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1: Introduction

These notes are from the class on C∗-algebras, taught by Prof. Marc Rieffel at UC-Berkeley in the
Spring of 2008. The class meets three times a week — Mondays, Wednesdays, and Fridays — from
10am to 11am.

I typed these notes mostly for my own benefit — I wanted to try live-TEXing a class, and this one
had fewer diagrams and more linear thoughts than my other classes. I do hope that they will be
of use to other readers; I apologize in advance for any errors or omissions. Places where I did not
understand what was written or think that I in fact have an error will be marked **like this**.
Please e-mail me (theojf@math.berkeley.edu) with corrections. For the foreseeable future, these
notes are available at http://math.berkeley.edu/∼theojf/CstarAlgebras.pdf.

These notes are typeset using TEXShop Pro on a MacBook running OS 10.5. The raw TEX sources
are available at http://math.berkeley.edu/∼theojf/Cstar.tar.gz. These notes were last updated
May 12, 2008.

2: January 23–28, 2008

**I had not started taking notes until January 30, 2008. We began with some historical
background, then set in on definitions. I may eventually find and type up notes from
this first week.**

3: January 30, 2008

Question from the audience: Why are C∗ algebras called that? Answer: They are ∗ algebras,
and they are “closed”. Von Neuman algebras are “W ∗”, because they’re “weak-closed”. C∗ is also
called “spectral”. Much less poetic than “sea-star”.
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3.1 The positive cone

Last time we stated a big theorem:

Theorem: (Fukamya, 1952. Independently in 1953, simpler proof by Kelly and Vaight **spell?**.)

Let A be a C∗ algebra, A+ = {a ∈ A s.t. a = a∗ and σ(a) ∈ R+}. Then A+ is a cone. I.e. if
a, b ∈ A+ then a+ b ∈ A+.

Key Lemma: For any commutative C(M), M compact, f ∈ C(M), f = f̄ the following are
equivalent:

(a) f ≥ 0 (i.e. σ(f) ∈ R+).

(b) For some t ≥ ‖f‖∞, ‖f − t1‖ ≤ t.

(c) For all t ≥ ‖f‖∞, ‖f − t1‖ ≤ t.

Proof of Lemma:

(a ⇒ c) Given t ≥ ‖f‖∞ and m ∈M , 0 ≥ f(m)− t ≥ t, so |f(m)− t| ≤ t.

(c ⇒ b) Obvious.

(b ⇒ a) For each m ∈M , |f(m)− t| ≤ t, and t ≥ |f(m)|. �

Proof of Theorem:

Can assure 1 ∈ A. Given a, b ∈ A+, let s = ‖a‖, t = ‖b‖. So ‖a− s1‖ ≤ s, ‖b− t1‖ ≤ t. Then
‖a + b‖ ≤ ‖a‖ + ‖b‖ = s + t. Then ‖a + b − (s + t)1‖ ≤ ‖a − s1‖ + ‖b − t1‖ ≤ s + t. So by
Key Lemma, σ(a+ b) ∈ R+. �

Also, A+ is norm-closed: Say we have an → a, an ∈ A+. Choose a t ≥ ‖an‖∀n. so ‖an − t1‖ ≤ t
for all n, and the expression is continuous in the norm, so ‖a− t1‖ ≤ t. Moreover, an = a∗n, so a is
also self-adjoint, and hence a ∈ A+.

Theorem: (Kaplansky)

If c ∈ A, then c∗c ≥ 0.

Proof:

If not, we can find b = b∗ so that bc∗c = c∗cb and b2c∗c ≤ 0, by taking a bump function.
Then set d = cb 6= 0. Then d∗d = b∗c∗cb = bc∗cb = b2c∗c ≤ 0. I.e. we have d ∈ A with
d∗d ≤ 0, d 6= 0.

Now we take real and imaginary parts: d = h+ ik, h, k ∈ A h∗ = h, k∗ = k. Then

d∗d+ dd∗ = (h+ ik)(h− ik) + (h− ik)(h+ ik) = 2(h2 + k2)

This is a sum of squares of self-adjoint elements, so is positive.
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Ok, but −d∗d ≥ 0, so dd∗ ≥ 0 is the sum of positive things. So σ(dd∗) ∈ R+, whereas
σ(d∗d) ∈ R−.

Prop: Let A be an algebra over field F , and a, b ∈ A. Then σ(ab) ∪ {0} = σ(ba) ∪ {0}.

E.g. Let H be an ∞-dim separable Hilbert space, and K and ∞-dim subspace, and let S be
an isometry of H onto K, then S∗S = 1H, so σS∗S = {1}. But SS∗ = orthogonal projection
onto K, so σ(SS∗) = {1, 0}.

Proof of Prop:

If λ ∈ σ(ab), λ 6= 0, i.e. (ab − λ1) is not invertible, so ( aλb − 1) is not invertible. So it
suffices to show: if (ab− 1) is invertible, so is (ba− 1). But formally

(1− ab)−1 = 1 + ab+ (ab)2 + (ab)3 . . .

= 1 + a
(
1 + ba+ (ba)2 + . . .

)
b

= 1 + a(1− ba)−1b

and we can check directly that these are inverses. �

This completes the proof of the theorem. �

A few final facts: the self-adjoint elements are differences of positive elements, and A+ ∩ −A+ =
{0}.

4: February 1, 2008

Today we present a few simple consequences of this theorem of positivity. Notation: we say a ≤ b
is b− a ∈ A+ and a and b are self-adjoint.

Prop: If 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖.

Proof:

We can assume 1 ∈ A. Then b ≤ ‖b‖1, by looking at C∗(b, 1). I.e. ‖b‖1− b, b− a ∈ A+, and
add, so ‖b‖1− a ∈ A+. Then ‖a‖ ≤ ‖b‖ by looking at C∗(a, 1). �

Prop: If a ≤ b, then for any c ∈ A, we have

c∗ac ≤ c∗bc

Proof:

b − a ∈ A+ so b − a = d2 for d ≥ 0. Then c∗bc − c∗ac = c∗(b − a)c = c∗d2c = (dc)∗(dc) ≥ 0.
�
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4.1 Ideals

We now turn our attention to two-sided ideals of C∗ algebras. These generally do not have identity
elements; we will talk about approximate identities. Recall: for a normed algebra A without 1, a
left approximate identity for A is a net {aλ} in A such that eλa → a for all a ∈ A. These don’t
always exist — stupid counterexample is a Banach space with multiplication always 0. The notions
of “right approximate identity” and “two-sided approximate identity” are obvious. We can also
ask if our approximate identity is “bounded”: does there exist a k so that ‖eλ‖ ≤ k for every λ.
Similarly for “approximate identities of norm 1”: ‖eλ‖ ≤ 1∀λ.

In the commutative case, Cc(X) of fns with compact support is a dense ideal in C∞(X). In
the non-commutative case, e.g. B0(H) of compact operators, there are trace-class operators L1,
Hilbert-Schmidt L2, etc. Alain Connes has advocated viewing compact operators, and specifically
elements of these ideals, as infinitesimals. In our department, we have a leading expert: Voidjitski
**spell?**. These are non-closed ideals, which are important, but in this course, we will mostly
focus on closed ideals.

Theorem: Let L be a left ideal (not necessarily closed) in a C∗-algebra A. Then L has a right
approximate identity {eλ} with eλ ≥ 0 and ‖eλ‖ ≤ 1.

We can even arrange that if λ ≥ µ, then eλ ≥ eµ, but we will not take the time to show that.
Davidson does this for closed ideals. Indeed, what he shows is that {a ∈ A+, ‖a‖ < 1} with the
usual ordering really is a net, and that for A a complete C∗ algebra without identity, then this is
an approximate identity — closed ideals are complete C∗ algebras without identity.

If L is separable, then we can have an approximate identity given by a sequence (no need for nets),
although for us, we allow any cardinality.

Proof of Theorem:

We can assume that A has an identity element.

Choose a dense subset S of L (e.g. S = L, or if L is separable, we can take S countable).
Set Λ = finite subsets of S ordered by inclusion. For λ = {a1, . . . , an} ∈ Λ, set bλ =

∑
a∗jaj .

Well, L is a left ideal, so this is in L, and is positive.

Well, look at
(

1
n1 + bλ

)
, which is certainly a strictly-positive function, and hence invertible,

so we define

eλ =
(

1
n

1 + bλ

)−1

bλ ∈ L ∩A+

Then checking norms of both multiplicands, we see that ‖eλ‖ ≤ 1.

Claim: this is a right approximate identity. First we show for a ∈ S, and then by boundedness
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and density, we will have the desired result. We examine

‖a− aeλ‖2 = ‖(a− aeλ)∗(a− aeλ)‖
(a− aeλ)∗(a− aeλ) = (1− eλ)∗a∗a(1− eλ)

≤ (1− eλ)∗bλ(1− eλ)

=

(
1−

(
1
n

+ bλ

)−1

bλ

)2

bλ

=
1
n

1
n

1
n + bλ

bλ
1
n + bλ

‖RHS‖ ≤ 1
n

Where we have assumed that a ∈ λ, and hence bλ ≥ a∗a. �

Cor: And C∗-algebra A has a two-sided approximate identity, self-adjoint with norm 1.

Proof:

Let {eλ} be a right approximate identity. But it is self-adjoint, so it’s a left approximate
identity for a∗. �

Cor: Let I be a closed two-sided ideal in A. Then I is closed under ∗, so it is a C∗ algebra.

Proof:

Let {eλ} be a right approximate identity, and look at eλa∗ − a∗. Because it’s a two-sided
ideal, eλa∗ ∈ I. But ‖eλa∗ − a∗‖ = ‖aeλ − a‖ → 0, so since I is closed, a∗ ∈ I. �

Cor: If I is a closed two-sided ideal in A, and J is a closed two-sided ideal in I, then J is a closed
two-sided ideal in A.

Proof:

Let d ∈ J and a ∈ A; we want to show ad ∈ J . Well, take {eλ} an approximate identity for
I. Then aeλ︸︷︷︸

∈I

d

︸ ︷︷ ︸
∈J

→ ad. �

Cor: If I, J are closed two-sided ideals in A, then I ∩ J = IJ
def= closed linear span of products.

Proof:

⊇ is clear. On the other hand, let d ∈ I∩J . Consider deλ ∈ IJ , where {eλ} is an approximate
ideal for J . But IJ is closed, so deλ → d must be in IJ . �

Next time: quotient spaces.
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5: February 4, 2008

5.1 Quotient C∗ algebras

Let A be a C∗ algebra, I a closed two-sided ideal. We saw last time that I is a ∗-subalgebra, hence
(closed) a C∗ subalgebra, with an approximate identity. We form the quotient A/I, a 7→ ȧ, an
algebra with quotient norm

‖ȧ‖ def= inf{‖a− d‖ s.t. d ∈ I}
Then A/I is complete. (It is clearly a ∗-algebra.) Hence A/I is a Banach ∗-algebra. (This is true
for any ∗- two-sided ideal in a Banach ∗-algebra. To show that it is a C∗-algebra required verifying
the inequality.

Key Lemma: Let {eλ} be a positive norm-1 approximate identity for I. Then for any a ∈ A,

‖ȧ‖ = lim
λ
‖a− aeλ‖

Proof:

We can assume that A has an identity element. We can be more careful, and avoid this, but
anyway. . . .

Key C∗ fact: Look at ‖1 − eλ‖ for a given λ. eλ is self-adjoint, and look at C∗(1, eλ), so
clearly ‖1− eλ‖ ≤ 1 (not true in a general Banach algebra), using positivity, norm ≤ 1, and
that we are in C∗-land.

Well, aeλ ∈ I, so certainly ≤ is clear in the Lemma. For ≥, let ε > 0 be given. Then we can
find d ∈ I so that ‖ȧ‖+ ε ≥ ‖a− d‖. Then

‖a− aeλ‖ = ‖a(1− eλ)‖ ≤ ‖(a− d) (1− eλ)︸ ︷︷ ︸
≤1

‖+ ‖d(1− eλ)‖ ≤ ‖a− d‖+ ‖d− deλ‖︸ ︷︷ ︸
→0

�

Theorem: (Segal, 1949)

A/I is a C∗-algebra.

Proof:

From Banach-land, we have ‖ȧ∗ȧ‖ ≤ ‖ȧ‖2. We also have

‖ȧ‖2 = lim ‖a− aeλ‖2 = lim ‖a(1− eλ)‖2

= lim ‖(1− eλ)a∗a(1− eλ)‖
≤ lim ‖a∗a(1− eλ)‖

= ‖
˙︷︸︸︷
a∗a ‖ = ‖ȧ∗ȧ‖

by general Banach algebra. �
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5.2 Beginnings of non-commutative measure theory

This concludes our mining of results that follow directly from the fact that commutative C∗ algebras
are functions on spaces. We move to proving that general C∗ algebras are algebras of bounded
operators on Hilbert spaces. What we have been doing depended importantly on completeness; our
new topic will not. In the wild, we often find ∗-algebras satisfying the norm identity, but that are
not complete. We complete for the nice framework, but the things you add in the completion are
often weird, so it’s better to work with just ∗-normed algebras.

Definition: For a ∗-algebra A over C, a linear functional µ on A is positive if µ(a∗a) ≥ 0 for all
a ∈ A.

E.g. the 0-functional.

E.g. C2, with (α, β)∗ def= (β̄, ᾱ), then there are no non-zero positive linear functionals.

Definition: For a ∗-normed-algebra A, we say that a positive linear functional µ is a state if
‖µ‖ = 1.

This is the analog of a probability measure.

Let A be a ∗-algebra and µ a positive functional. Define a sesquilinear form on A by

〈a, b〉µ = µ(b∗a)

**Ew. We’ve made the order all backwards.** You can go in any order, but this is what
is most commonly done. Called the “GNS construction” (Gelfand, Naimar **sp?**, and Se-
gal).

We factor by vectors n ∈ N of length 0 to get a (positive) inner-product on A/N . Then complete,
and call this L2(A,µ). We would now like to get the operators.

For a ∈ A, we let La
def= b 7→ ab. This is a left-regular representation, and it tries to be faithful.

Then
〈Lab, c〉 = µ(c∗ab) = 〈b, La∗c〉

Thus, a 7→ La is a “*-representation”. (We’ve swept under the rug various issues of completeness,
etc.)

There are issues here: E.g. Let A be all C-valued polynomials onR. Let µ(p) def=
∫
R p(t)e

−t2dt. (The
Gaussian goes to 0 at both ends so fast that this is finite for every polynomial.) Moreover, µ(p∗p) =∫
|p(t)|2e−t2dt ≥ 0, so we have a genuine inner product on polynomials: 〈p, q〉 =

∫ ¯q(t)p(t)e−t
2
dt,

and we can complete with respect to this, and we get the usual L2(R, e−t2dt).

