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1: May 12, 2008

**I was a little late.**

1.1 Guest lecture by W. Arveson: Operator Spaces, “Quantized Functional
Analysis”

Lecture notes are available at http://math.berkeley.edu/∼arveson/Dvi/opSpace.pdf.

Let S ⊆ B(H) be a linear subspace that is ‖ · ‖-closed. We have a notion of completely contractive
maps, which form a category.

We will see some examples, which illustrate the non-commutativity in finite-dimensional set-
ting.

Consider B(Cp) for p = 1, 2, . . . . We have two particular operator spaces, the “row”-space R and
the “column” space C:

R =




z1 z2 . . . zp
0 . . . . . . 0
...

...
0 . . . . . . 0


 C =




z1 0 . . . 0

z2
...

...
...

...
...

zp 0 . . . 0




Given z = (z1, . . . , zp) ∈ Cp, we have Rz and Rc as above. Then ‖Rz‖ = ‖RzR∗
z‖1/2 = ‖z‖ = ‖Cz‖.

Let φ : R → C be this isometry.

Now, what is Mn(R)? Well, they are n × n matrices with entries in R, but equivalently they
are

Mn(R) =




A1 A2 . . . Ap
0 . . . . . . 0
...

...
0 . . . . . . 0

 : Ai ∈Mn(C)


and similarly for Mn(C). We can extend φ to φn:

φn :


A1 A2 . . . Ap
0 . . . . . . 0
...

...
0 . . . . . . 0

 7→


A1 0 . . . 0

A2
...

...
...

...
...

Ap 0 . . . 0


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Is φn an isometry? ∥∥∥∥∥∥∥∥∥


A1 A2 . . . Ap
0 . . . . . . 0
...

...
0 . . . . . . 0


∥∥∥∥∥∥∥∥∥ =

√
‖A1A∗

1 + · · ·+ApA∗
p‖

and it’s important that the ∗s are on the right. On the other hand, in Mn(C), the ∗s are on the
left. And if n is large enough, in particular if n ≥ p, we can make these different. E.g. if n = p, and
if Ai are rank-one partial isometries with mutually orthogonal matrices Ai : e1 7→ ei, then {AiA∗

i }
are mutually orthogonal projections, so their sum has norm 1. On the other hand, A∗

iAi is the
projection onto e1, so the sum has norm p.

Incidentally, we can do the same thing with φ−1. In particular, ‖φn‖ ≥
√
p and ‖φ−1

n ‖ ≥
√
p. And

so φ is not a complete isometry. Remark: this does not show that R and C are not completely
isometric. But an easy generalization of the above calculation does show that R and C are not
completely isometric. So even a finite-dimensional Hilbert space can be realized in many different
ways as an operator space: “The same Banach space has many quantizations.”

Recall the basic tool of functional analysis: Hahn-Banach. We need such a theorem in this context;
this is what makes the theory fly:

Theorem: The non-commutative Hahn-Banach theorem

Let S ⊂ B(H) be an operator system and φ : S → B(K) be an operator map. Then this map
has a completely bounded norm — it might be a complete contraction — as we defined and
erased. Then there exists an extension

φ̃ : B(H)→ B(K)

with ‖φ̃‖CB = ‖φ‖CB.

In particular, any completely contractive map can be extended to a completely contractive map of
the ambient space:

S1
� � //

c.c. φ
��

S2
� � //

φ̃ c.c.||z
z

z
z

B(H)

B(K)

Let’s take a moment to talk about Stinespring’s Theorem. We have a GNS construction. On the
other hand,

Theorem: (Sz.-Nagy)

Suppose φ : C(X) → B(H) is linear with f ≥ 0 ⇒ φ(f) ≥ 0 (hence φ is bounded). Then
there exists a representation π : C(X)→ B(K) and V : H → K such that φ(f) = V ∗π(f)V .
I.e.

〈φ(f)ξ, η〉H = 〈π(f)V ξ V η〉K
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This looks a lot like the GNS construction: if φ : A→ C is positive linear, then we get a represen-
tation π such that φ(a) = 〈π(a)ξ, ξ〉. Our formula is a lot like that, except involves V because of
the non-commutativity.

Theorem: (Stinespring, 1955)

Let A be a unital C∗-algebra, and φ : A→ B(H) a completely positive map. (A positive map
is a map that takes self-adjoint positive elements of A to the same; completely positive maps
are positive on all Mn(A).) Then there exists a rep π : A→ B(K) and V : H → K such that
φ(a) = V ∗π(a)V for all a ∈ A.

By the way, the converse is true: if there is such a π and a V , then φ is completely positive. Stine-
spring generalizes both GNS and Sz.-Nagy. Even though he assumes more (complete positivity)?
Yes, because he proved in the same paper that a positive linear function is completely positive (i.e.
if H = C). And he proves that a positive linear map from a commutative C∗-algebra to an operator
space is completely positive.

This was the first penetration into the area of non-commutative functional analysis. There was no
further work for many years. A. was assigned the paper be thesis advisor, and it was beautiful,
but no one really understood it. In late 1970s, this theory started to take hold, and has become
popular in recent years.

All of this is discussed in more detail in the notes.
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