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1.1 Examples

We begin with some rather abstract examples, but we won’t stay for very long. It’s good to have a
framework for examples: generators and relations. We can have a (possibly very infinite) collection
{a1, a2, ...} of generators, and we should also have aj,a,.... The relations are non-commutative
polynomials in the generators. Then form the free algebra F on the generators, which is a x-algebra:
* 1 a; — a; and * reverses the order of words and is anti-linear over C. Let I be the *-ideal generated
by the relations. Then form A = F/I, which is a x-algebra: it is the universal x-algebra for the
given generators and relations.

We can look for x-representations of A, i.e. *-homomorphisms of A into B(H) for various Hilbert
spaces H. For a € A, set
def .
|lal|c+ = sup{||7(a)|l : 7 is a x-rep of A}
This might be +0o0. E.g. one generator (and its adjoint) and no relations. We might also have
|la||cx = 0 forall a. E.g. one generator, with relation a*a = 0.
So the issues are:

1. Do the relations force ||alc+ < 0o on the generators (if it’s finite on the generators, then it’s
finite on any polynomial).

E.g. u*u =1 = wu* (we have a generators called “1”, satisfying all the relations 1 should
have). Then wu is unitary in any representations, so [ju|| = 1.

2. Are there non-zero representations?

It may happen that ||a||c~ = 0 for certain a € A, and such a form an ideal, by which we can
factor out.

If 1. holds, then the quotient in 2. will have a norm satisfying the C* relation, and factoring out gives
a C*-norm, so we can complete. This gives the C*-algebra for the generators and relations.

3. There may be a natural class of *-representations which give a C*-norm |- ||{-., but this || - [|¢.
does not give the full || - ||c+. It might be smaller.

Question from the audience: Like the atomic norm, taking just irreducible representations?
Answer: No, that will just give us back the same thing. Indeed, doing this construction to a
C*-algebra will leave it intact.
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E.g. If we just have the one relation S*S = 1 and not on the other side, then we get the C*-algebra
for the unilateral shift on £2(N).

E.g. Let G be a discrete group, and take the elements of G as generators, with relations as in G.
Also demand that z* = 2~!. Then the representations of this set of generators and relations is the
same as unitary representations — well, we never demand that an algebra’s identity element go to
1 € B(H), but it will go to an idempotent, i.e. a projection operator, so we can cut down — on
subspaces. All words in A in the the generators are just given by elements of G. So A (purely at
the algebraic level; we haven’t completed) consists of finite linear combinations of elements of G.
Le. given by functions f € C.(G) (continuous of compact support). **I would call this C[G]
instead. This construction is covariant in G, but C.(—) is by rights contravariant.**
Le. an elements of Ais ) .~ f(z)z. Question from the audience: Compact support for the
discrete group is just ... Answer: Finite support. Question from the audience: So this is
exactly the group ring. Answer: Yes.

E.g. G = SL(3,Z). Where do we find irreducible unitary representations of this?
In fact, for this setting, there always exist two unitary representations:
(a) The trivial representation, 1-dimensional on H = C.

(b) The left-regular representation of G on £2(G):

(Lad)(y) = ¢(z~'y)

We need the inverse to preserve L,L, = L,,. This really is a unitary operator, satisfying all
the necessary relations.

Some group-ring calculations:

(3 r@)z) (3 rww) = Y- f@gwyey =3 (Z f(w)g(y)) = (Z f(x)g(x—1y>> y

TY==2 T

€C.(G)

L.e. we define convolution on C.(G) by

(fx9) ) €Y fla)glay)

Then (3 f(x)x) Q2 f(y)y) = 22(f * 9)(2)=.

What about the *?

So on C.(G) we set

\)



Anyway, for a representation (7, H) of G, we have 7 (>_ f(x)x) def > f(z)m(z). So, for f € C.(G),

set 7f aof > f(x)m(x). Then f — 7 is a *-representation of C.(G). Conversely, a *-representation
of C.(G) must restrict to a unitary representation of G, since we can view G — C.(G), by = + 0.
**Gah! If G is not discrete, then the ¢ functions are not in C.(G), although they are
in C[G] the group ring.**

Let L be the left-regular representation of G' on ¢*(G), and look at d. € £2(G) be the vector at the
identity. Then

Lyb, = (Z f(x)Lx) be =Y f(x)8. € (G)
def

Soif Ly =0, then f = 0. So L is a faithful *-representation of C..(G). So left || f||¢« = ||Ly||; this
is a legitimate C*-norm on C.(G). This is an example of 3. above. (r for “reduced”)

Theorem: | - ||6*(G) = || - [[¢#(@) if and only if G is amenable.

There are twenty different equivalent definitions of “amenable”. Where does the name come from?
G is amenable if on (>°(G) there is a state (“mean”) p which is invariant under left translation,
e.g. w(Lyzp) = p(¢p) forall ¢ € £°°(G). All abelian groups are amenable. Exercise: Why is Z
amenable?

Question from the audience: You get the left-invariant representation by looking at . ... Where
is the other one? What is the norm on C*(G)? Answer: We defined ||L¢|| o 1L sl B2y

Question from the audience: What is the topology on G? Answer: Discrete. We will eventu-
ally imitate this on locally compact groups.

Question from the audience: How is this u related to the Haar measure? Answer: Every finite
group is amenable. Just use the Haar measure.
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