Now, we have the left-regular representation p 7→ Lp, but Lp is not a bounded operator! Indeed,
on the algebra of polynomials, there is no algebra norm that makes sense within this framework.
If we work in a compact subset, we can take the supremum norm, but e−t

2
dt lives on the whole

line.
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Question from the audience: What about other notions of positive, e.g. anything of the form
a∗a? Answer: then we don’t know that the sum of positive elements is positive, so not a terribly
useful notion. For instance, for normed ∗-algebras, it can fail that a∗a + b∗b 6= c∗c, even though
the notion of positive linear functionals will succeed. We can take the norm form the left-regular
representation, and then complete, but this will have little to do with the original norm. E.g. G
a discrete group, and look at `1(G), which is a fine ∗-algebra with . We also have an action of `1

on `2(G), with a good notion of operator norm (so can complete to a C∗ algebra), but has little to
do with the `1 norm. Question from the audience: is this like Gelfand transform on an abelian
group? Answer: of course.

6: February 6, 2008

Any questions? No. Today we will look seriously at positive linear functionals.

6.1 Positive Linear Functionals

If you don’t have an identity elements, things are more complicated, and we will have to deal with
that; as always, we begin with the unital situation.

Prop: Let A be a unital ∗-normed algebra. Let µ be a positive linear functional on A. If either

(a) µ is continuous (with respect to norm). This is situation in many examples.

(b) A is complete (i.e. a Banach algebra). (If (a) holds, then µ extended to the completion
of A, so reduces to (b), whereas if (b) holds, then µ is automatically continuous, as we
will show.)

Then ‖µ‖ = µ(1). (In particular, it is continuous.)

Proof:

We assume, by parenthetical remark above, that we are in case 2. above. We do not assume
continuity. Certainly 1∗ = 1 = 1∗ × 1, so µ(1) is a nonnegative real number.

Consider first a with ‖a‖ < 1 and a = a∗. Claim: then 1 − a = b∗b for some b in A.
Why? Consider

√
1− z : C → C which is holomorphic near 0, so has power series

∑
rnz

n,
converging absolutely and uniformly on any disk about 0 with radius less than 1. Thus
b =

∑
rna

n converges in A, by completeness. The rn ∈ R, so b = b∗, and b2 = 1− a.

Then µ(1) − µ(a) = µ(b∗b) ≥ 0, so µ(a) ∈ R, so µ(1) ≥ µ(a), and also µ(1) ≥ µ(−a), and
hence µ(1) ≥ |µ(a)|.

For general a with ‖a‖ < 1 (but no longer considering a = a∗, we consider, using Cauchy-
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Schwartz (µ is positive, and C.S. does not require definiteness), that

|µ(a)|2 = |µ(1a)|2 = |〈1, a〉µ|2
C.S.
≤ |〈1, 1〉µ||〈a, a〉µ| = µ(1)µ(a∗a) ≤ µ(1)2

where the last inequality follows from the previous paragraph, since ‖a∗a‖ ≤ ‖a∗‖‖a‖, and
we assume that ∗ is isometric. (This is part of the word “∗-normed”.) This completes the
proof (‖µ‖ is the sup of |µ(a)| for ‖a‖ ≤ 1). �

Prop: LetA be a C∗-algebra with 1, and let µ be a continuous linear functional onA. If µ(1) = ‖µ‖,
then µ is positive. I.e., this condition characterizes positivity.

Proof:

Let a ∈ A. We must show that µ(a∗a) ≥ 0. We can write a∗a = b2 for some b = b∗, so suffice
to show that µ(b2) ≥ 0. Let B = C∗(b, 1) = C(σ(b)), and restrict µ to B. Thus, we can verify
the result in the commutative case.

So, we need to show: if A = C(M) with M compact, and µ is a linear functional on A with
µ(1) = ‖µ‖, then µ is positive. By dividing, we can assume that µ(1) = ‖µ‖ = 1.

If f∗ = f , then µ(f) ∈ R. Why? Let µ(f) = α + iβ. Then |µ(f + it1)|2 = |α + i(β + t)|2 =
α2 +β2 +2βt+ t2. On the other hand, |µ(f+ it)|2 ≤ ‖f+ it‖2 ≤ ‖f‖2 + t2 since f is R-valued.
Then for every t, α2 + β2︸ ︷︷ ︸

|µ(f)|

+2βt ≤ ‖f‖2. Thus, β = 0, and we see that f ≥ 0 implies that

‖f − ‖f‖1‖ ≤ ‖f‖, so |µ(f)− ‖f‖| = |µ(f − ‖f‖1)| ≤ ‖f‖, so µ(f) ≥ 0. �

Theorem: Let A be a C∗-algebra with 1. For any a ∈ A with a = a∗, and for any λ ∈ σ(a) ⊆ R,
there is a state µ n A such that µ(a) = λ.

Proof:

Let B = C∗(a, 1) = C∗(σ(a)), and let µ0 on B be the δ-function at λ. Then µ0(a) = λ. Then
‖µ0‖ = 1 = µ0(1).

We invoke the Hahn-Banach theorem (big, mysterious, uses Choice). This extended µ0 to µ
on A, with ‖µ‖ = ‖µ0‖. But ‖µ0‖ = 1 = µ0(1) = µ(1). So by the previous proposition, µ ≥ 0,
and hence a state (positive linear functional of norm 1). �

In the commutative case, we care about this kind of thing because we want, e.g., `∞(Z) = C(?),
where ? = maximal ideals, or something. In separable case, we can get states in a more hands-on
way. In normed Banach spaces, we don’t know that there are states, but, e.g., for `1(G) or `2(G),
we can see there are some.

Next time, we will use this result, and dig into the GNS construction.
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7: February 8, 2008

**I was not in class. These are notes by Vinicius Ramos, TEXed much later by me —
any errors are undoubtedly mine.**

7.1 GNS Construction

Let A be a ∗-algebra. Let µ be a positive linear functional on A, i.e. µ(a∗a) ≥ 0. Define 〈a, b〉µ =
µ(b∗a).

Let Nµ = {a : 〈a, a〉µ = 0}. Nµ is a linear subspace. Indeed, if a ∈ Nµ, then |〈a, b〉µ|2 ≤
〈a, a〉µ〈b, b〉µ = 0. So Nµ = {a : 〈a, b〉µ = 0∀b ∈ A}.

Then 〈·, ·〉µ induces a definite inner product on A/Nµ. Complete this, and call the completion
L2(A,µ).

The left-regular representation of A on A is a “∗-rep”: 〈ab, c〉µ = 〈b, a∗c〉µ.

Fact: Nµ is a left ideal in A. Indeed, if b ∈ Nµ then

|〈ab, ab〉µ|2 = |〈b, a∗ab〉|2 ≤ 〈b, b〉2µ · · · = 0

So the left regular ∗-representation induces a representation of A on A/Nµ which is still a ∗-
representation.

Problem: This need not be a representation by bounded operators.

Theorem: Let A be a unital ∗-normed algebra and let µ be a continuous positive linear functional.
Then the “GNS”-representation for µ is by bounded operators.

Proof:

We need only show that ‖µ‖ = µ(1).

Let a, b ∈ A so that ‖Lab‖µ ≤ ca‖b‖µ. **Vinicius leaves a question mark (?) in the
margin; I’ve got nothing.** Then

‖Lab‖2 = 〈ab, ab〉µ = 〈a∗ab, b〉µ = µ(b∗a∗ab).

Define ν on A by ν(c) = µ(b∗cb). Then ν is continuous. Thus ‖ν‖ = ν(1).

ν(c∗c) = µ(b∗c∗cb) = µ ((cb)∗(cb)) ≥ 0

ν(a∗a) ≤ ‖a∗a‖‖ν‖ = ‖a∗a‖ν(1) = ‖a∗a‖µ(b∗b) = ‖a∗a‖‖b‖2µ.

So ‖La‖2 ≤ ‖a∗a‖ ≤ ‖a‖2. Hence ‖La‖B(L2(A,µ)) ≤ ‖a‖A. �
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We have L1 = 1L2(A,µ). **On the LHS, 1 ∈ A is the unit element; on the right is 1 the
identity operator on L2.**

Definition: A continuous ∗-representation of a ∗-normed algebra is a continuous ∗-homomorphisms
of A into B(H) for some Hilbert space H. (π,H) is non-degenerate if span{π(a)ξ : a ∈ A, ξ ∈
H} is dense in H.

Let ξ0 = 1 viewed as an element of L2(A,µ). Then Laξ0 = a viewed as an element of L2(A,µ).
Thus {Laξ0 : a ∈ A} is dense in L2(A,µ).

Definition: A continuous ∗-representation (π,H) of a ∗-normed algebra is cyclic if there is a vector
ξ0 such that {π(a)ξ0 : a ∈ A} is dense in H. Such a vector is called a cyclic vector.

Let (π,H) be a continuous ∗-representation, and let ξ ∈ H with ‖ξ‖ = 1. Define µ on A by
µ(a) = 〈π(a)ξ, ξ〉. Then µ(a∗a) = 〈π(a∗a)ξ, ξ〉 = 〈π(a)ξ, π(a)ξ〉 ≥ 0. So µ is a positive linear
functional. If A has unit and (π,H) is non-degenerate then µ(1) = ‖ξ‖2 = 1. We need to show
that ‖π(a)‖ ≤ ‖a‖, so µ is a state, called a vector state.

For GNS from µ, what is the vector state for ξ0? 〈aξ0, ξ0〉µ = 〈a, 1〉µ = µ(1∗a) = µ(a). Thus µ is
the vector state for the cyclic vector ξ0.

µ(1A) = 1.

Every state on a unital ∗-normed algebra is a vector state for a representation, namely its GNS
representation.

8: February 11, 2008

We were speaking in generalities about representations, and were in the midst of contemplat-
ing

H =
⊕
Hλ

indexed by a vast set λ ∈ Λ. Let (πλ,Hλ) be a family of ∗-representations of a ∗-algebra A. We
want to define the direct sum

⊕
πλ on

⊕
Hλ: the obvious answer is

πλ(a)ξ = (πλ(a)ξλ)λ

How do we know that the RHS is square-integrable? This construction works if there is a constant
K such that

‖πλ(a)‖ ≤ K‖a‖ ∀λ

Prop: Let A be a Banach ∗-algebra and π a ∗-homomorphism into a C∗-algebra (e.g. B(H)) (or A
is a ∗-normed algebra with each π continuous, so that π extends to the Banach completion).
Then ‖π(a)‖ ≤ ‖a‖ for each a ∈ A.
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Proof:

Adjoin identity elements. This is a little bit funny: A may well have an identity element, but
the homomorphism need not be identity-preserving. Even if A has an identity elements, you
can still adjoin another, in such a way as to make the homomorphism unital.

For each a = a∗, we have ‖π(a)‖ = ρ(π(a)) = the spectral radius (since π(a) is in a C∗

algebra). But if A unital−→ B, then we have only introduced more inverses, so ρ(π(a)) ≤ ρ(a) ≤
‖a‖.

For general a, do the usual thing: ‖π(a)‖2 = ‖π(a∗a)‖ ≤ ‖a∗a‖ ≤ ‖a‖2. �

Question from the audience: When you add a unit to a unital algebra, I think of this as
compactifying an already compact space? Answer: yes; the original unit is an idempotent, so you
are just adding a point that has nothing to do with the rest of the space.

Question from the audience: Are we assuming, in the continuous non-Banach case, that π has
unit norm? Answer: no, that’s a corollary.

Theorem: Any abstract C∗-algebra is isomorphic to a concrete C∗-algebra.

Proof:

Namely, let A be a C∗-algebra, and adjoin 1 if necessary. Let S(A) be the state space. For
µ(S(A)), let (πµ,Hµ) be the GNS representation. Let

(π,H) =
⊕

µ∈S(A)

(πµ,Hµ)

This is a faithful representation of A.

Given self-adjoint a, there exists µ with |µ(a)| = ‖a‖. On the other hand, |µ(a)| = 〈πµ(a)ξµ, ξµ〉
where ξµ is a cyclic element from GNS. This implies that ‖π(a)‖ ≥ ‖a‖. For general a, do
the usual squaring. By the previous Prop, we have ‖π(a)‖ = ‖a‖. �

If A is separable, then we can use a countable number of states, so we can get H separable.

Lurking in the background, we used Choice to get all these states.

Question from the audience: What is the advantage of finding pure states, and working just
with those? Davidson does this. Answer: We haven’t talked about pure states yet. They are
exactly the ones that give irreducible representations. We can sometimes get a smaller Hilbert
space by working just with pure states.

Prop: Let A be a ∗-algebra, and let (πj ,Hj , ξj) for j = 1, 2 be two cyclic representations of A.
Let µj = 〈πj(a)ξj , ξj〉 be the corresponding positive linear functionals on A. If µ1 = µ2, then
there is a unique unitary operator U : H1 → H2 with ξ1 7→ ξ2 and intertwining the A-action
(i.e. π2(a)U = Uπ1(a), i.e. U is an A-module homomorphism).
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Proof:

Try to define U by
U(π1(a)ξ1) = π2(a)ξ(2)

since the πj(a)ξj are dense. It’s not clear that this is well-defined. Ducking this for a moment,

〈U(π1(a)ξ1), U(π1(b)ξ1)〉H2 = 〈π2(a)ξ2, π2(b)ξ2〉
= 〈π2(b∗a)ξ2, ξ2〉
= µ2(b∗a)
= µ1(b∗a)
= . . .

= 〈π1(a)ξ1, π1(b)ξ1〉H1

So U is certainly length-preserving, so extends to all of H1.

But if the RHS is 0, so must be the LHS, so U is well-defined and isometric and unitary. �

Thus, for ∗-normed algebras, there is a bijection between {continuous positive linear functionals}
and {pointed cyclic representations} (i.e. has a specific choice of cyclic vector). **The board
says “isomorphism classes”, but if we have a unique isomorphism as thingies between
two thingies, then I say that as thingies they are the same thingy.**

If µ is a positive linear functional on a ∗-algebra A, do we have µ(a∗) = µ(a)? No, e.g. A =
polynomials vanishing at 0 on [0, 1]. Then let µ(p) = ip′(0).

On the other hand, sesquilinearity and positivity guarantee that 〈a, b〉µ = 〈b, a〉µ for any positive
linear functional. If A is unital, we can let b = 1A, so µ(1) = 〈a, 1〉µ = 〈1, a〉µ = µ(a∗).

Remark: “An approximate identity is enough.”

Let A be a ∗-normed algebra with {eλ} a two-sided approximate identity of norm 1. (We do
not require these to be self-adjoint; if it is two-sided, then {e∗λ} is also a two-sided approximate
identity.) And let µ be a continuous positive linear funcitonal on A. Then

(a) µ(a∗) = µ(a)

(b) |µ(a)|2 ≤ ‖µ‖µ(a∗a)

9: February 13, 2008

The first problem set is given out today. It’s elementary, but explores positivity to prevent against
wrong intuitions. Due next week.

For the homework, some notation: e.g. a+ for a in a C∗-algebra is just the positive part of the
function a ∈ C∗(a, 1) = C(M).
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9.1 We continue the discussion from last time

Prop: Let A be a ∗-normed algebra with two-sided approximate identity eλ of norm 1. Let µ be
a continuous positive linear funcitonal on A. Then

(a) µ(a∗) = µ(a)

(b) |µ(a)|2 ≤ ‖µ‖|µ(a∗a)|

Proof:

(a) µ(a∗) = limµ(a∗eλ) = lim〈eλ, a〉µ = lim 〈a, eλ〉 = limµ(e∗λa) = µ(a).

