Problem Set 2
Theo Johnson-Freyd

1. (a) Show that the following C*-algebras are isomorphic:
i. The universal unital C*-algebra generated by two (self-adjoint) projections
1. The universal C*-algebra gemerated by two self-adjoint unitary elements

iti. The group algebra C*(G) for G = Z/2 % 7Z/2, the free product of two copies of the
2-element group.

iv. The crossed-product algebra C(T') Xo Z/2 where T' is the unit circle in the complex
plane, and « is the action of taking complex conjugation. (So T/« exhibits the unit
interval as an “orbifold”, i.e. the orbit-space for the action of a finite group on a
manifold, and AXo,G remembers where the orbifold comes from.) Hint: InZ/2+7/2
find a copy of Z.

Let A; be the algebra in j. above, as j ranges in {i,14i,4ii,7v}. Then, for example, A;;
and A;; match identically: a self-adjoint unitary element squares to the identity in the
subgroup of unitary elements, and the usual construction of C*(G) embeds G as unitary
elements; thus, the presentations when fully written out of A;; and A;; match.

On the other hand, in A;; = Ay, let © and y be the generators of G = Z/2 x Z/2 =
(z,y:2%2 =y?> =1). Then (14 2)/2 and (1+y)/2 are projections, whereas if p and ¢ are
the projections generating A;, then 2p — 1 and 2¢ — 1 are self-adjoint unitary elements.
So we have a unital bijection (both algebras are free subject to their relations, which are
preserved) between A; and A;; = Ay

Analyzing G = 7Z/2 * 7./2 more, we see that G is the dihedral group Dy, = (2,7 : 22 =
(z2x)2 = 1) by z = yx. Then z generates a copy of Z, and Zs = () acts by inverting
z: G =17 xZy. But C(T) = C*(Z), and since the group algebra uses the group inverse
as the adjoint, we see that the action z — 271 lifts to C*(Z) as the adjoint Z — Z*.
Thus C*(G) = C*(Z) X4 Z2, where « is this action. From here on, I will write A for the
algebra A; = --- = Ay, above.

Thus we can describe A from a very hands-on perspective. Let T be the unit circle in
the complex plane; then C*(Z) = C(T) where we consider z as the embedding 7' —
C. Then any polynomial p(z,z~!) can be interpreted as a function t — p(t,t71). By
thinking of G = D4, as a semi-direct product Z U Zx, we can write A as a direct sum:
A= C(T) ® C(T)z, with multiplication given by = f(t) = f(t~ 1)z, i.e.

(ar(t) + as(t) ) (b1(t) + ba(t) ) = (a1 (t) bi(t) + as(t) ba(t™ 1))+ (a1 (t) ba(t ™) + ac(®) bi(t™ 1)) z

This corresponds to matrix mutliplication, where think of

al(t)—i-az(t)xw( ai(t) a1 )

az(tfl) aq (til)
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The data here is four functions on the upper-half-circle with boundary conditions:
a;(£1) = a;(£171). Hence,

Az{f:[o,l]ﬁMZS-t' f(il):(g g)}

We think of the interval as, e.g., the upper half circle, or better as the orbifold 7'/ cv.
Determine the primitive ideal space of the above algebra, with its topology.

The irreps of A, a group algebra, are exactly the unitary irreps of the group G =
7Zx7)2 = (z,z : 22 = 1,zzx = 2~ !). There are exactly four one-dimensional (i.e.
commutative) representations: x +— +1, z — +1. In general, a representation (¢,H)
of G induces a representation of Z C G; then H splits as a direct sum H = @ Cx,
where Cj, is the representation of Z with eigenvalue z;. Let e be the eigenvector for
the corresponding C, and write X = ¢(z) and Z = ¢(z). Then ZX = XZ !, and so
ZXe, = XZ e, = z,;lXek. So Xey, is an eigenvector of Z. But X? = 1, so e, and
Xey. span an invariant subspace of H. Hence all other irreps are 2-dimensional:

=5 &) (V)

If { = +1, then this is not irreducible. The representation is determined by the unordered
pair {¢, ('} of eigenvalues; the unitarity or the representation assures that ¢ = e for
real 6. Hence the two-dimensional irreps of G correspond to points in the orbifold 7'/«
where « is the action of Z/2 on T = unit circle in C by complex conjugation.

