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1.1 Examples

We begin with some rather abstract examples, but we won’t stay for very long. It’s good to have a
framework for examples: generators and relations. We can have a (possibly very infinite) collection
{a1, a2, . . . } of generators, and we should also have a∗1, a

∗
2, . . . . The relations are non-commutative

polynomials in the generators. Then form the free algebra F on the generators, which is a ∗-algebra:
∗ : ai 7→ a∗i and ∗ reverses the order of words and is anti-linear over C. Let I be the ∗-ideal generated
by the relations. Then form A = F/I, which is a ∗-algebra: it is the universal ∗-algebra for the
given generators and relations.

We can look for ∗-representations of A, i.e. ∗-homomorphisms of A into B(H) for various Hilbert
spaces H. For a ∈ A, set

‖a‖C∗
def= sup{‖π(a)‖ : π is a ∗-rep of A}

This might be +∞. E.g. one generator (and its adjoint) and no relations. We might also have
‖a‖C∗ = 0 forall a. E.g. one generator, with relation a∗a = 0.

So the issues are:

1. Do the relations force ‖a‖C∗ <∞ on the generators (if it’s finite on the generators, then it’s
finite on any polynomial).

E.g. u∗u = 1 = uu∗ (we have a generators called “1”, satisfying all the relations 1 should
have). Then u is unitary in any representations, so ‖u‖ = 1.

2. Are there non-zero representations?

It may happen that ‖a‖C∗ = 0 for certain a ∈ A, and such a form an ideal, by which we can
factor out.

If 1. holds, then the quotient in 2. will have a norm satisfying the C∗ relation, and factoring out gives
a C∗-norm, so we can complete. This gives the C∗-algebra for the generators and relations.

3. There may be a natural class of ∗-representations which give a C∗-norm ‖·‖′C∗ , but this ‖·‖′C∗

does not give the full ‖ · ‖C∗ . It might be smaller.

Question from the audience: Like the atomic norm, taking just irreducible representations?
Answer: No, that will just give us back the same thing. Indeed, doing this construction to a
C∗-algebra will leave it intact.

1

http://math.berkeley.edu/~theojf/CstarAlgebras.pdf


E.g. If we just have the one relation S∗S = 1 and not on the other side, then we get the C∗-algebra
for the unilateral shift on `2(N).

E.g. Let G be a discrete group, and take the elements of G as generators, with relations as in G.
Also demand that x∗ = x−1. Then the representations of this set of generators and relations is the
same as unitary representations — well, we never demand that an algebra’s identity element go to
1 ∈ B(H), but it will go to an idempotent, i.e. a projection operator, so we can cut down — on
subspaces. All words in A in the the generators are just given by elements of G. So A (purely at
the algebraic level; we haven’t completed) consists of finite linear combinations of elements of G.
I.e. given by functions f ∈ Cc(G) (continuous of compact support). **I would call this C[G]
instead. This construction is covariant in G, but Cc(−) is by rights contravariant.**
I.e. an elements of A is

∑
x∈G f(x)x. Question from the audience: Compact support for the

discrete group is just ... Answer: Finite support. Question from the audience: So this is
exactly the group ring. Answer: Yes.

E.g. G = SL(3,Z). Where do we find irreducible unitary representations of this?

In fact, for this setting, there always exist two unitary representations:

(a) The trivial representation, 1-dimensional on H = C.

(b) The left-regular representation of G on `2(G):

(Lxφ)(y) = φ(x−1y)

We need the inverse to preserve LxLz = Lxz. This really is a unitary operator, satisfying all
the necessary relations.

Some group-ring calculations:

(∑
f(x)x

)(∑
f(y)y

)
=
∑
x,y

f(x)g(y)xy =
∑

z

(∑
xy=z

f(x)g(y)

)
z =

∑
y

(∑
x

f(x)g(x−1y)

)
︸ ︷︷ ︸

∈Cc(G)

y

I.e. we define convolution on Cc(G) by

(f ? g)(y) def=
∑

x

f(x)g(x−1y)

Then (
∑
f(x)x) (

∑
f(y)y) =

∑
(f ? g)(z)z.

What about the ∗? (∑
f(x)x

)∗
=
∑

f(x)x∗ =
∑

f̄(x)x−1 =
∑

f̄(x−1)x

So on Cc(G) we set
f∗(x) def= f(x−1)
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Anyway, for a representation (π,H) of G, we have π (
∑
f(x)x) def=

∑
f(x)π(x). So, for f ∈ Cc(G),

set πf
def=
∑
f(x)π(x). Then f → πf is a ∗-representation of Cc(G). Conversely, a ∗-representation

of Cc(G) must restrict to a unitary representation of G, since we can view G ↪→ Cc(G), by x 7→ δx.
**Gah! If G is not discrete, then the δ functions are not in Cc(G), although they are
in C[G] the group ring.**

Let L be the left-regular representation of G on `2(G), and look at δe ∈ `2(G) be the vector at the
identity. Then

Lfδe =
(∑

f(x)Lx

)
δe =

∑
f(x)δx ∈ `2(G)

So if Lf = 0, then f = 0. So L is a faithful ∗-representation of Cc(G). So left ‖f‖rC∗
def= ‖Lf‖; this

is a legitimate C∗-norm on Cc(G). This is an example of 3. above. (r for “reduced”)

Theorem: ‖ · ‖rC∗(G) = ‖ · ‖C∗(G) if and only if G is amenable.

There are twenty different equivalent definitions of “amenable”. Where does the name come from?
G is amenable if on `∞(G) there is a state (“mean”) µ which is invariant under left translation,
e.g. µ(Lxφ) = µ(φ) forall φ ∈ `∞(G). All abelian groups are amenable. Exercise: Why is Z
amenable?

Question from the audience: You get the left-invariant representation by looking at . . . . Where
is the other one? What is the norm on C∗(G)? Answer: We defined ‖Lf‖

def= ‖Lf‖B(`2(G)).

Question from the audience: What is the topology on G? Answer: Discrete. We will eventu-
ally imitate this on locally compact groups.

Question from the audience: How is this µ related to the Haar measure? Answer: Every finite
group is amenable. Just use the Haar measure.
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