(b) |µ(e∗a)|2︸ ︷︷ ︸
→|µ(a)|2

= |〈a, eλ〉µ|2
C.S.
≤ 〈a, a〉µ〈eλ, eλ〉µ = µ(a∗a)µ(e∗λeλ) ≤ µ(a∗a)‖µ‖. �

Question from the audience: Do we assume positivity of eλ? Self-adjointness? Answer: Posi-
tivity only makes sense in a C∗-algebra. We can assume self-adjointness: if eλ is two-sided, then e∗λ
is also a two-sided approximate identity, so (eλ+ e∗λ)/2 is a self-adjoint approximate identity.

Prop: Let A be a ∗-normed algebra (without identity). Let µ be a positive linear functional on
A. Suppose that µ satisfies the two results of the previous proposition. Let Ã be A with 1
adjoined, and define µ̃ on Ã by µ̃(a+ z1) = µ(a) + z‖µ‖. Then µ̃ is positive.

Proof:

µ̃ ((a+ z1)∗(a+ z1)) = µ(a∗a) + µ(a∗z) + µ(z̄a) + µ(z̄z)
= µ(a∗a) + z µ(a∗)︸ ︷︷ ︸

=µ(a)

+z̄µ(a)

︸ ︷︷ ︸
2<(z̄µ(a))

+|z|2‖µ‖

≥ µ(a∗a)− 2|z||µ(a)|+ |z|2‖µ‖
≥ µ(a∗a)− 2|z|‖µ‖1/2µ(a∗a)1/2 + |z|2‖µ‖

=
(
µ(a∗a)1/2 − |z|‖µ‖1/2

)2

≥ 0�

Cor: Let A be a ∗-normed algebra with approximate identity of norm 1. Let µ be a continuous
positive linear functional on A. Define µ̃ on Ã by µ̃(a+ z1) = µ(a) + z‖µ‖. Then µ̃ ≥ 0.

Theorem: Let (π,H, ξ0) be the GNS representation for Ã, µ̃. Then when π is restricted to A,
we might worry that it is degenerate. But in fact it is non-degenerate. In particular, ξ0 ∈
span{π(A)H}. Also, µ(a) = 〈π(a)ξ∗, ξ∗〉.

Proof:
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Let {aj} be a sequence of states of A such that ‖aj‖ ≤ 1 and µ(aj)→ ‖µ‖. Then view these
in the GNS Hilbert space.

‖ ξaj︸︷︷︸
=aj inH

−ξ∗‖2 =
〈
ξaj − ξ∗, ξaj − ξ∗

〉
µ̃

= µ(a∗jaj)− µ(a∗j )− µ(aj) + µ̃(1)

≤ ‖µ‖ − µ(aj)− µ(aj) + ‖µ‖
→ 0�

This completes the GNS business.

9.2 Irreducible representations

Prop (do earlier): Let A be a ∗-algebra with 1 (or really a ∗-set, e.g. a group where x∗ def= x−1).
Let (π,H) be a non-degenerate representation of A (i.e. it assignes ∗ 7→ adjoint). Then (π,H)
is the direct sum (possibly vast) of cyclic representations.

Definition: A subspace K of H is π-invariant if π(A)K ⊆ K.

Prop: If K is π-invariant, then so is K⊥. So π = π|K ⊕ π|K⊥ .

Proof:

Let ξ ∈ K⊥, a ∈ A, with π(a)ξ ∈ K⊥. Let η ∈ K. Then 〈π(a)ξ, η〉 = 〈ξ, π(a∗)η︸ ︷︷ ︸
∈K

〉 = 0. �

So we have a sort of “semi-simplicity”.

Proof of “do earlier” Prop:

Choose ξ ∈ H, ξ 6= 0. Let H1 be π(A)ξ. This is obviously π-invariant (by continuity). So H⊥1
is π-invariant. Choose ξ2 ∈ H⊥1 , ξ2 6= 0, so H2

def= π(A)ξ2. Then H2 ⊥ H1. Then (H1 ⊕H2)⊥

is π-invariant. Choose ξ3, . . . . Really, use Zorn. �

In the separable case, we choose a countable dense “basis”, and work with that sequence, eschewing
Choice.

10: Problem Set 1: “Preventive Medicine”
Due February 20, 2008

**For posterity’s sake, I will also type up the handed-out problem sets.**

Let A =
(

0 1
1 0

)
and B =

(
s 0
0 t

)
, for s, t ≥ 0.
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1. Determine for which s, t we have B ≥ A.

2. Determine for which s, t we have B ≥ A+. **Recall from lecture: A+ is the positive
part of A, where we consider A as a function on its spectrum.**

3. Find values of s, t for which B ≥ A, B ≥ 0, and yet B 6≥ A+. (So be careful about false
proofs.)

4. Find values of s, t such that B ≥ A+ ≥ 0 and yet B2 6≥ (A+)2. (So again be careful.)

5. Can you find values of s, t such that B ≥ A+ and yet B1/2 6≥ (A+)1/2?

6. For 2× 2 matrices T and P such that T ≥ 0 and P is an orthogonal projection, is it always
true that PTP ≤ T?

11: February 15, 2008

**I was not in class. These are notes by Vinicius Ramos, TEXed much later by me —
any errors are undoubtedly mine.**

Prop: Let A be a ∗-normed algebra with approximate identity {eλ} of norm 1. Let (π,B) be a
continuous representation of A on a normed space. If π is nondegenerate (i.e. span(π(A)B)
is dense in B), then ∀ξ ∈ B we have π(eλ)ξ → ξ.

Proof:

If ξ = π(a)η, then π(eλ)ξ = π(aeλ)η → π(a)η = ξ. So this is also true for π ∈ span(π(A)B).
Use continuity to show it holds for B. �

Cor: For A a ∗-normed algebra with approximate identity {eλ} of norm 1, for µ a continuous
positive linear functional, we have µ(eλ)→ ‖µ‖.

Proof:

Form (πλ,Hλ, ξλ);
µ(eλ) = 〈π(eλ)ξλ, λ〉 → 〈ξλ, ξλ〉 = µ̃(1Ã) = ‖µ‖

�

Let A be a ∗-normed algebra (with approximate identity eλ); µ is a state of A if µ ≥ 0 and ‖µ‖ = 1.
Let S(A) = set of states of A.

If 1A ∈ A, then S(A) is a w∗-closed bounded convex subset of A and so is w∗-compact.

Proof:

µ(a∗a) ≥ 0 and µ(1) = ‖µ‖ = 1. �

19



S(A) can be viewed as “the set of non-commutative probability measures on A.”

May be false in the non-unital case: A = C∞(R), µn = δn
n→∞−→
w∗

0; that is not a state.

If 1 6∈ A, let QS(A) = {µ : µ ≥ 0, ‖µ‖ ≤ 1} be the set of “quasi-states”. This is the w∗-closed
convex hull of S(A) ∪ {0}. Then QS(A) is w∗-closed convex **illegible**, so compact.

Definition: A representation (π,B) of A on a Banach space is irreducible if there is no proper
closed subspace that is carried into itself by the representation, i.e. no non-zero C ( B so
that π(A)C ⊆ C.

Schur’s Lemma: Let (π,H) be a ∗-representation of a ∗-normed algebra A. Then π is irreducible
if and only if Endπ(H) = {C1H}. (Recall, the left hand side is the intertwiners {T ∈ B(H) :
π(a)T = Tπ(a) ∀a}.)

Proof:

(⇐) If not irreducible, let P be the orthogonal projection onto an invariant proper closed
subspace. Then P ∈ Endπ(H).

(⇒) Suppose π is irreducible and let T ∈ Endπ(H). Suppose T 6∈ C1H. Then either <T =
T+T ∗

2 or =T = T−T ∗
2i 6∈ C1H. So we can assume T ∗ = T . Then C∗(T,1) ∼= C(σ(T )). A proper

spectral projection for T will be in Endπ(H) and its range will be a proper closed invariant
subspace. Contradicts irreducibility of π. �

For µ, ν positive linear functionals, we write µ ≥ ν if µ−ν ≥ 0. For (πµ,Hµ, ξµ), let T ∈ Endπ(Hµ)
with 0 ≤ T ≤ 1. Set ν(a) = 〈Tπµ(a)ξµ, ξµ〉, then ν ≥ 0.

(µ− ν)(a) = 〈πµ(a)ξµ, ξµ〉 − 〈Tπµ(a)ξµ, ξµ〉 = 〈(1− T )πµ(a)ξµ, ξµ〉

So µ− ν ≥ 0 since 1− T ≥ 0.

Theorem: Given µ ≥ 0, the ν ≥ 0 such that µ ≥ ν are exactly of the form ν(a) = 〈Tπµ(a)ξµ, ξµ〉.

12: February 20, 2008

This piece we’re doing right now is the last piece of the purely theoretical bit. We will soon start
edging into examples, with theory along the way.

We are trying to show that for unital ∗-normed algebras, that the state space (a compact convex
subset of the dual) has extreme points which, per the GNS construction, result in irreducible
representations. It has been convenient to think not in terms of states but in terms of positive
linear functional.

Let A be a unital ∗-normed algebra, with positive linear functionals µ, ν with µ ≥ ν ≥ 0. Let
T ∈ EndA(Hµ) = B(L2(A,µ)) and 0 ≤ T ≤ 1. Then for example with can set

ν : a 7→ 〈Taξ0, ξ0〉µ. (1)
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Conversely, given ν, we consider:

|ν(b∗a)| = |〈a, b〉ν | ≤ ν(a∗a)1/2ν(b∗b)1/2 ≤ µ(a∗a)1/2µ(b∗b)1/2 = ‖aξµ‖µ‖bξµ‖µ (2)

Thus, if we set 〈aξµ, bξµ〉ν
def= ν(b∗a), is this well-defined? Yes, by equation (2), because if the

difference on is the 0-vector, then the RHS of above is 0. So then aξµ 7→ 〈aξµ, bξµ〉ν is a continuous
linear functional for ‖ · ‖µ, so it extends to Hµ (the vectors of the form aξµ are dense in H = the
completion). But on a complete Hilbert space, every positive linear functional comes from a vector.
So there is a vector T ∗bξmu so that 〈aξµ, bξµ〉ν = 〈aξmu, T ∗bξµ〉µ. This defines T ∗ for vectors of
the form bξmu, but also by equation (2), we see that bξµ 7→ T ∗bξmu is continuous for ‖ · ‖µ so T ∗

extends to Hµ, and chasing constants gives ‖T‖ ≤ 1. So we see that ν(b∗a) = 〈Taξµ, bξµ〉µ. Letting
b = 1 gives ν(a) = 〈Taξµ, ξµ〉µ.

Checking that T is in fact an endomorphism over A:

〈TLabξµ, cξµ〉 = 〈T (ab)ξµ, cξµ〉 = ν(c∗(ab)) = ν((a∗c)∗b) = 〈Tbξµ, a∗cξµ〉 = 〈LaTbξµ, cξµ〉

This checks that T commutes with La on a dense subspace, so T is in fact an endomorphism.
Chasing inequalities gives 0 ≤ T ≤ 1. Thus every 0 ≤ ν ≤ µ is of the form (1).

Moreover, if we have two different T s giving the same positive linear functional, then taking their
difference gives the zero positive linear functional (T 7→ ν in (1) is linear), so ν 7→ T is injective.
Thus, there is a bijection between {ν : µ ≥ ν ≥ 0} and {T ∈ EndA(Hµ) : 0 ≤ T ≤ 1}.

Definition: A positive linear functional µ is pure if whenever µ ≥ ν ≥ 0, then ν = rµ for some
r ∈ [0, 1].

Theorem: For positive linear functional µ, its GNS representation (πµ,Hµ, ξµ) is irreducible if
and only if µ is pure.

Proof:

If the GNS representation is not irreducible, then there exists P ∈ EndA(Hµ) a proper
projection. (So 0 ≤ P ≤ 1.) Use T = P in equation (1), and then ν ≤ µ but ν 6∈ [0, 1]µ,
because rµ gives the same GNS representation as µ (except that ξrµ = rξmu), whereas ν
gives a different one (shrunk by P ). Thus µ is not pure.

Conversely, if µ is not pure, then there is a positive ν ≤ µ with ν 6∈ [0, 1]µ, so Tν 6∈ C1, so
EndA(Hµ) 6= C1. So by Schur’s lemma, the GNS representation is not irreducible. I.e. Tν
will map onto a proper invariant subspace. �

Now we want to convert this statement about positive linear functionals into one about states.

Reminder: For a convex set C, a point µ is an extreme point if whenever µ = tν1 + (1− t)ν0 and
0 < t < 1, then ν0 = ν1 = µ.

Theorem: (Krein-Milman)

A compact convex set is the closed convex hull of its extreme points.
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Question from the audience: Any topological vector space? Answer: Locally convex. Ques-
tion from the audience: Not just a Banach space? Answer: No. We are applying it to the
dual of a hairy space, so not necessarily Banach.

Even in the finite-dimensional case, the set of extreme points need not be closed.

Theorem: For a ∗-normed algebra A with 1, and a state µ, the GNS representation for µ is
irreducible if and only if µ is an extreme point of S(A) = state space.

Since “pure” has fewer syllables than “extreme”, we refer to extreme points as pure points.

Proof:

Suppose µ is extreme. It is sufficient to show that it is pure.

Suppose µ > ν > 0. Then

µ = ν + (µ− ν) = ‖ν‖

∈S(A)︷︸︸︷
ν

‖ν‖
+‖µ− ν‖

∈S(A)︷ ︸︸ ︷
µ− ν
‖µ− ν‖

But ‖ν‖ + ‖µ − ν‖ = ν(1) + (µ − ν)(1) = µ(1) = 1 by positivity, and since µ is extreme, we
must have ν

‖ν‖ = µ, so r = ‖ν‖ and µ is pure.

Conversely, if µ is pure, we should show that it is extreme. Consider µ = tν1 + (1− t)ν0 with
0 < t < 1 and ν0, ν1 ∈ S(A). Then µ − tν1 = (1 − t)ν0 ≥ 0, so µ ≥ tν1, so tν1 = rµ, but
ν1(1) = 1 = µ(1), so r = t, so ν1 = µ (and same argument works for 1− t and ν0). �

Question from the audience: Are these the point measures? Answer: Yes, exactly. These are
the δx on C(X), and L2(X, δx) are the irreducible representations. In the noncommutative case,
things are more complicated.

We have two minutes left, and will talk about non-unital algebras.

For A non-unital ∗-normed with approximate two-sided identity of norm 1, we define a quasi-state
space QS. We drew a picture **perhaps I’ll add later: a cone with 0 at the vertex and
S(A) at the base**, and the extreme points of QS(A) are exactly the extreme points of S(A)
together with 0. Certainly 0 does not give an interesting representation (the 0 Hilbert space). Even
in this non-unital case, the extreme points of the now non-closed S(A) are almost enough; QS is
weak closed.

13: February 22, 2008

(We begin by handing back the homework turned in last time.)