So the full primitive ideal space is T/« along with four more points, two at ( =1 € T/«
and two at ( = —1.

Use the center of the algebra above to express the algebra as a continuous field of C*-
algebras.

The center of A is (the closure of) the span of the elements 1,z + 271 22+ 272,.... An
element is central if and only if it is fixed by conjugation by x and by z. Conjugation
by x switches z with z~!; conjugation by z sends x — z?z. Thus the coefficients of
22"z must be all the same for any central element, and > 2*"z does not converge.

Thus, the center C of A is generated by w = z + 2z~ !, which as a function on T returns
twice the real part; hence C' = C(I), where we think of I = spectrum of w.

A possibly better description is in terms of A as a matrix algebra A = {f : T/a —
M> s.t. boundary conditions}. Since the center of My is C thought of as a diagonal
matrix, it’s easy to check that the center of A is C'= C(T'/«). Then for each s € T'/«,
we have the ideal Iy C C of functions that vanish at s, and hence J; C A of (matrix-
valued) functions vanishing at s; and Ay = A/Js = My (if s # £1) or C[Z/2] (if
s = =£1). Given a(t) € A, the image a5 € A; is given by as = a(s); since the norm on M»
is continuous in the coefficients, this field is continuous except maybe at +1. But indeed



the inverse in My of an element in C[Z/2] is again in C[Z/2], so the norm is continuous
at £1 as well.

Lastly, we remark that, for a € A C {f : T/a — Ms}, we have

|lm|| = sup{|a|:m — « is not invertible}
= sup{|a|: m(t) — « is not invertible for some ¢t € T'//a}

= sup sup{|a|: m; — « is not invertible}
teT/a

= sup [jmy
teT/a

(d) Use part (c) to prove that if P and Q) are two projections in a unital C*-algebra such
that ||P — Q|| < 1, then they are unitarily equivalent, that is, there is a unitary element
U in the algebra (in fact, in the subalgebra generated by P and Q) such that UPU* = Q.

We let p,q € A be the projections

1tz (1/2 1/2 Itz 1/2  t/2
P==7 =172 12 1= = t12 1)2
If t = ¢ with 6 € [0, 7], then an easy computation gives ||p; — || = [[p(t) — ¢(t)||las, =
sin(0/2).
We let self-adjoint P, Q) with [|[P — Q|| = a < 1 generate a unital C*-subalgebra B =

C*(P, Q) of their ambient algebra; we can surject A —d)» B since A is free on self-adjoint
projections. We write Z = ¢(z) and X = ¢(x); then X and Z are still unitary (the
surjection is a unital *map) and X? = XZXZ = 1. Thus inside B we can find
a commutative unital algebra C*(Z) generated by Z: it is the algebra of continuous
functions on the spectrum of Z. Since Z is unitary, its spectrum o(Z) is a symmetric
(under complex-conjugation) subset of 7 C C (and since C*(Z) is unitary, o(Z) is
compact), and X acts by complex conjugation as above. Then B is the semidirect
product C(o(Z)) X Z/2, where the Z/2 is generated by X, except in the trivial case
when Z = X = +1. We go through the same steps as above, write S = o0(Z)/a C T/«
discover that
B={f:5— Myst. f(£1) € C[Z/2]}

where the condition is vacuous if +£1 € o(Z). The surjection A — B is the pull-back of
the injection S — T'/a.

In particular, ||P — Q|| = sup,eg [|P(t) — Q(t)|| = sup,cg sin(0/2), where ¢t = e¥. If this
number is less than 1, then in particular —1 ¢ o(Z), and we can take the unitary element

U € B given by
t 0
“’(t):(o 1)



Then, since P and @ have the same formulas as p and ¢ above, it is easy to check that
UPU* = Q.

(On the other hand, if |P — Q|| = 1 — it cannot be longer, since C*-maps like A — B
are norm-non-increasing — then —1 € o(Z), and there is no unitary transformation in
B_; =CJZ/2] = C @ CX between X and —X, since this algebra is abelian. Hence P
and @ are not unitarily equivalent in B.)

(e) Use part (d) to show that in a unital separable C*-algebra the set of unitary equivalence
classes of projections is countable.

