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1: May 5, 2008

1.1 Vector bundles and projective modules

Theorem: (Swan, 1962)

Let E be a (R or C) vector bundle over X compact. Then Γ(E) is a projective A module
for A = C(X). Conversely, suppose Ξ is a projective A module. Then by definition there
exists Ξ1 such that Ξ ⊕ Ξ1

∼= (An)A. Let Q be the projection of An onto Ξ along Ξ1. I.e.,
Q ∈ EndA(An) = Mn(A) and Q2 = Q (in this generality we don’t have self-adjointness; in
this case Q is called “idempotent”); view Q as a matrix of functions: Mn(C(X → k)) =
C(X →Mn(k)) for k = ground field R or C. Define E a vector bundle by: the fiber Ex above
x is the range of Q(x) in kn. This function is clearly continuous in x, so essentially it is a
bundle. We check local triviality: if b1, . . . , bk is a basis for range(Q(x0)), then view bi ∈ kn,
and then write down Q(x)bj and (1 −Q(x))bj . We take the determinant of these n vectors;
they’re a basis at x0, so this determinant is non-zero, and determinant is continuous in the
coefficients, so it’s a basis in a small neighborhood. �

Question from the audience: If X is not connected, there might be dimension change from
component to component? Answer: Absolutely. Our definition of “vector bundle” allows for
this

When X is not compact, the story is more complicated. But usually when we have non-compact
spaces, we control the behavior at infinity by having in mind a particular compactification, and
that throws us back into this story. For instance, we might use the one-point compactification; this
makes our bundle trivial at infinity, i.e. there’s a large enough compact set in X so that on the
complement, the bundle is trivial.

For any ring R with 1, we can consider the finitely generated projective modules (if you’re very
careful, that’s not a set, but you know how to deal with this), and we consider them up to isomor-
phism class: S(R) is the set of isomorphism classes. Given projective modules Ξ1, Ξ2, it’s obvious
that Ξ1 ⊕ Ξ2. (Everywhere finitely generated, but I don’t want to go into that. Question from
the audience: Meaning n is finite? Answer: Well, a little more complicated. Question from
the audience: Every kind of projective module we’ve defined is f.g. Answer: Yes) This sum
interpreted as bundles is fiber-wise, called the “Whitney sum”. This defines an addition on S(R),
which is certainly commutative, and the 0 module is an identity element. So S(R) is a commuta-
tive semigroup with 0. This is an invariant of R. I.e. this is all functorial, but I’m glossing over
that.

S(R) is interesting to calculate. As a teaser, let θ ∈Md(R), and build Aθ. If θ has at least one irra-
tional entry, then we can describe S(Aθ) in pretty explicit terms; indeed, up to isomorphism we can
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construct all the projective modules. The description depends on θ and is a little bit complicated.
On the other hand, for θ = 0, we have C(T d), and for d & 10, S(C(T d)) is basically unknown:
it corresponds to homotopy classes of something, but it’s way too complicated. Similarly for the
d-sphere above a certain dimension. In a surprising number of cases, the quantum world ends up
being nicer like this than the classical world: the classical world ends up being “degenerate”.

Let’s indicate some of the obstructions. Last time, we gave some projective modules over the
circle. Let’s look at S2 ⊆ R3 the unit two-sphere. Then we have the tangent bundle and cross-
sections Γ(TS2) = {ξ : S2 → R3 s.t. ξ(x) · x = 0∀x ∈ S}. We know the hairy ball theorem:
this is not the trivial bundle, i.e. it’s not A2

A, where A = C(S2 → R). We can also define the
normal bundle Γ(NS2) = {ξ : S2 → R3 s.t. ξ(x) ∈ Rx}. This is the trivial bundle AA. Well,
Γ(TS2)⊕Γ(NS2) = A3

A is a trivial (i.e. free) bundle. So Γ(TS2)⊕A ∼= A2⊕A, but Γ(TS2) 6∼= A2,
so S(C(S2 → R)) is not cancelative. Even presenting semigroups in which cancelation fails is
complicated. We can play the same game over C, but have to get to d ≥ 5 for cancelation in
S(C(Sd → C)) to fail. So the moral of the story: calculating S(R) can be hard.

On the other hand, in a paper some years ago by R., we show that in the noncommutative torus
and a non-zero **or non-rational, I didn’t hear** entry in θ, cancelation holds.

Given a semigroup S commutative with 0, force cancellation. I.e. consider s ∼ t if ∃r with
s + r = t + r. Check: then S/ ∼ is a commutative unital cancelative semigroup. Call it cS,
standing for cancelation. **Board says “C(S)”, but also “there are too many Cs around”,
so I’ll use this notation.** So we set C(R) = cS(R). This is also an invariant of R, and can be
a bit easier to calculate, but still possibly daunting.

Ok, remember how to construct the integers from the positive integers? That procedure works for
any semigroup with cancelation. Recall: we look at pairs (m,n) which we think of as m− n, and
consider (m,n) ∼ (m′, n′) if m + n′ = m′ + n. For a cancelative commutative semigroup C, we
can embed it in an abelian group gC. **“groupify”** This procedure again loses information.
We define K0(R) def= gC(R) = gcS(R). This is the 0-group of K-theory, and finially gets us
to a homology theory. For complicated examples, this can still be difficult to calculate. C(R)
is a “positive cone” inside K0(R); it may be degenerate (e.g. it can be all of K0). So denote
C(R) = K+(R), and we often see written the pair (K0(R),K+(R)), which of course has exactly the
data of C(R).

Everything is functorial: Given rings R1 and R2 and a unital map φ : R1 → R2, we have S(φ) :
ΞR1 7→ ΞR1 ⊗

R1R1

(R2)R2 , where we view R2 as a left-R1-module using φ. This extends to K0. Given

a short exact sequence
0→ J → R→ R/J → 0

we want a long exact sequnce in K∗. We need to define K0(J). First we form J̃ by adjoining a unit.
Then we have a homomorphism J̃ → Z (it’s really better if everything is with algebras over a field
k; certainly this works in that case, but probably works if k = Z). Then we have K0(J̃)→ K0(Z),
and we define K0(J) = ker(K0(J̃)→ K0(Z)). E.g. if J = C∞(X), then J̃ = C(X̃), where X̃ is the
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one-point compactification. Anyway, then we get

K0(J)→ K0(R)→ K0(R/J)

but to extend that takes more work. This is an interesting direction, but not one we will pur-
sue.
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