We begin with a few comments to wind things up.
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Let A be a ∗-normed algebra with approximate identity of norm 1. Then for any continuous
∗-representation (π,H), of A, then we know that ‖π(a)‖ ≤ ‖a‖. So set

‖a‖C∗ = sup {‖π(a)‖ : (π,H) is a cont’s ∗-rep of A} . (3)

So ‖a‖C∗ ≤ ‖a‖, and you can check that ‖a∗a‖C∗ = (‖a‖C∗)2, so the completion of A with respect
to ‖ · ‖C∗ is a C∗-algebra, called the “universal C∗-enveloping algebra of A”. It has the property
that there is a natural bijection of

{continuous ∗-reps of A} ↔ {∗-reps of C∗(A)}

Comment: If (π,H) is a representation, look at

πAH︸ ︷︷ ︸
rep is

non-degen

⊕
(
πAH

)⊥︸ ︷︷ ︸
0−rep

.

Question from the audience: Is there some diagram that goes with this? Answer: Yes:

C∗(A)

$$H
H

H
H

H

A

OO

π // B(H)

Now, we form ⊕
µ∈S(A)

(πµ,Hµ)

which has the same norm, since we could add the word “cyclic” to eqn (3).

Instead, let’s look at the “atomic” representation:

(π,H) def=
⊕

µ a pure state of A

(πµ,Hmu)

‖a‖atomic
def= ‖π(a)‖ = sup{‖π(a)‖ : (π,H) is an irreducible rep of A}

This is a good construction, because there is more than a set of irreducible representations, but
only a set of pure states.

Prop: ‖a‖atomic = ‖a‖C∗ . (These are both obviously C∗-seminorms.)

Proof:

≤ is clear. For ≥, by C∗-identity, it suffices to show for a∗a, i.e. we can assume that a ≥ 0.

If µ(a) ≤ c for all pure states µ (so certainly for any convex combination of pure states, so also
for the closure of the convex combinations), then by the Krein-Milman **sp?** theorem,
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we have µ(a) ≤ c for any µ. Take a∗a and look at the commutative C∗-algebra it generates,
and we can find a state that returns the norm, and use the Hahn-Banach theorem to extend
this state to the whole algebra. So there is a state µ with ‖a∗a‖C∗ = µ(a∗a), so ‖a∗a‖C∗ ≤ c.
This gives us the reverse inequality. �

Getting a little ahead of ourselves: if G is locally compact, with a left Haar measure on G, we can
form L1(G) under convolution. This has a faithful (i.e. injective) representation as operators on
L2(G) (again by convolution). Then every vector in L2 is a state in L1 — it has enough states
to separate the points. So L1 has lots of pure states, and hence G has lots of irreducible unitary
representations. In 1943, Gelfand and Raikov showed this. We will go into this in more detail later;
this is just foreshadow.

If you respond “Ok, it has lots, show me some”, then that’s hard. The Krein-Milman theorem is
non-constructive — it needs Axiom of Choice — so this is all very encouraging, but it doesn’t give
you any real technique for finding these representations. How to find things depends on how the
example is presented. There’s an enormous literaturs on, say, GL(3,R), which is understood, but
GL(3,Z) is not.

13.1 Compact operators

For a Hilbert space H, let B0(H) be the C∗-algebra of compact operators on H. We should ask
what definition we mean for “compact operators”. In Banach land, there is a definition, and you
have to look fairly far before you come across an example where the compact operators are not just
the closure of finite-rank operators. Hilbert spaces are more constrained; even finite-dimensional
normed spaces can be bewildering. For Hilbert spaces, compact is nice: B0(H) def= the closure of
finite-rank operators.

Under the operator norm, this is a C∗-algebra. Moreover, B0(H) is topologically simple: there
are no proper closed 2-sides ideals. It has lots of important non-closed 2-sided ideals (trace-class,
Hilbert-Schmidt, etc.; these are in fact ideals of B(H)). But any ideal that isn’t 0, then we can
compress it between two rank-1 projections, so there are rank-1 operators in the ideal, so all are,
so all finite-rank operators are in the ideal.

Theorem: (Shows up lots of places, e.g. uniqueness of Heisenberg commutation relations.)

Up to unitary equivalence, B0(H) has exactly one irreducible representation, namely the one
on H. Furthermore, every non-degenerate representation is a direct sum of copies of H.

Proof:

Let 〈·, ·〉H be linear in the second variable **this is how I like it**, and put the scalars
on the right. For ξ, η ∈ H, define 〈ξ, η〉0 ∈ B0(H). This will be a familiar object: 〈ξ, η〉0

def=
{ζ 7→ ξ〈η, ζ〉H}. I.e. we have a bimodule B0(H)HC.
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For T ∈ B0(H) (or in fact in B(H)), we have

T 〈ξ, η〉0 = 〈Tξ, η〉0

and you can check that (〈ξ, η〉0)∗ = 〈η, ξ〉0. The consequence is that 〈ξ, η〉0T = 〈ξ, T ∗η〉0. (Of
course, 〈·, ·〉0 is C-linear in the first variable.) �

(Time is up; we will continue this discussion next time.)

14: February 25, 2008

Theorem from last time: B0(H) has one (up to equivalence) irreducible representation, namely
B0 : H → H. And every (non-degenerate) representation is a direct sum of these.

Proof, continued from last time:

Last time, we defined some rank-one operators 〈ξ, η〉0, which we view as a B0-valued inner
product. For bookkeeping, we let 〈·, ·〉H be C-linear in the second variable.

Let (π, V ) be a non-degenerate representation of B0(H). For vectors in H we will use ξ, η, . . . ,
whereas for vectors in V we will use v, w, . . . ; we will not carry the “π” around, preferring
“module notation”: Tv def= π(T )v for v ∈ V and T ∈ B0(H). We take 〈·, ·〉V to be linear in
the second variable.)

Of course, B0(H) is a C∗-algebra, and in particular it is complete. Thus, the representation π :
B0(H)→ B(V ) is a ∗-homomorphism of C∗-algebras, and hence is continuous. Furthermore,
B0(H) is topologically simple: there are no closed two-sided ideals. Thus π is injective (its
kernel is closed, since it is continuous).

So choose ξ ∈ H with ‖ξ‖ = 1. Then 〈ξ, ξ〉0 is the rank-1 self-adjoint (and hence orthogonal)
projection onto ξC. So π(〈ξ, ξ〉0) is also a (self-adjoint orthogonal) projection on V (being a
projection is an algebraic property), and it is not the 0 projection. So choose v0 with ‖v0‖ = 1
in the range of this projection.

Thus, define Q : H → V by
Q : η 7→ 〈η, ξ〉0v0

This is obviously continuous.

〈Qη,Qζ〉V = 〈〈η, ξ〉0v0, 〈ζ, ξ〉0v0〉V
= 〈v0, 〈ξ, η〉0〈ζ, ξ〉0v0〉V since π is a ∗-representation

=

〈
v0,

〈
〈ξ, η〉0ζ︸ ︷︷ ︸
=ξ〈η,ζ〉H

, ξ

〉
0

v0

〉
V

= 〈η, ζ〉 〈v0, 〈ξ, ξ〉0v0〉
= 〈η, ζ〉
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So Q is isometric. Moreover, for T ∈ B0(H),

Q(Tη) = 〈Tη, ξ〉0v0

= T 〈η, ξ〉0v0

= T Q(η)

So Q : H → V intertwines π with the representation of B0(H) on H. Thus, the range of Q is
a closed subspace of V carried into itself by the action π : B0(H)→ B(V ). The representation
π restricted to this subspace is unitarily equivalent to the representation of B0(H) on H. If
π itself is irreducible, then range of Q must be all of V , establishing the first part of the
theorem. If the representation is not irreducible, take Q(H)⊥, which is still a representation,
and rinse and repeat (with Zorn **the best brand of conditioning shampoo**). �

**This paragraph was said after the next few, but belongs here.** B0(H) has only one
irreducible representation, but any pure state gives an irreducible representation a la GNS. So take
any pure state, do the GNS, and you’ll get the representation on H, with a cyclic vector. So every
pure state of B0(H) is represented by a vector ξ ∈ H with ‖ξ‖ = 1, i.e. µ(T ) = 〈Tξ, ξ〉. Multiplying
this vector by something in S1 ⊂ C does not change the state; the pure states are represented by
rank-1 projections p, via µ(T ) = tr(pT ). We in fact have a bijection {pure states of B0(H)} ↔
{rank-1 projections} = PH the “projective Hilbert space”. This is the setting for the quantum
physics of finitely many particles. Moreover, the convex hull S(B0(H)) = {“mixed states”} =
{density operators} = {D ∈ B(H) : 0 ≤ D, tr(D) = 1} where the corresponding state has µD(T ) =
tr(DT ). Question from the audience: Does ≤ 1 follow from that? Answer: Yes, but tr = 1
is the interesting part So, with a quantum-mechanical system, it is the state that evolves, not
the vector; i.e. it is the point in PH. This often confuses people. Important questions include
“What are the automorphisms of PH?” Well, these include automorphisms of H and also anti-
automorphisms. These anti-linear operators do occur, e.g. Time and Parity reversals.

A theorem of Burnside says that if a subalgebra of the algebra of operators on a finite-dimensional
vector space acts irreducibly, then the subalgebra is the whole algebra. For example, at the purely
algebraic level, then C and Mn(C) have only one irreducible representation, and more generally,
for any ring R, R−Mod and Mn(R)−Mod are equivalent as categories, under

RV 7→Mn(R) R
n
R ⊗R RV

This is the notion of Morita equivalence.

The general picture for C∗-algebras is similar. For our example, we have 〈·, ·〉B0(H), B0(H)HC ,
and 〈·, ·〉C. And in general, we will have 〈x, y〉Az = x〈y, z〉B and a module AXB, plus some
nondegeneracy axioms, and this will give “strong Morita equivalence.” Two non-commutative
spaces that are strong Morita equivalent will have the same homology and cohomology.

Theorem: (analogous to a theorem of Burnside, moving towards a Stone-Weierstrass theorem)

Let A be a sub-C∗-algebra of B0(H) and suppose that H is an irreducible module of the action
of A. Then A = B0(H).
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15: February 27, 2008

One more comment on the theory of bounded operators:

Naimark Conjecture: (1940s)

Let A be a C∗-algebra. Suppose A has the property that, up to equivalence, A has only one
irreducible representation. Then A ∼= B0(H) for some H.

Rarely do we come across algebras that we don’t know are B0, but for neatness, this would be nice
to know. The answer is “Yes” if A is separable. In 2003, however, there was a surprise: Chuck
Akerman and Nick Weaver (both Ph.D. students of Prof. Bade, at UC-Berkeley) showed that the
answer depends on the axioms of set theory. For usual axioms **ZF definitely, and probably
ZFC?**, the question is undecidable. More specifically, If we assume the Diamond Principle, we
can construct a counterexample to Naimark’s conjecture, and Diamond is consistent with usual
axioms.

Question from the audience: What does separable mean? Answer: As a Banach space, it
is separable: there is a countable norm-dense subset. Question from the audience: If A acts
on a separable Hilbert space, does that imply A is separable? Answer: I don’t know. I’d expect
that that does imply the result, but I did not try to understand the paper, since I don’t know set
theory.

15.1 Continuing from last time

We stated this Burnside theorem:

Theorem: If A is a C∗-subalgebra of B0(H) that acts irreducibly on H, then A = B0(H).

Proof:

The action must clearly be non-degenerate. A is a C∗-subalgebra, and H is of non-zero
dimension, so A has non-zero elements, and T ∗T is non-zero if T is. So we pick out T ∈ A
with T 6= 0, T ≥ 0. Then T is compact — specturm is discrete, except perhaps 0 could be an
accumulation point —, by the spectral theorem of compact self-adjoint operators. So T has
a non-zero eigenvalue, and the projection onto the eigensubspace is in A. Thus A contains
proper projections onto finite-dimensional subspace.

So we look at all projections, and find a minimal one: Let P ∈ A be a projection of minimal
positive dimension (of range of P ). Then for any T ∈ A with T = T ∗, we look at PTP , which
is clearly self-adjoint with finite dimension. So it has spectral projections, and it’s obvious
that the spectral projections must be smaller than P (in the strongest sense: they are onto
subspaces of range of P ). These spectral projections are certainly still in A, since they are
polynomials in PTP . But P is minimal, so the only possible spectral projections for PTP
are 0 and P . Thus, there exists α(T ) ∈ R (self-adjoint implies real eigenvalues) such that
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PTP = α(T )P . By splitting operators into their real and imaginary parts, we can extend
this from self-adjoint T to all T : for any T ∈ A, we have α(T ) ∈ C so that PTP = α(T )P .

Let ξ, η ∈ range of P , with ‖ξ‖ = 1 and η ⊥ ξ. We’d like to show that η = 0, since we’re
trying to show that range of P is one-dimensional. Well, for T ∈ A,

〈Tξ, η〉 = 〈TPξ, Pη〉 since Pξ = ξ, etc.
= 〈PTPξ, η〉 since P ∗ = P

= 〈α(T )ξ, η〉
= 0

But {Tξ : T ∈ A} is A-invariant, so = H, so η = 0.

So A contains a rank-1 projection P on Cξ. Then {Tξ} are dense in H, so TP is rank-≤ 1
taking ξ to Tξ. Since A is norm-closed, if we take any vector tη 6∈ {Tξ}, we can approximate
it by such, and then look at corresponding TP , which will converge to the rank-one operator
on η. I.e., for any η ∈ H, the rank-one operator 〈η, ξ〉0 is in A. But A is closed under ∗, so
〈ξ, ζ〉0 is also in A for all ζ ∈ H. Multiplying gives 〈η, ζ〉0 ∈ A, so all rank-one operators in
B0(H) are in A, and so all of B0(H) is in A. (All rank-one are in, so all finite-rank, and we
defined B0 to be the closure of finite-rank. Remember that you have to look fairly far to find
a Banach algebra where the compact operators are not the closure of finite-rank ones, but
there are some examples, but in C∗-land they all are.) �

Question from the audience: This is a converse of Schur’s lemma. Answer: In some sense.

15.2 Relations between irreducible representations and two-sided ideal

We don’t need the full strength of a C∗-algebra.

Prop: Let A be a ∗-normed algebra, I a two-sided ideal, and assume that I has a two-sided
bounded approximate identity (for I). Let (π,H) be a continuous irreducible representation
of A. Then either

(a) π(I) = 0, or

(b) π|I is irreducible.

Proof:

If π(I) 6= 0, then look at {π(I)H} 6= 0 (meaning linear span), which is clearly A-invariant. So
it is all of A, and hence {π(I)H} = H, i.e. π|I is non-degenerate. Let {ej} be an approximate
identity for I. We showed that π(ej)ξ → ξ for all ξ ∈ H. Let K be a closed π|I -invariant
subspace. Then K is A-invariant, because: given ξ ∈ K and a ∈ A, and switching to module
notation, aξ = lim a(ejξ) = lim(aej)ξ. But aej ∈ I, so aejξ ∈ K, and since K is closed,
aξ ∈ K. �
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Prop: Let A be a ∗-normed algebra, I an ideal with approximate identity. Let (π,H) and (ρ,K)
be two irreducible representations of A. If π(I), ρ(I) 6= 0 (so π|I and ρ|I are irreducible), and
if π|I is unitarily equivalent to ρ|I , then π and ρ are unitarily equivalent.