In a unital separable algebra, within the space of projections I can find a countable
sense subset. But then each projection is within distance € < 1 of some projection in my
choice of dense subset, and hence by (d) unitarily equivalent to that projection. Unitary
equivalence is an equivalence relation.

2. For any n x n real matrix T' define an action o of R on the group R™ by ay = exp(tT) acting
in the evident way. Let G = R™ x, R. Then G is a solvable Lie group. For the case of

1 . . . . ) ,
T = ( 0 _01 > determine the equivalence classes of irreducible unitary representations of

G, i.e. the irreducible representations of C*(G). Determine the topology on Prim(C*(G)).
Discuss whether C*(G) is CCR or GCR, and why.

We have

/Pf\
1—> R 4) — G — (R, +) —1

The (irreducible) representations of R?, which we think of as a space of column vectors, are
one-dimensional — R? is commutative — and indexed by the R? = R2 of row vectors:
J

pv— e®PVx

A representation of G induces a representation of R?, which splits. The trivial representa-
tions of R? sit below one-dimensional representations of R pulled back to representations of
G. Otherwise, R acts freely on R?: 13}\/ tracing how generators of G act on a basis of the
representation, we see that R acts on R? by multiplication by a_; = exp(—tT") from the left.
Hence each irrep looks like functions on the line, and these co-dimensional irreps form an
orbifold R?/R, where the R-action is along hyperbolas.

Thus the primitive ideal space consists of four rays emanating from the origin, four points at
the origin (one for each axis), and R-many one-dimensional representations at the origin.

In any case C*(G) is not GCR, so certainly not CCR. We take a generic co-dimensional
representation ¢ of G on functions on a line p € R ¢; for each real ¢ # 0 (there are four like
this when ¢ = 0, whence we act by either v or v2), we have two such representation:

$(0) f(p) = ' PHv2¢/P) £ (p) or e~ O1PH2e/P) £33y "and ¢(t) f(p) = fle 'p)

But the action of ¥’ is not by a compact operator.



In question 1.(c), I use results from the exercise in the previous problem set that I did not work. I
do it now:

Fields of C*-algebras. Let A be a C*-algebra with 1, and let C' be a C*-subalgebra of the center
of A with 1 € C. Let C = C(X), and for x € X let J, be the ideal of functions vanishing at
x. Let I, = AJ, (closure of linear span), an ideal in A. Let A, = A/I, (“localization”), so
{Az}zex is a field of C*-algebras over X. For a € A let a, be its image in A,.

1. Prove that for any a € A the function x — ||az| a, is upper-semi-continuous. (So {A.}
is said to be an upper-semi-continuous field.)

We recall that the quotient norm is given by
def . .
az|| = inf ||a —
laz|l = inf lla = jll

We pick a metric on X and let f, : y — dist(z,y); more generally, we just need some
continuous choice of functions f, that vanish only at . Then I, is generated as an ideal
of C by f;, and similarly J, is all A-multiples of f,. Hence we have:

# > lo| = jof fla — b

But ||a —bfz]| is obviously continuous in each of the variables (X is compact, and so this
continuity is uniform in z), and hence the infimum is upper-semi-continuous.

2. If v v |laz|la, is continuous for all a € A, then the field is said to be continuous. For
this part assume that A is commutative. Note that then one gets a continuous surjection
from A onto C. Find examples of As and C's for which x — ||az]|| is not continuous. In
fact, find an attractive characterization of exactly when the field is continuous, in terms
of the surjection offl onto C' and concepts you have probably met in the past.

When A is commutative, it is the space of functions on its maximal (i.e. primitive) ideal
space, which consists exactly of the non-zero elements of the dual space Hom(A, C). We
let C' be a sub-C*-algebra of commutative A. Thus, write C = C(X) and A = C(Y)
with Y = A and X = C. In any case, we assume that C, A are unital, i.e. X and Y are
compact.

At the purely algebraic level, we have a surjection 7 : ¥ — X: if y € Y is a maximal
ideal of A, then y N C is a maximal ideal of C, and conversely if x € X is a maximal
ideal of C, then either x contains elements that in A (but not in C') are invertible, or z is
contained in a maximal ideal in A. The former cannot happen through some C* magic
involving spectrums being the same when we make algebras bigger: the unital algebra
generated by the ostensibly invertible element in x knows everything there is to know
about the element, and in particular knows whether it is invertible. In any case, the
surjection Y — X pulls back to the injection C C A, and the surjection is continuous
for the Zariski topology.



