra A, then every self-adjoint linear subspace S C A that contains
the identity of A can be viewed as an operator system.

There is some subtlety in that last comment. A C*-algebra A can be
represented in many ways as a concrete C*-algebra of operators acting on
a Hilbert space H. But the fact is that all such representations of A have
the property that when they are faithful (i.e., have trivial kernel), they



WHAT IS AN OPERATOR SPACE? 7

are completely isometric, and they are also complete isomorphisms with
respect to the operator order. Hence the operator space class of S C A is
perfectly well-defined, independently of how A is realized concretely as a
C*-subagebra of B(H).

Theorem 5.1. Let S be an operator system contained in a C*-algebra A
and let ¢ : S — B(K) be completely positive linear map. Then ¢ can be
extended to a completely positive linear map of A into B(K).

This is a theorem of [Arv69]; see [Pau02] for the details. The following
extension theorem for maps of operator spaces provides an exact counter-
part of the Hahn-Banach theorem for the category of operator spaces. It is
possible to deduce Theorem 5.2 below from Theorem 5.1 by a simple but
powerful device using 2 x 2 operator matrices that was discovered by Vern

Paulsen, and can be found along with many other developments in Paulsen’s
book [Pau02].

Theorem 5.2. Let S C B(H) be an operator space and let ¢ : S — B(K)
be a linear map satisfying ||p||c < co. Then ¢ can be extended to a linear
map ¢ : B(H) — B(K) in such a way that ||@|lep = ||&]|cb-
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