Proof:

Let U : H → K be a unitary equivalence over I. I.e. Uπ(d) = ρ(d)U for d ∈ I, and U unitary.
Then for a ∈ A, we have Uπ(a)ξ = limUπ(a)π(ej)ξ = limUπ(aej)ξ = lim ρ(aej)Uξ =
lim ρ(a)ρ(ej)Uξ = ρ(a)Uξ. �

Theorem: Let A be a C∗-algebra and (π,H) an irreducible representation of A. If π(A) contains
at least one non-zero compact operator, then π(A) contains all compact operators. In this
case, moreover, any irreducible representation of A with the same kernel as π is unitarily
equivalent to (π,H).

We will give the proof next time.

16: February 29, 2008

**I was 10 minutes late.**

We prove the theorem stated at the end of lecture last time. **Proof omitted, since I was late.
The proof follows from the results stated in last time’s lecture.**

Definition: (Kaplansky 1950s)

For A a C∗-algebra,

(a) A is CCR (“completely continuous representation”, not “canonical commutation rela-
tions”) if for every irreducidble representation (π,H) of A, we have π(A) = B0(H). In
Dixmier’s **sp?** book, these are called liminal.

(b) A is GCR (“generalized”) if for every irreducible representation, π(A) ⊆ B0(H). Also
called postliminal.

(c) A is NCR (“not”) if π(A) ∩ B0(H) = 0 for all irreducible representations. Also “anti-
liminal”. (These might be “NGR” rather than “NCR”.)

E.g. Let K =
⋂
{ker(π) : π(A) ∩ B0(H) 6= 0}, then K is GCR and A/K is NCR.

Theorem: (Harish-Chandra, 1954)

For G a semi-simple Lie group (e.g. SL(n,R)), then π(L1(G)) ⊆ B0(H), i.e. C∗(G) is CCR.

Theorem: (Dixmier)

If G is a nilpotent Lie group (i.e. closed connected subgroups of
(

1 ∗
0 1

)
— every Lie group

satisfying **some conditions** is a discrete quotient of one of these), then C∗(G) is CCR.
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Many solvable groups —
(
∗ ∗
0 ∗

)
— are GCR. However, Mantner showed by 1950s, there exists

solvable groups that are not GCR. E.g. Take C2, and let α be the action of R on C2 by αt : (z, w) 7→
(eitz, eitθw) with θ irrational. This doesn’t change the lengths of vectors, so e.g. if z, w ∈ S1 ⊆ C,
they are preserved. I.e. we have an orbit that, since θ 6∈ Q, is dense in the torus T 2 = S × S. So
let G = C2 oα R. Topologically this is R5, but the group is not GCR.

Prop: Let A be a unital ∞-dimensional simple (no proper ideals) C∗-algebra. Then A is NCR.

E.g. Canonical anti-commutation relations:

M2(C) // M4(C) // M8(C) // . . .

T
� //

(
T 0
0 T

)
� // . . .

Taking M3 →M9 → . . . , or 2 7→ p for other primes, give “ultra hyperfinite” algebras. Jim Glimm
studied these in his doctoral thesis, and then went off into QFT, working with Arthur Jaffey, and
then wandered into PDEs and shock waves, then numerical analysis.

Also, C∗r (Fn), where Fn is a free group, is an interesting example for n ≥ 2.

Theorem: (Thoma, 1962)

For a discrete group G, if C∗(G) is GCR, then G has an Abelian normal subgroup N such
that G/N is finite.

Definition: For a ∗-algebraA, an ideal is primitive if it is the kernel of an irreducible ∗-representation
on a Hilbert space. (Or omit the ∗ and look at Banach spaces.)

Notation: For a ∗-normed algebra A, we write Â for the set of unitary equivalence classes of
irreducible representations on Hilbert space.

Cor: For a GCR C∗-algebra, there is a bijection between Â and the set of primitive ideals of A.

Theorem: (Machey, Dixmier, Fell, and final hard part by Glimm)

Let I be a primitive ideal of A with irreducible representation (π,H) (i.e. kerπ = I) with
π(A) ∩ B0(H) = 0. (So-called “bad case.”) Then there is an uncountable number of inequiv-
alent irreducible representations of A with kernel I, and they are unclassifiable (in a specific
technical sense stated by Machey).

Proof idea:

Let B = A/I, and look at irreducible faithful reps. Can find a Hilbert space H on which each
rep can be realized. So . . . **out of time** �
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17: March 3, 2008

**Again I was late to class.**

Theorem: (Glimm)

If A has an irreducible representation π such that π(A) ∩ B0(H) = 0, then the irreducible
representations are not classifiable.

To “classify” the irreducible representations means to find a countable number of real-valued Borel
functions on R that are constant on the equivalence classes.

Because of the analogy with von Neuman algebras, GCR is also called “type I”.

17.1 Some topology and primitive ideals

For non-GCR algebras, don’t look for all irreducible representations. Look instead at the kernels
of irreducible representations.

Definition: For a C∗ algebra A, a two-sided ideal is primitive if it is the kernel of an irreducible
representation.

We write Prim(A) for the set of primitive ideals, although this is an unfortunate notation, as it
looks like “prime”. **I will use “Spec(R)” for the primes of a ring R.** (Recall, J a two-
sided ideal of R is prime if whenever K1K2 ⊆ J and K1 and K2 are two-sided ideals, then at least
one of the Ki is in J .) In fact, if A is C∗, then any primitive ideal is prime. Proof: Let K1,K2

be subideals of primitive ideal J (with associated representation (π,H)) with K1K2 ⊆ J . Since
J is closed, we can assume that K1 and K2 are. Assume K1 6∈ J , and then π(K1) 6= 0, and so
by irreducibility π(K1)H = H. Ditto for K2, and everything is continuous, so H = π(K2)H =
π(K2)π(K1)H = π(K2K1)H = 0. �

Rhetorical Question: Is every prime ideal primitive? Answer: No. Consider A = C([0, 1]) and
J = {f ∈ A : f = 0 in a nbhd of 1/2}. This is not a closed ideal, but it is prime. There are more
complicated examples as well. But primitive ideals are closed. Rhetorical Question′: Is every
closed prime ideal primitive? Answer: If A is separable, yes, using Baire category theorem. In
2001, Nik Weaver constructed a (large) counterexample using transfinite induction.

For any ring R (with 1), on the set Spec(R) of prime ideals we have the “hull-kernel” or “Jacobson”
topology (for commutative rings called “Zariski” topology). We can take its restriction to any subset
M of prime ideals. Misusing the word ker, given S ⊆M , we set kerM (S) =

⋂
{J ∈ S}. Conversely,

given I ∈ Spec(R), we set hullM (I) = {J ∈ M : J ⊇ I}. Then we declare our topology: For
S ⊆M , we define the closure S def= hullM kerM (S).

The Kuratowski closure axioms tell us when a definition of “closure” defines a topology.

1. ∅ = ∅
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2. S ⊇ S **original notes said ⊆, but that is surely wrong, and I probably mistran-
scribed from the board**

3. S = S

4. S ∪ T = S ∪ T

Only this last property requires any thinking. If S ⊆ T , then S ⊆ T , clearly, and thus we have
S ∪ T ⊇ S ∪ T . Why ⊆? This requires primality. Let L ∈ S ∪ T . Then L ⊇

⋂
{J ∈ S ∪ T} =⋂

{J ∈ S} ∩
⋂
{J ∈ T} = ker(S) ∩ ker(T ) ⊇ ker(S) ker(T ) (multiplication as ideals). But L is

prime, so L ⊆ ker(S) or ker(T ), and so L ∈ S ∪ T .

So, on Prim(A) (for A a C∗-algebra), put on the hull-kernel topology. Prim(A) is not in general
Hausdorff. But for C∗-algebras, it is locally compact, in the sense that every point has a closed
neighborhood such that any open cover of the nbhd has a finite subcover. Now, Baire category
theorem works in separable land, and also in this case. Prim(A) is T0, i.e. if J ∈ {K} and K ∈ {J},
then K = J .

E.g. Let A = B0(H)∼, i.e. B0(H) adjoin an identity element. Then we have (only) two closed
ideal 0 and B0(H), and {0} = {0,B0(H)}, and {B0(H)} is closed.

18: March 5, 2008

18.1 Examples

We begin with some rather abstract examples, but we won’t stay for very long. It’s good to have a
framework for examples: generators and relations. We can have a (possibly very infinite) collection
{a1, a2, . . . } of generators, and we should also have a∗1, a

∗
2, . . . . The relations are non-commutative

polynomials in the generators. Then form the free algebra F on the generators, which is a ∗-algebra:
∗ : ai 7→ a∗i and ∗ reverses the order of words and is anti-linear over C. Let I be the ∗-ideal generated
by the relations. Then form A = F/I, which is a ∗-algebra: it is the universal ∗-algebra for the
given generators and relations.

We can look for ∗-representations of A, i.e. ∗-homomorphisms of A into B(H) for various Hilbert
spaces H. For a ∈ A, set

‖a‖C∗
def= sup{‖π(a)‖ : π is a ∗-rep of A}

This might be +∞. E.g. one generator (and its adjoint) and no relations. We might also have
‖a‖C∗ = 0 forall a. E.g. one generator, with relation a∗a = 0.

So the issues are:

1. Do the relations force ‖a‖C∗ <∞ on the generators (if it’s finite on the generators, then it’s
finite on any polynomial).
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E.g. u∗u = 1 = uu∗ (we have a generators called “1”, satisfying all the relations 1 should
have). Then u is unitary in any representations, so ‖u‖ = 1.

2. Are there non-zero representations?

It may happen that ‖a‖C∗ = 0 for certain a ∈ A, and such a form an ideal, by which we can
factor out.

If 1. holds, then the quotient in 2. will have a norm satisfying the C∗ relation, and factoring out gives
a C∗-norm, so we can complete. This gives the C∗-algebra for the generators and relations.

3. There may be a natural class of ∗-representations which give a C∗-norm ‖·‖′C∗ , but this ‖·‖′C∗
does not give the full ‖ · ‖C∗ . It might be smaller.

Question from the audience: Like the atomic norm, taking just irreducible representations?
Answer: No, that will just give us back the same thing. Indeed, doing this construction to a
C∗-algebra will leave it intact.

E.g. If we just have the one relation S∗S = 1 and not on the other side, then we get the C∗-algebra
for the unilateral shift on `2(N).

E.g. Let G be a discrete group, and take the elements of G as generators, with relations as in G.
Also demand that x∗ = x−1. Then the representations of this set of generators and relations is the
same as unitary representations — well, we never demand that an algebra’s identity element go to
1 ∈ B(H), but it will go to an idempotent, i.e. a projection operator, so we can cut down — on
subspaces. All words in A in the the generators are just given by elements of G. So A (purely at
the algebraic level; we haven’t completed) consists of finite linear combinations of elements of G.
I.e. given by functions f ∈ Cc(G) (continuous of compact support). **I would call this C[G]
instead. This construction is covariant in G, but Cc(−) is by rights contravariant.**
I.e. an elements of A is

∑
x∈G f(x)x. Question from the audience: Compact support for the

discrete group is just ... Answer: Finite support. Question from the audience: So this is
exactly the group ring. Answer: Yes.

E.g. G = SL(3,Z). Where do we find irreducible unitary representations of this?

In fact, for this setting, there always exist two unitary representations:

(a) The trivial representation, 1-dimensional on H = C.

(b) The left-regular representation of G on `2(G):

(Lxφ)(y) = φ(x−1y)

We need the inverse to preserve LxLz = Lxz. This really is a unitary operator, satisfying all
the necessary relations.
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Some group-ring calculations:(∑
f(x)x

)(∑
f(y)y

)
=
∑
x,y

f(x)g(y)xy =
∑
z

(∑
xy=z

f(x)g(y)

)
z =

∑
y

(∑
x

f(x)g(x−1y)

)
︸ ︷︷ ︸

∈Cc(G)

y

I.e. we define convolution on Cc(G) by

(f ? g)(y) def=
∑
x

f(x)g(x−1y)

Then (
∑
f(x)x) (

∑
f(y)y) =

∑
(f ? g)(z)z.

What about the ∗? (∑
f(x)x

)∗
=
∑

f(x)x∗ =
∑

f̄(x)x−1 =
∑

f̄(x−1)x

So on Cc(G) we set
f∗(x) def= f(x−1)

Anyway, for a representation (π,H) of G, we have π (
∑
f(x)x) def=

∑
f(x)π(x). So, for f ∈ Cc(G),

set πf
def=
∑
f(x)π(x). Then f → πf is a ∗-representation of Cc(G). Conversely, a ∗-representation

of Cc(G) must restrict to a unitary representation of G, since we can view G ↪→ Cc(G), by x 7→ δx.
**Gah! If G is not discrete, then the δ functions are not in Cc(G), although they are
in C[G] the group ring.**

Let L be the left-regular representation of G on `2(G), and look at δe ∈ `2(G) be the vector at the
identity. Then

Lfδe =
(∑

f(x)Lx
)
δe =

∑
f(x)δx ∈ `2(G)

So if Lf = 0, then f = 0. So L is a faithful ∗-representation of Cc(G). So left ‖f‖rC∗
def= ‖Lf‖; this

is a legitimate C∗-norm on Cc(G). This is an example of 3. above. (r for “reduced”)

Theorem: ‖ · ‖rC∗(G) = ‖ · ‖C∗(G) if and only if G is amenable.

There are twenty different equivalent definitions of “amenable”. Where does the name come from?
G is amenable if on `∞(G) there is a state (“mean”) µ which is invariant under left translation,
e.g. µ(Lxφ) = µ(φ) forall φ ∈ `∞(G). All abelian groups are amenable. Exercise: Why is Z
amenable?

Question from the audience: You get the left-invariant representation by looking at . . . . Where
is the other one? What is the norm on C∗(G)? Answer: We defined ‖Lf‖

def= ‖Lf‖B(`2(G)).

Question from the audience: What is the topology on G? Answer: Discrete. We will eventu-
ally imitate this on locally compact groups.

Question from the audience: How is this µ related to the Haar measure? Answer: Every finite
group is amenable. Just use the Haar measure.
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19: March 7, 2008

We left off on this business of amenable groups. Another version:

Definition/Theorem: G is amenable if it satisfies Følner’s condition:

∀ε > 0, ∀ finite K ⊂ G, ∃ finite U ∈ G s.t. ∀x ∈ K, |xU
a
U |

|U |
< ε

Where
a

is the symmetric difference “xor.”

Finite groups and solvable groups are amenable, but Fn the free group and SL(n,Z) for n ≥ 2 are
not.

19.1 Tensor products

Let A and B be C∗-algebras with 1. We want A⊗B, which should include elements like a⊗ b, and
A ↪→ A ⊗ B via a 7→ a ⊗ 1B. The multiplication has A and B commuting: (a1 ⊗ b1)(a2 ⊗ b2) =
(a1a2)⊗ (b1b2).

We now consider the ∗-algebra with generators A∪B and relations those of A and those of B and

that ab = ba if a ∈ A and b ∈ B (and that 1A = 1B). Then we exactly get A
alg
⊗ B. This is a

∗-algebra: (a⊗ b)? = a∗ ⊗ b∗.