Moving on, in this continuous case, we have a surjection 7 : Y — X of compact (Haus-
dorff, etc.), and the norm is easy to express:

laz]| = sup |a(y)]
yer—1(z)

I claim that = — ||a,|| is continuous for every a € A if and only if 7 is open, i.e. if for
U CY we have m(U) C X open. Indeed, let 7 be open, and pick any € > 0. There is
some y € 7 1(x) with |a(y)| > |laz| — €/2, and |a(y)| is continuous, so there is some
U > y so that |a(y’)| > |a(y)| — €/2 for every 3/ € U. Now 7 is open, and 7(U) > z; then
for any 2’ € 7(U), there is some y' € 7~1(U) so that |a(y’)| > ||az|| — € namely, take
the (any) ¥’ € U. This shows lower-semi-continuity, and upper-semi-continuity is true
for any surjection.

Conversely, let U C Y be open, and pick a function a € A that vanishes outside of U
and is strictly positive on U. The inverse image under the map = — ||a;|| of the open
interval (0,00) will be exactly those z € X so that there’s a y € Y with n(y) =  and
a(y) > 0, i.e. those z in w(U). Hence if x +— ||a,| is commutative, then 7(U) is open
(the inverse image of an open set under a continuous map). Thus 7 must be an open
map.

. Let
4 “ {f [0,1] — My continuous, with f(1) = < g gz >}
Ay def {f :[0,1] — My continuous, with f(1) = < g 2 >}

and let C; def Z(A;) be the center of A;. Are the corresponding fields continuous? Are

all the fiber algebras A, isomorphic? Show that A1 and As are very simple prototypes of
behavior that occurs often “in nature”, but with higher-dimensional algebras, and more
complicated boundary behavior.

In each case, the center if C; = C' = C([0, 1]), thought of as

f@) o )
t—
< 0 f(¥)
Then for each = € [0, 1] we have I, = functions that vanish at x, and J, = matrix-valued
functions that vanish at x. Then

laz|l = fla(z)]

for any a € A;, where on the LHS it is the norm in the quotient algebra, and on the
RHS it is the operator norm for two-by-two matrices

|M|| = \/largest eigenvalue of M*M



But for finite-dimensional matrices, the eigenvalues vary continuously in the coefficients
of the matrix. So these fields are continuous.

For  # 0, the fibers (A;), are all isomorphic: they are each the algebra of square
matrices. But (A1)g = C, whereas (As)g = C?. I don’t know what occurs in nature,
although I can artificially construct similar examples and pass them off as natural?

. Determine the primitive ideal space of each of these two algebras, with its topology.

Given an irrep ¢ : A; — End(H), we compose with the injection C C A; to get a
representation of C', which must split as a direct sum of irreps H = € Cy, where Cy, is a
one-dimensional irrep, i.e. f € C = C([0,1]) acts by multiplication by f(¢) for some ¢(k)
depending on the representation. Let eg be the basis element in Cy; then multiplying e
by any f € C with f(¢t) = 1 will not change ex. So multiplying e by any f € A; with
f(t) =1 € My will not change ey; hence all that matters is f(¢). Thus the irreps of A;
are indexed by t, and correspond exactly to those irreps of (4;); = (A;)/J;. When t # 0,
(A;): = My, which is simple; it’s only irrep is its action on C2. When t = 0, (A4;)o = C,
which has just the one irrep. On the other hand, (A3)g = C2, which has two irreps:
each component. Hence Prim(A;) is the interval, whereas Prim(As) is the interval with
a double point at the origin.

We can check the topology: given a set of points in the interval, each is the ideal of
(Mz-valued) functions that vanish at that point; the intersection of this ideal is the ideal
of all functions that vanish at all the points. But functions in this ideal vanish exactly at
the closure of the set, and so the ideal contains those primitive ideals corresponding to
the points in the closure. Hence the primitive ideal space inherits exactly the topology
it should: the description at the end of the previous paragraph is as topological spaces,
not just as sets.



