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1.1 Quotient C∗ algebras

Let A be a C∗ algebra, I a closed two-sided ideal. We saw last time that I is a ∗-subalgebra, hence
(closed) a C∗ subalgebra, with an approximate identity. We form the quotient A/I, a 7→ ȧ, an
algebra with quotient norm

‖ȧ‖ def= inf{‖a− d‖ s.t. d ∈ I}
Then A/I is complete. (It is clearly a ∗-algebra.) Hence A/I is a Banach ∗-algebra. (This is true
for any ∗- two-sided ideal in a Banach ∗-algebra. To show that it is a C∗-algebra required verifying
the inequality.

Key Lemma: Let {eλ} be a positive norm-1 approximate identity for I. Then for any a ∈ A,

‖ȧ‖ = lim
λ
‖a− aeλ‖

Proof:

We can assume that A has an identity element. We can be more careful, and avoid this, but
anyway. . . .

Key C∗ fact: Look at ‖1 − eλ‖ for a given λ. eλ is self-adjoint, and look at C∗(1, eλ), so
clearly ‖1− eλ‖ ≤ 1 (not true in a general Banach algebra), using positivity, norm ≤ 1, and
that we are in C∗-land.

Well, aeλ ∈ I, so certainly ≤ is clear in the Lemma. For ≥, let ε > 0 be given. Then we can
find d ∈ I so that ‖ȧ‖+ ε ≥ ‖a− d‖. Then

‖a− aeλ‖ = ‖a(1− eλ)‖ ≤ ‖(a− d) (1− eλ)︸ ︷︷ ︸
≤1

‖+ ‖d(1− eλ)‖ ≤ ‖a− d‖+ ‖d− deλ‖︸ ︷︷ ︸
→0

�

Theorem: (Segal, 1949)

A/I is a C∗-algebra.

Proof:

From Banach-land, we have ‖ȧ∗ȧ‖ ≤ ‖ȧ‖2. We also have

‖ȧ‖2 = lim ‖a− aeλ‖2 = lim ‖a(1− eλ)‖2

= lim ‖(1− eλ)a∗a(1− eλ)‖
≤ lim ‖a∗a(1− eλ)‖

= ‖
˙︷︸︸︷
a∗a ‖ = ‖ȧ∗ȧ‖

by general Banach algebra. �
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1.2 Beginnings of non-commutative measure theory

This concludes our mining of results that follow directly from the fact that commutative C∗ algebras
are functions on spaces. We move to proving that general C∗ algebras are algebras of bounded
operators on Hilbert spaces. What we have been doing depended importantly on completeness; our
new topic will not. In the wild, we often find ∗-algebras satisfying the norm identity, but that are
not complete. We complete for the nice framework, but the things you add in the completion are
often weird, so it’s better to work with just ∗-normed algebras.

Definition: For a ∗-algebra A over C, a linear functional µ on A is positive if µ(a∗a) ≥ 0 for all
a ∈ A.

E.g. the 0-functional.

E.g. C2, with (α, β)∗ def= (β̄, ᾱ), then there are no non-zero positive linear functionals.

Definition: For a ∗-normed-algebra A, we say that a positive linear functional µ is a state if
‖µ‖ = 1.

This is the analog of a probability measure.

Let A be a ∗-algebra and µ a positive functional. Define a sesquilinear form on A by

〈a, b〉µ = µ(b∗a)

**Ew. We’ve made the order all backwards.** You can go in any order, but this is what
is most commonly done. Called the “GNS construction” (Gelfand, Naimar **sp?**, and Se-
gal).

We factor by vectors n ∈ N of length 0 to get a (positive) inner-product on A/N . Then complete,
and call this L2(A,µ). We would now like to get the operators.

For a ∈ A, we let La
def= b 7→ ab. This is a left-regular representation, and it tries to be faithful.

Then
〈Lab, c〉 = µ(c∗ab) = 〈b, La∗c〉

Thus, a 7→ La is a “*-representation”. (We’ve swept under the rug various issues of completeness,
etc.)

There are issues here: E.g. Let A be all C-valued polynomials on R. Let µ(p) def=
∫

R p(t)e
−t2dt. (The

Gaussian goes to 0 at both ends so fast that this is finite for every polynomial.) Moreover, µ(p∗p) =∫
|p(t)|2e−t2dt ≥ 0, so we have a genuine inner product on polynomials: 〈p, q〉 =

∫ ¯q(t)p(t)e−t
2
dt,

and we can complete with respect to this, and we get the usual L2(R, e−t2dt).

Now, we have the left-regular representation p 7→ Lp, but Lp is not a bounded operator! Indeed,
on the algebra of polynomials, there is no algebra norm that makes sense within this framework.
If we work in a compact subset, we can take the supremum norm, but e−t

2
dt lives on the whole

line.

2



Question from the audience: What about other notions of positive, e.g. anything of the form
a∗a? Answer: then we don’t know that the sum of positive elements is positive, so not a terribly
useful notion. For instance, for normed ∗-algebras, it can fail that a∗a + b∗b 6= c∗c, even though
the notion of positive linear functionals will succeed. We can take the norm form the left-regular
representation, and then complete, but this will have little to do with the original norm. E.g. G
a discrete group, and look at `1(G), which is a fine ∗-algebra with convolution. We also have an
action of `1 on `2(G), with a good notion of operator norm (so can complete to a C∗ algebra), but
has little to do with the `1 norm. Question from the audience: is this like Gelfand transform
on an abelian group? Answer: of course.
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