We haven’t yet introduced a norm. Does A
alg
⊗ B have any ∗-reps? There is a natural class: Let

(π,H) be a ∗-rep of A and (ρ,K) a ∗-rep of B. We formH
alg
⊗K the algebraic tensor product of vector

spaces, with inner product 〈ξ1⊗η1, ξ2⊗η2〉
def= 〈ξ1, ξ2〉H〈η1, η2〉K, extended to H

alg
⊗K by (conjugate)

linearity. Check that this result is positive definite (not hard by expressing everything in terms of
an orthonormal basis). Then complete to get the Hilbert-space tensor product H⊗K.

For S ∈ B(H), we define (S ⊗1K)(ξ⊗ η) = (Sξ)⊗ η, and extend by linearity to H
alg
⊗ K, where it is

a bounded operator, so extends by continuity to H⊗K. Then we can check that ‖S ⊗ 1K‖ = ‖S‖
and (S ⊗ 1)∗ = S∗ ⊗ 1. All this also works for 1H ⊗ T . On the algebraic tensor product, these
elements commute, so S ⊗ T is well-defined,

In any case, we can define (π ⊗ ρ)(a⊗ b) = π(a)⊗ ρ(b) on H⊗K, which extends to A
alg
⊗ B. If π is

faithful then π ⊗ ρ is faithful.

Question from the audience: On H⊗K, are all the bounded operators of this form? Answer:
Oh, certainly not. Take finite linear combinations of elementary tensors, and close up in the weak-∗
topology. By double-commutant theorem, these are dense.

For t ∈ A
alg
⊗ B, we set

‖t‖min
def= sup{‖(π ⊗ ρ)t‖ : (π,H), (ρ,K) are representations of A,B}
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This is a C∗-norm. It’s a nice norm, but it’s not the universal norm. We define the closure of

A
alg
⊗ B with this norm to be A

min
⊗ B.

‖t‖max
def= sup{‖(π⊗ ρ)t‖ : π, ρ are reps of A,B on same H s.t. π(a), ρ(b) commute ∀a ∈ A, b ∈ B}

Then ‖t‖min ≤ ‖t‖max, since we can always take H in the second definition to be H⊗K in the first,

and we can complete with the latter to define A
max
⊗ B.

Are these the same? In 1959, Takesaki **sp?** said no: Let G be a discrete group, and let π be
the left regular representation of C∗r (G) on `2(G). Let ρ be the right regular representation. Left

and right representations commute, so π ⊗ ρ gives a representation of C∗r (G)
alg
⊗ C∗r (G) on `2(G).

But this does not split as a tensor product of representations, and e.g. for G = Fn, n ≥ 2, the free
group on n generators, we have ‖ · ‖max  ‖ · ‖min.

A diagram, where //___ is π ⊗ ρ in the definition of ‖ · ‖max:

A

""EEEEEEEE
π

))SSSSSSSSSSSSSSSSSSS

A
alg
⊗ B

//___ B(H)

B

<<yyyyyyyy
ρ

55kkkkkkkkkkkkkkkkkkk

Everyone sort of assumed that tensor products were easy, until this example came along. Then
min and max products are minimal and maximal in the appropriate sense, but there are many
intermediate ones.

Definition: A C∗-algebra A is nuclear if for any C∗-algebra B we have A
min
⊗ B = A

max
⊗ B. (I.e.

the two norms are the same.)

E.g. commutative, B0(H), any GCR. There are others too.

Given a short-exact sequence
0→ I → B → B/I → 0,

we can show that
0→ A

max
⊗ I → A

max
⊗ B → A

max
⊗ (B/I)→ 0

is exact. So we say that A is exact if for any exact 0→ I → B → B/I → 0, we have

0→ A
min
⊗ I → A

min
⊗ B → A

min
⊗ (B/I)→ 0

exact.

Then nuclear implies exact.
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If G is discrete, then G is amenable iff C∗(G) is nuclear (this fails for some non-discrete groups).
Open question: does there exist G discrete with C∗(G) not exact?

These matter for various differential-geometry questions.

Gromov: “Any statement you can make about all discrete groups is either trivial or false.” This
question is certainly not trivial; Gromov has some ideas of where to look for a counterexample.

20: Problem Set 2: Due March 14, 2008

**The problem set was given out typed. I’ve retyped it, partly so I could submit
my answers set between the questions. I have corrected some typos, and no doubt
introduced even more. In doing so, I have changed the formatting slightly.**

A. Fields of C∗-algebras. Anytime the center of a C∗-algebra (i.e. the set of its elements
which commute with all elements of the algebra) is more than one-dimensional and acts non-
degenerately on the algebra, the C∗-algebra can be decomposed as a field of C∗-algebras over
the maximal ideal space of the center (or of any non-degenerate C∗-subalgebra of the center).
For simplicity we deal here with unital algebras, but all of this works without difficulty in
general. So let A be a C∗-algebra with 1, and let C be a C∗-subalgebra of the center of A
with 1 ∈ C. Let C = C(X), and for x ∈ X let Jx be the ideal of functions vanishing at x. Let
Ix = AJx (closure of linear span), an ideal in A. Let Ax = A/Ix (“localization”), so {Ax}x∈X
is a field of C∗-algebras over X. For a ∈ A let ax be its image in Ax.

1. Prove that for any a ∈ A the function x 7→ ‖ax‖Ax is upper-semi-continuous. (So {Ax}
is said to be an upper-semi-continuous field.)

2. If x 7→ ‖ax‖Ax is continuous for all a ∈ A, then the field is said to be continuous. For
this part assume that A is commutative. Note that then one gets a continuous surjection
from Â onto Ĉ. Find examples of As and Cs for which x 7→ ‖ax‖ is not continuous. In
fact, find an attractive characterization of exactly when the field is continuous, in terms
of the surjection of Â onto Ĉ and concepts you have probably met in the past. (It can
be shown that an analogous characterization works in the non-commutative case, using
the primitive ideal space of A.)

3. Let

A1
def=

{
f : [0, 1]→M2 continuous, with f(1) =

(
α 0
0 α

)}
A2

def=
{
f : [0, 1]→M2 continuous, with f(1) =

(
α 0
0 β

)}

and let Ci
def= Z(Ai) be the center of Ai. Are the corresponding fields continuous? Are

all the fiber algebras Ax isomorphic? Show that A1 and A2 are very simple prototypes of
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behavior that occurs often “in nature”, but with higher-dimensional algebras, and more
complicated boundary behavior.

4. Determine the primitive ideal space of each of these two algebras, with its topology.

B. An important extension theorem. (This will be used in the lectures.) Prove that if I
is a ∗-ideal of a ∗-normed algebra A, and if I has an approximate identity of norm one for
itself, then every non-degenerate ∗-representation of I extends uniquely to a non-degenerate
representation of A.

C. The non-commutative Stone-Čech compactification. (At a few points in the course I
may use the results of this problem.) Motivation: If the locally compact space X is an open
subset of the compact space Y , then C∞(X) “is” an ideal in the C∗-algebra Cb(Y ) of bounded
continuous functions on Y . Then X is dense in Y exactly if C∞(X) is an essential ideal in
C(Y ), where by definition, an ideal I in an algebra B is essential if there is no non-zero
ideal J in B with IJ = 0 or JI = 0. Thus the Stone-Čech compactification of an algebra A
without 1 should be a “maximal” algebra with 1 in which A sits as an essential ideal. If B is
any algebra in which some (probably non-unital) algebra A sits as an ideal, then each b ∈ B
defines a pair (Lb, Rb) of operators on A defined by Lba = ba, Rba = ab. These operators
satisfy, for a, c ∈ A, Lb(ac) = (Lb(a))c, Rb(ca) = c(Rb(a)), and a(Lb(c)) = (Rb(a))c.

Definition: By a double centralizer (or multiplier) on an algebra A we mean a pair (S, T ) of
operators on A satisfying the above three conditions. Let M(A) denote the set of double
centralizers of A.

1. Using the example of A as ideal in B as motivation, define operations on M(A) making
it into an algebra, with a homomorphism of A onto an ideal of M(A).

2. Show that if A is a Banach algebra with approximate identity of norm one, and if we
require S and T to be continuous (which actually is automatic), then M(A) can be
made into a Banach algebra in which A sits isometrically as an essential ideal. (This
is quite useful for various Banach algebras which are not C∗-algebras. For example,
if A = L1(G) for a locally compact group G, then it can be shown that M(A) is the
convolution measure algebra M(G) of G.) Show that if A is a ∗-Banach algebra, then its
involution extends uniquely to make M(A) a ∗-algebra. Note then that the theorem of
problem B. above says that every nondegenerate ∗-representation of A extends to M(A).

3. Show that if A is a C∗-algebra, then so is M(A).

4. Let A be a C∗-algebra, and let X = AA as a right A-module, with A-valued inner
product as defined in class. Let BA(X) be the algebra of all continuous (which actually
is automatic) A-module endomorphisms of X that have a continuous enomorphism as
adjoint for the A-valued inner product (which is not automatic). Show that in a very
natural way M(A) = BA(X).

5. For A a C∗-algebra, show that if B is any C∗-algebra in which A sits as an essential
ideal, then B can be identified as a subalgebra of M(A), so M(A) is maximal in this
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sense, and thus ban be considered to be the Stone-Čech compactification of A.

6. Determine M(A) when A = C∞(X), and when A = B0(H), the algebra of compact
operators on a Hilbert space H.

D. Morphisms. If X and Y are locally compact spaces and φ is a continuous map from X
to Y , then φ determines a homomorphism from C∞(Y ) to Cb(X), the algebra of bounded
continuous functions.

1. Give a characterization of those homomorphisms from C∞(Y ) to Cb(X) which arise in
this way from maps from X to Y . Your characterization should be phrased so that it
makes sense for non-commutative C∗-algebras. (Hint: recall the definition of a repre-
sentation being non-degenerate.) Such homomorphisms are then called “morphisms”.
That is, define what is meant by a morphism from a (non-commutative) C∗-algebra A
“to” a C∗-algebra B.

2. For the non-commutative case explain how to compose morphisms.

21: March 10, 2008

Last time we defined the tensor product of C∗ algebras. We also have a free product:

Definition: Given C∗-algebras A and B, we define A ∗B to be the free algebra with all relations
in A and all those in B, and that 1A = 1B, but we do not require that the algebras commute.

Then a representation is just a pair of non-commuting representations on the same Hilbert space.
There is also a reduced product A ∗r B, which we will not go into.

E.g. C(S1) ∗ C(S1) = C∗(F2), because C(S1) is the C∗ algebra generated freely by one unitary
operator.

21.1 C∗-dynamical systems

Let A be a C∗ algebra, G a discrete group, and α : G → Aut(A). E.g. Let M be a locally
compact space, α : G → Homeo(M). Set A = C∞(M); then (αx(f)) (m) def= f(α−1

x (m)) where
α : x ∈ G 7→ αx.

The first discussion of what we are about to say came from quantum physics, where the observables
of a system are self-adjoint operators (possibly unbounded, but we will duck that question, as well
as the philosophy of physics), i.e. they are in some C∗-algebra A. We have already defined “states”
for an algebra, and we will continue that notion here. Symmetries of the system form a group G
**usually a Lie group**.

The physicists want everything acting on a Hilbert space, which in fact is a useful way to understand
groups acting on algebras of operators. So we will represent A on a Hilbert space H, via a ∗-rep π,
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and let’s ask for U to be a unitary representation of G on H. What about the action α? From the
physicists’ point of view, α should be unitarily represented.

Setting βx(T ) = Ux(T )Ux−1 gives an action G → Aut(B(H)), as inner representations. So we
demand what the physicists call the covariance condition:

π(αx(a)) = Uxπ(a)U−1
x

Definition: We say that (π, U) is a covariant representation of (A,G, α) if this condition holds.

We can use the generators of G and A and their relations, along with the covariance relation, which
can be rewritten as xa = αx(a)x, and the requirement that x∗ = x−1. But this says that any word
in the generators can be rearranged into normal form with all the xs on the right and all the as
on the left (just about everyone seems to use this convention); but then we can multiply adjacent
xs and adjacent as. So the ∗-algebra is just finite linear combinations of ax, i.e. sums of the form∑
f(x)x where f(x) ∈ A.

So f contains the data of the element, and so we define operations on Cc(G,A) (= functions of
finite support with values in A):(∑

f(x)x
)(∑

g(y) y
)

=
∑
x,y

f(x)x g(y) y

=
∑

f(x)αx(g(y))xy

=
∑
x,y

f(x)αx(g(x−1y)) y

=
∑
y

(∑
x

f(x)αx(x−1y)

)

So we define the twisted convolution **the standard notation, using ∗ for both the convo-
lution and the adjoint, is unfortunate; I will use ? for convolution**:

(f ? g)(y) =
∑

f(x)αx(g(x−1y))

We also have a ∗ operation: (∑
f(x)x

)∗
=

∑
x∗ f(x)∗

=
∑

x−1 f(x)∗

=
∑

α−1
x (f(x)∗)x−1

=
∑

αx(f(x−1)∗)x

So, every covariant representation (π, U) of (A,G, α) will give a representation of (Cc(G,A), ?,∗ ).
For f ∈ Cc(G,A), we set σf

def=
∑
π(f(x))Ux; then σ is a ∗-rep of (Cc(G,A), ?,∗ ).
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Then we can estimate norms:
‖σf‖ ≤

∑
‖f(x)‖A

def= ‖f‖1

where ‖ · ‖1 is the “`1” norm in A.

In general, we define ‖f‖C∗(G,A,α) to be the supremum over all such representations, but it’s not
clear that there are any.

We can make the following comments. In a suitable sense, A ↪→ Cc(G,A, α) by a 7→ aδ1G . If A
has an identity element, then G ↪→ Cc(G,A, α) by x 7→ 1Aδx. If A does not have a unit, then
G→M(Cc(G,A, α)) where this is the algebraic multiplier algebra, in the sense as on the problem
set. All of this works for ∗-normed algebras

Why are there plenty of covariant representations? We need representations on A, which for generic
∗-normed algebras might be few and far between. But for each rep ρ of A on K, form the induced
covariant representation of (G,A, α). (This is induced from {e} ⊆ G; we can induce from any
subgroup.) In particular, we take H = `2(G,K) = `2(G)⊗K. Then the actions are by

(Uxξ)(y) def= ξ(x−1y)

(π(a)ξ)(y) def= ρ(α−1
y (a))ξ(y)

We check the covariance conditions, and sure enough it passes.

Then we define the reduced norm:

‖f‖C∗r (G,A,α) = sup{‖π(f)‖ for all induced covariant reps}

If we start with a faithful representation of A, then our induced representation is faithful on the
functions of compact support, so this is a norm. The full norm:

‖f‖C∗r (G,A,α) = sup{‖π(f)‖ for all covariant reps}

22: March 12, 2008

**I was out sick.**

23: March 14, 2008

We have a problem set due today. Many have asked for more time; that is fine. We’d prefer a more
complete paper on Monday over a less complete paper today.
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23.1 Twisted convolution, approximate identities, etc.

We were sketching what happens when G is locally compact but not discrete. We looked at Cc(G,A)
the continuous functions (compact support) with values in A. We have (A,G, α) with α strongly
continuous, and we look for covariant representations. For a covariant representation {π, U,H} and
f ∈ Cc(G,A), we set

σfξ =
∫
π(f(x))Uxξ dx

where dx is the left Haar measure. Then we define twisted convolution:

(f ?α g)(x) def=
∫
f(y)αy

(
g(y−1x)

)
dx

Then σfσg = σf?αg and ‖σf‖ ≤ ‖f‖1
def=
∫
‖f(x)‖A dx.

Now we look at G and Cc(G). In the discrete case, if A has an identity (and we’re using A = C),
then Cc(G) has an identity element, given by the δ function at the identity. But in the non-discrete
**indiscrete?** case, any neighborhood has infinitely many points, so the Haar measure cannot
give any point positive measure. In particular, we do not have an identity in Cc(G), ?. All this
extends to L1(G,A) by uniform continuity.

We do have an approximate identity: Let N be a neighborhood base of 1G. For U ∈ N , choose
(Uryssohn) fU ∈ Cc(G) with support in U , fU ≥ 0, and ‖fU‖1 =

∫
fU = 1. By strong continuity

of α, fU ?α g is very close to g. Then this is an approximate identity of norm 1 for L1(G).

In the more general case, if eλ is an approximate identity of norm 1 for A, then {eλfu}λ,U is an
approximate identity of norm 1 for L1(G,A).

We’ve been ducking an issue here.

σ∗fξ =
∫

(π(f(x))Ux)∗ ξ dx

=
∫
U∗xπ(f(x)∗)ξ dx

=
∫
Ux−1π(f(x)∗)ξ dx

=
∫
αx−1(π(f(x))∗)Ux−1ξ dx

=
∫
αx
(
π(f(x−1)∗)

)
Uxξ d(x−1)

But this isn’t quite right. f 7→
∫
f(x−1) dx is right-translation-invariant, not left-translation-

invariant. The problem is that the left Haar measure need not be right-invariant.

Definition: G is unimodular if left Haar = right Haar.
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E.g. Abelian groups, compact groups (not immediately obvious), discrete groups, semi-simple Lie
groups, nilpotent Lie groups.

But there are many solvable Lie groups that are not unimodular. E.g. “ax + b” group of affine
transformations of R, for a ∈ R>0 and b ∈ R. (For more details, take Math 260.) This is the
simplest nonabelian solvable Lie group, and it is not unimodular. Exercise: explicitly compute the
left and right Haar measures; this gets into “What is Haar on R>0 with respect to ×?” — this
expression, with respect to Lebesgue measure, pops up all over.

For a non-unimodular group G, we have d(x−1) = ∆(x)dx, where ∆(x) is the “modular function”
of G. It’s nice: it sends ∆ : G → R>0 under a continuous group homomorphism. It’s not hard to
show this, but we will not. One has to make a convention, which is not always agreed upon; some
people would use ∆(x−1). Well, if G happens to be compact, then there are very few continuous
homomorphisms into the positive reals, because there are very few compact subgroups of R>0.
Hence compact groups are unimodular.

So, in the non-unimodular case, we must define the involution as:

f∗(x) = αx
(
f(x−1)∗

)
∆(x−1)

At various cases, this complicates the bookkeeping, and even worse, there are some theorems that
work for unimodular and do not work for non-unimodular groups (without becoming substantially
more complicated). Whenever someone thinks they have a theorem for locally compact groups,
they prove it for unimodular groups and then have to go back and check with the modular func-
tions.

Question from the audience: What is a solvable Lie group? Answer: Up to discrete subgroups
of the center, they are of the form: 

∗ ∗
∗

. . .
0 ∗


Nilpotent has 1s on the diagonal. You can always embed a nonunimodular group into a unimodular
one by extending by a copy of R: you let the real line act as modular automorphisms, and get a
“Type II” algebra (meaning it has traces).

Later on, one very much wants to look at homogeneous spaces G/H, which is an extremely rich
collection of manifolds. Since G acts on G/H, we can ask if there is a measure on G/H that is
preserved by the G action. This wraps up the modular functions on G and on H; ultimately, the
answer is nice, if a bit complicated.

So anyway, we have a ∗ algebra with approximate identity of norm 1. Are there covariant repre-
sentations of (G,A, α). The operations are all arranged to that covariant representations give us
∗-representations of Cc(G,A). We have the “induced representations” from representations of A.
We did that for discrete groups; just replace sums by integrals with respect to Haar measure. This
gives a nice class of representations, which are faithful on the algebra. We can define the reduced C∗
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algebra C∗r (A,G, α) def= A×rαG, where the norm comes from just the induced representations. And
we have the full algebra C∗(A,G, α) = A×αG, which can be different. Even if A = C, we can have
C∗r (G) 6= C∗(G); G is ammenable iff these are equal. E.g. SL(n,R) is not ammenable. We always
have a quotient map C∗(G)→ C∗r (G), so representations of C∗r give representations of C∗. We call
the ones that come this way tempered, but this is still a very active field of investigation. It even
got into the newspapers: a huge calculation that made progress into finding the representations of
E8. We have essentially a complete list of the semisimple Lie algebras, or at least the real forms
of them, but sorting out the representations is hard: we get into representations that are not on
Hilbert spaces, or that are not unitary. So be warned: sometimes the word “tempered” is used for
non-unitarizable representations.

Theorem: There exists a bijection between covariant representations of (A,G, α) (nondegenerate
as representations of A) and non-degenerate representations of C∗(A,G, α).

Proof:

σ is nondegenerate iff π is.

We have the mapping on one direction.

A does not need to have an identity element, but think about the multiplier algebraM(C∗(A,G, α)).
Then G and A both sit inside: G,A ↪→ M . So C∗(A,G, α), which sits inside as an essential
ideal (from the problem set), so any representation of C∗ extends to a representation uniquely
of M (by problem set), and compose with G,A ↪→M , giving a strongly continuous and non-
degenerate covariant pair. If we take its integral form, that’s actually equal to the original
representation. So we really get a bijection. �

24: March 17, 2008

**I was a little late.**

Theorem: Let 0 → I
i→ A

p→ A/I → 0 be an exact sequence of C∗-algebras. Let α be an action
of G on A, which caries I into itself; i.e. i is equivariant, and also α drops to action on A/I.
Then

0→ I ×α G
i∗→ A×α G

p∗→ (A/I)×α G→ 0

is exact.

(This can fail for ×rα.) Question from the audience: Can you get half-exactness? Answer:
Yes, somewhat.

Proof:

p∗ : Cc(A,G, α) → Cc(A/I,G, α) has dense range. When G is not discrete, this is not an
immediate fact, but it is true. We approximate functions f : G→ A/I by f ∼

∑
hjaj , which

we can do for any continuous function of compact support into a Banach space, for the L1
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norm. Thus p∗ : A×α G→ (A/I)×α G, which has dense range, and a homomorphism of C∗

algebras, but those have closed image, so this must be onto by denseness.

If f ∈ Cc(I,G), then p∗(i∗(f)) is clearly 0, just by following image values. Extending by
continuity we still have p∗ ◦ i∗ = 0 : I ×α G→ (A/I)×α G.

So, why is i∗ injective? And, we’ve shown that the image of i∗ is contained in the kernel of
p∗; why are these equal?

For exactness at I ×α G, let (σ,H) be a (non-degenerate) representation of I ×α G. From
what we sketched last time, this must come from a covariant representation: let (π, U,H) be
the corresponding covariant representation of (I,G, α). Then π is non-degenerate. Using the
extension theorem from the problem set, let π̃ be the unique extension of π to a representation
of A. Claim: (π̃, U,H) is a covariant representation of (A,G, α). Because:

Ux(π̃(a))(π(d)ξ) = Ux(π(ad)ξ)
= π(αx(ad))Uxξ
= π(αx(a)αx(d))Uxξ
= π̃(αx(a))π(αx(d))Uxξ
= π̃(αx(a))Ux(π(d)ξ)

where d ∈ I, and the linear span of these things is dense by the nondegeneracy.

Question from the audience: Why is π nondegenerate? Answer: That was something
quick from last time. In the correspondence, σ(f)ξ def=

∫
π(f(x))Uxξ, and if this is nondegen-

erate, then the places where it was zero would be invariant, so we’ll have nondegenerateness
of σ exactly when we have it for π.

So let σ̃ be the integrated form of (π̃, U,H) a rep of A×α G. Then σ̃|I×αG = σ̃ ◦ i∗ = σ. If σ
is faithful on I ×α G, then i∗ has kernel 0.

Now we want exactness at A×αG, i.e. that the kernel of p∗ is the range of i∗. Since we know
that i∗ is injective, we should think of the range as I×αG ⊆ A×αG as an ideal (we didn’t do
this part, but it’s not hard that at the level of functions, this is an ideal). We saw at the outset
that ⊇ is easy. Here we will need the full force of C∗ algebras. We look at (A×αG)/(I×αG),
which is a C∗-algebra, so it has a faithful representation σ on H. (I.e. the kernel of σ is
exactly I ×α G). Then σ is the integrated form of some (π, U,H) where π is a rep of A. If
d ∈ I, then for any h ∈ Cc(G,C), we have dh ∈ Cc(G, I). So 0 = σ(hd)ξ =

∫
h(x)π(d)Uxξdx

for all h and ξ. So π(d) = 0. So π(I) = 0. Thus we can look at (π, U,H) as a covariant rep
of (A/I, U,H), with integrated form σ̃, a representation of (A/I)×α G.

Then
A×α G

p∗ //

σ

$$IIIIIIIII (A/I)×α G

σ̃xxrrrrrrrrrr

B(H)

45



�

25: March 19, 2008

We review classical dynamical systems: a group G acts as diffeomorphisms on a locally compact
space M , thought of as the phase space of the system. Then we get an action on A = C∞(M), since
C∞(−) is contravariant: if α : G→ Homeo(M), then G acts on A via αx(f)(m) = f(αx−1(m)). So
we can form A ×α G. If the action on M is sufficiently continuous, then α is strongly continuous
on A.

Theorem: For (M,G,α), with M second countable (i.e. a countable base for its topology): let
(σ,H) be an irreducible representation of A×αG, where A = C∞(M); let σ be the integrated
form of (π, U,H). Let I = ker(π). (Question from the audience: Is π irreducible?
Answer: Absolutely not.) Then I is a closed ideal of A; let ZI = hull(I) (i.e. maximal ideals
that contain I — maximal ideals of A correspond to points in M), so I = {f ∈ A : f |ZI = 0}.

Then ZI is the closure of an orbit in M , i.e. ∃m0 ∈ M s.t. {αx(m) : x ∈ G} = ZI . (There’s
no reason the orbit ought to be closed, e.g. an action of Z on a compact space.)

Proof:

Note: αx(I) ⊆ I for all X. (d ∈ I, then π(αx(d)) = Uxπ(d)Ux−1 = 0; this uses only the
covariance relation.) We say that I is “α-invariant”. We say ⊆, but it’s true for x−1, so we
get equality. This implies that αx(ZI) = ZI .

Choose a countable base for the topology of M ; let {Bn} be (an enumeration of) those
elements of the base that meet ZI . (Thus {Bn∩ZI} is a base for the relative topology of ZI .)
For each n, let On =

⋃
x∈G αx(Bn) = αG(Bn). Since each Bn is open and α is homeo, this

is open; it’s also clear that On is α-invariant, in that it’s carried into itself by the G-action.
Let Jn = C∞(On). We view these as continuous functions on M that vanish outside On; Jn
is exactly those functions that vanish on the closed set M rOn. So Jn is an ideal of A.

Furthermore, because Bn ∩ ZI 6= ∅, we can find f ∈ C∞(Bn) so that f |ZI 6= 0. Thus Jn 6⊆ I.
So Jn ×α G is an ideal in A ×α G, and it is not a subideal of I ×α G = ker(σ). Since σ is
irreducible, σ|Jn×αG is non-degenerate. Thus π|Jn is non-degenerate.

Choose ξ ∈ H with ‖ξ‖ = 1. Define µ ∈ S(A) to be the vector state: µ(f) = 〈π(f)ξ, ξ〉. I.e.
µ is a probability Radon measure on M . Since π|Jn is non-degenerate, choose {eλ} a positive
approximate identity of norm 1. Then µ(eλ) = 〈π(eλ)ξ, ξ〉 λ→ 〈ξ, ξ〉 = 1. So

∥∥µ|Jn∥∥ = 1.
Let µ also be the corresponding Borel measure. **huh?** I.e. we view µ as giving sizes of
sets: µ(On) = 1. Then µ(M rOn) = 0. So µ (

⋃
n(M rOn)) = 0 — this is where we use the

separability hypothesis —, so µ(
⋂
nOn) = 1, so

⋂
On 6= ∅. Pick any m0 ∈

⋂
On.

If f ∈ I, then π(f) = 0, so µ(f) = 0. Thus, µ(M r ZI) = 0, so µ(ZI) = 1, and we should
have intersected all our On in the previous paragraph with ZI . So we have m0 ∈

⋂
(On∩ZI).
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So αG(m0) ⊆
⋂

(On ∩ ZI) =
⋂

(αG(Bn ∩ ZI)). So for each n, αG(m0) ∩ Bn 6= ∅. So αG(m0)
meets each elements of a base for the topology of ZI , and so is dense in ZI . �

(For the record, this argument works for “factor representations” of von-Neuman algebras.)

26: March 21, 2008

**I was out sick.**

27: March 31, 2008

We consider C∞(G)×αG ∼= B0(L2(G)) = C∞(G)×rαG, so action of G on C∞(G) is amenable.

E.g. G = R, X = R ∪ {+∞}, let α be translation, fixing +∞. Then R sits in X as an open α-
invariant set, so C∞(R) is an α-invariant ideal in C∞(X). From the theorem, exact sequences:

0 // C∞(R) // C∞(X) // C∞({−∞}) = C // 0

0 // C∞(R)×α R // C∞(X)×α R // C×α R = C∗(R) // 0

But C∗(R) = C∞(R) by Fourier. So we can read off the irreps. Let σ be an irreducibble represen-
tation of C∞(X)×α R.

Case 1: σ|C∞(R)×αR 6= 0 rep. Then σ is iso to the irrep on L2(R); indeed, σ(C∞(R) ×α R) =
B0(L2(G)). This has a unique extension to C∞(X)×αR as a covariant rep (π, U, L2(R), where
π is multiplication by functions in C∞(X). If f ∈ C∞(X), f(+∞) 6= 0, and if φ ∈ Cc(G),
then f × φ ∈ Cc(G,C∞(X)). Well, σ(f × φ) is not compact. So C∞(X)×α R s not CCR.

Case 2: σ|C∞(R)×αR = 0. So σ drops to an irreducible representation of C∗(R) ∼= C∞(R). So σ is
given by evaluation at some point in R. These are one-dimensional, so certainly give compact
operators.

This then is the full list of irreps. Thus C∞(X) ×α R is GCR. (Every irrep includes compact
operators.) The primitive ideals? Prim = {0,R} = the zero ideal together with one point for each
point on the real line. Closure of 0-ideal is all of everything, and each ideal in R is closed.

Let N , Q be locally compact groups. Let α : Q→ Aut(N) with (n, q) 7→ αq(n) is continuous (“joint
continuity”, i.e. continuity in each variable). We can form the semi-direct product: let G = N ×Q
as a set, and indeed as a space with the product topology. The multiplication is

(n, q)(n′, q′) def= (nαq(n′), qq′)
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Then N = N × {1Q} is a closed normal subgroup, and the following sequence is exact:

0→ N → N ×α Q→ Q→ 0

But this is not, of course, the most general sequence. If 0 → N → G → G/N → 0, there’s no
reason for this to split. But for semi-direct, it does: Q = {1N}×Q is a closed subgroup of N ×αQ.
So we have a split extension:

0 // N // N ×α Q // Qgg
// 0

Let (U,H) be a unitary rep of N ×α Q; then (U |N ,H) is a unitary rep on N , and ditto (U |Q,H)
on Q. Then (U |N ,H) gives a rep of C∗(N); the action of α gives an action of Q on Cc(N) with
convolution. So α gives an action of Q on C∗(N) by functoriality (you have to check that this
action is strongly continuous), “by transport of structure”. Let π be the integrated form of U |N ,
i.e. π is a rep of C∗(N). You find (but have to check): (π, U |Q,H) is a covariant representation of
(C∗(N), Q, α). The details are straightforward, but we will not take the time to do them on the
board. In all, we have a representation of C∗(N)×α Q.

Can we go backwards? Of course. If we have a rep of C∗(N)×α Q, we get a π, and work our way
up to a U .

Prop: C∗(N ×α Q) = C∗(N)×α Q. **naturally isomorphic**

E.g. When N is abelian, so C∗(N) = C∞(X). How far did y’all go in Math 206? This is really
Math 260: Abstract Harmonic Analysis. It turns out that X = N̂ = Hom(N → T ), where T is
the unit circle in C. Question from the audience: Could you say something about the natural
topology on N̂? Answer: Yes. There are two views that must be reconciled. The more accessible
one: φ ∈ N̂ lifts to a homomorphism φ∗ : C∗(N) → C, and they all come about this way. So
N̂ = ̂(C∗(N)). An equivalent description of topology requires knowledge of characters. N̂ has
multiplication pointwise as functions.

Theorem: Pontyang **sp?** duality

ˆ̂
N = N as a natural isomorphism.

The injection N ↪→ ˆ̂
N is obvious, but that it is a bijection is exciting. E.g. Ẑn = Tn, and T̂n = Zn.

R̂n ∼= Rn, but not naturally.

E.g. A famous example: L = Lorentz group.

L = {T ∈ End(R4) s.t. B(Tv, Tw) = B(v, w)}

whereB is symmetric bilinear, but you make a choice of sign convention: B((r0, r1, r2, r3), (s0, s1, s2, s3)) =
−r0s0 + r1s1 + r2s2 + r3s3. **This, I believe, is the East Coast convention.** L acts in a
natural way on R4, so we can form R4 ×α L. We need this group if we are physicists in the 30s:
We need an irreducible representation (so that we have a single particle) that is translation (R4)
and special-relativistic (L) invariant. Paper by Wigner in 1939. He didn’t find all of them, because
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there are non-physically interesting reps that kill R4, and it’s rather difficult to find all reps of
L. It turns out that you can find the representations that don’t kill R4; we will sketch this next
time.

28: April 2, 2008

Any questions? We hand back some problem sets from before.

28.1 A landscape sketch

Last time we defined the Poincaré group R4 ×α L, where L is the Lorentz group **or rather the
connected component**. If you want a quantum mechanics, you would like a Hilbert space.
An elementary particle, for quite some time, was a representation of this group — so that physics
would be symmetric — and irreducible — so that the particle was really just a unique particle.
In 1939, Wigner listed the representations (that are non-trivial as representations of R4), which
consists of understanding the C∗-algebra C∞(R̂)×αL. In fact, we want to use the simply connected
cover of L, which is SL(2,C).

We can understand the orbits of L **picture of concentric hyperbolas, with the degenerate
one labeled the “light cone”**. But the action of L is not free on these orbits; rather, if G
acts on M via α, we can construct the stability subgroup Gm = {x ∈ G : αx(m) = m}; then the
orbit of m ∈ M bijects to G/Gm by αx(m) ↔ x. The stability subgroup of L is SO(3) ⊆ L; this
lifts to SU(2) ⊆ SL(2,C). So the orbits are SL(2,C)/SU(2).

Given G acting via α on M , and m ∈ M , we understand what happens when Gm = {1G}, and
if Gm = G, everything is trivial. We want to understand the intermediate case. But the orbit
G/Gm = Orbitα(m) ⊆M can be very bad. E.g. M = T = S1 and G = Z acting by rotation by an
irrational multiple of π. The action is free, and the orbit is dense in T — countable dense subsets
are very bad from the point of view of the things we’ve been doing. We’ll look at that later.

The good situation: we want the orbit, with the relative topology, to be locally compact. (Con-
template pulling back the topology of the circle to the integers.) For the experts:

Theorem: Given M locally compact and S ⊆ M , then S is locally compact for the relative
topology if and only if S is open in its closure.

If G is second countable **and we are in this good case**, we can use Baire Category to show
that G/Gm → Orbit is a homeomorphism. E.g. Rδ is R with the discrete topology, and is not
second-countable; it acts on R in the natural way, but we don’t have a homeomorphism.

We can look at the ideal of functions on M that vanish on the closure of the orbit, and if the open
orbit is dense in its closure, we can generalize the picture we had last time of R∪{+∞}. We reduce
to considering G action on G/Gm.
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In general, forH a closer subgroup ofG, G acts onG/H (call action α) and we consider the covariant
representations. From our point of view, we’re curious to understand C(G/H)×α G.

Question from the audience: So G acts on M , which we decompose into orbits. So we’re
just looking at one orbit at a time? Answer: We showed that irreducible representations live on
orbit-closures. As long as your orbit is open, and so locally compact, the irreducible representations
all come from this mechanism. To be specific: an irreducible representation comes from an orbit
closure, and if there is a dense open set, that gives us an essential ideal. And if you have the right
orbit closure for the representation, this essential ideal cannot act as zero, so the representation
comes from the cross-product with that ideal.

Mackey worked out the general theory measure-theoretically. It involves induced representations
— Frobenius understood these for finite groups in the late 1800s, but Mackey had to work it out
for locally-compact groups. Assume for simplicity that there is a G-invariant measure on G/H.
(Otherwise, you have to introduce modular functions, and the bookkeeping is too complicated for
this exposition.) Let (ρ,K) be a representation of H. (We think of H = Gm; the phycisists call
these “little groups”.) Set

H def= {ξ : G→ K measureable s.t. ξ(xs) = ρ−1
s (ξ(x)) for s ∈ H,x ∈ G}

We have 〈ξ(xs), η(xs)〉K = 〈ξ(x), η(x)〉K as functions on G/H, so we define the inner product on
H:

‖ξ‖2 def=
∫
G/H
〈ξ(x), ξ(x)〉K dx

where dx is the invariant measure on G/H.

Let π be the action of C∞(G/H) on H by pointwise multiplication. Let U be the action of G by
translation; then (π, U,H) is a covariant representation. Thus, as before, we get a representation
of C∞(G/H) ×α G. If (ρ,K) is irreducible, then so is (π, U,H). Question from the audience:
Sorry, what is α? Answer: The action by translation. **α = U?**

Theorem: (Mackey, phrased in terms of L∞, not C∗-algebras)

Every irreducibly representation arises in this way:

{Irreducible representations of C∞(G/H)×G} ↔ {irreps of H}

E.g. Every irrep of the Poincaré group has an inherent spin, which is the representation of
SU(2).

We can reformulate this, which is a nice way to do it because M.R. did it.

Theorem: (M.R.)

C∞(G/H)×α G and C∗(H) are strongly morita equivalent.
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To say this, we need bimodules. We think of Cc(H) with measure dxH , which acts on the right by
convolution ? on Cc(G). But C∞(G/H) ×α G acts on the left by point-wise multiplication, so at
least at the level of functions, we have Cc(G) as a bimodule. But on the level of inner products? If
we have f, g ∈ Cc(G), we can define 〈f, g〉C∗(H)? For better or for worse, it pays off to work with
continuous rather than measurable functions, because if H is a null-set, restricting a measurable
function doesn’t make sense. In the unimodular case, we can define

〈f, g〉C∗(H)
def= f∗ ? g|H

In fact, everything fits together nicely, although there are many things to check, and in the non-
unimodular case you have to sprinkle in modular functions.

So, basically, and you have to define things right: if you have a representation of B = C∗(H), you
can tensor it with this bimodule to get a representation of A = C∞(G/H) ×α G. What you need
to check is that 〈f, g〉Ah = f〈g, h〉B.

And the long and the short of it is that the representation theories are the same.

Question from the audience: So if you embed H as a subgroup of different groups G, you
can look at their relationships? Answer: Yes, there are many interesting games you can play.
For instance, you can sort out that C∞(G/H) ×α K is Morita equivalent to C∞(G/K) ×α H if
H,K ⊆ G.

We’ve been looking at an action G,α on a space M . This leads to a simple class of groupoids,
although we won’t tell you what a groupoid is. Much of the above story generalizes to groupoids.
(Groupoids come from gluing together group-type things and space-type things, and arise in many
interesting places. Locally compact ones have a C∗-algebra, and by the now there is a very substa-
tially developed theory, which imitates the theory of groups acting on spaces.)

28.2 Heisenberg commutation relations

Planck wrote his paper in 1909; in 1926, Heisenberg basically suggested that, for Rn (really R3n)
one do the following.

We have unbounded self-adjoint (in a sense not made precise by Heisenberg) “position” operators
Q1, . . . , Qn and “momentum” operators P1, . . . , Pn all on a Hilbert space H. Since these operators
are unbounded and hence only defined on dense domains, we will need to make this precise or avoid
the problems entirely. Even saying these operators commute is hairy. But, naively, we want that
Pj , Qk commute if j 6= k. For the same index:

[Pj , Qj ] = i~1H

where i =
√
−1, and ~ is an experimental fudge factor and 1H is the identity operator on H.

Shortly thereafter, Weyl suggested how to bypass some of the difficulties here.

51



**I prefer to use slightly more tensorial notation. We have what a physicists would
call a “vector” of operators Qi and a “covector” Pj. Then the canonical commutation
relations are

[Pj , Qk] = i~δkj 1H

where δkj is Kronecker.**

29: April 4, 2008

**I was out sick.**

30: Problem Set 3: Due April 11, 2008

**The problem set was given out typed. I’ve retyped it, partly so I could submit
my answers set between the questions. I have corrected some typos, and no doubt
introduced even more. In doing so, I have changed the formatting slightly.**

1. (a) Show that the following C∗-algebras are isomorphic:

i. The universal unital C∗-algebra generated by two (self-adjoint) projections

ii. The universal C∗-algebra generated by two self-adjoint unitary elements

iii. The group algebra C∗(G) for G = Z2 ∗ Z2, the free product of two copies of the
2-element group.

iv. The crossed-product algebra A ×α G where A = C(T ) for T the unit circle in the
complex plane, G = Z2, and α is the action of taking complex conjugation. (So T/α
exhibits the unit interval as an “orbifold”, i.e. the orbit-space for the action of a
finite group on a manifold, and A×αG remembers where the orbifold comes from.)
Hint: In Z2 ∗ Z2 find a copy of Z.

(b) Determine the primitive ideal space of the above algebra, with its topology.

(c) Use the center of the algebra above to express the algebra as a continuous field of C∗-
algebras.

(d) Use part (c) to prove that if p and q are two projections in a unital C∗-algebra such that
‖p − q‖ < 1, then they are unitarily equivalent, that is, there is a unitary element u in
the algebra (in fact, in the subalgebra generated by p and q) such that upu∗ = q.

(e) Use part (d) to show that in a unital separable C∗-algebra the set of unitary equivalence
classes of projections is countable.
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2. For any n× n real matrix T define an action α of R on the group Rn by αt = exp(tT ) acting
in the evident way. Let G = Rn ×α R. Then G is a solvable Lie group. For the case of

T =
(

1 0
0 −1

)
determine the equivalence classes of irreducible unitary representations of

G, i.e. the irreducible representations of C∗(G). Determine the topology on Prim(C∗(G)).
Discuss whether C∗(G) is CCR or GCR, and why.

31: April 7, 2008

31.1 Some group cohomology

We had looked at the Heisenberg commutation relations in the form that Herman Weyl gave:

U a rep of G (Abelian) on H, V a rep of the dual group Ĝ on H; we declare

VxUs = 〈s, x〉UsVx

We saw, and basically gave the proof, that when G is Rn, and more generally when ˆ̂
G = G, there’s

one irreducible representation (“Schrodinger representation”) on L2(G), and every representation
comes from one of these.

Looking at this in a slightly different way, define unitary W on G×Ĝ by W(x,s)
def= VxUs. Then

W(x,s)W(y,t) = 〈s, y〉W(x,s)+(y,t)

and 〈s, y〉 ∈ T def= {eiθ ∈ C : θ ∈ R}.

For any group G (e.g. G×Ĝ), we can consider W : G→ U(H) the unitary operators on H such that
WxWy = c(x, y)Wxy for c(x, y) ∈ T . The associativity in G implies that c is a T -valued 2-cocycle,
meaning

c(x, yz) c(y, z) = c(xy, z) c(x, y)

It’s natural to assume We = 1H: c(x, e) = 1 = c(e, x).

There’s a homology theory of groups (“group cohomology”). We’re looking at [c] ∈ H2(G,T ),
which we won’t really define. For a function of one variable h : G→ T , we define the boundary of
h by

∂h(x, y) def= h(x)h(y)h(xy)

Definition: W is a projective representation of G on H with cocycle c

Since T is abelian, H2(G,T ) is a group. If G is topological, we do not demand that c be continuous.
This machinery works best when G is second-countable locally-compact, and then we want c to be
measurable. Such c correspond to extensions:

0 // T // Ec // G
c

jj // 0
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E.g. 0 // Z // R // Tii // 0

This is important for physics. In QM, B0(H), with pure state the vector states. Because the
only irrep is the one on the Hilbert space. But for any algebra, the pure states via GNS give an
irreducible rep for which the state is a vector state. An operator gives a projection:

T 7→ 〈Tξ, ξ〉
〈ξ, ξ〉

These give one-dim subspaces of H, and PH, the projective space, is the space of states. Automor-
phisms of QM are automorphisms of PH.

Theorem: (Wigner, 1930s)

This are given by unitary or anti-unitary (conjugate-linear but length-preserving) operators
(unique up to multiplication by an element of T .

If we have a one-parameter family of automorphisms of PH, then for each auto, U2 is linear.
So anti-unitary operators only come up in discrete situations, usually as autos of order 2. For
example:

• Charge conjugation C

• Parity P — weak force does not respect parity

• Time reversal T

Then C2 = P 2 = T 2 = 1, and CPT often comes up.

In any case, we’ve found irreducible projective representations with non-trivial cocycle: H2(R2, T ) 6=
{0}.

Theorem: For G a semi-simple connected simply-connected Lie group, then H2(G,T ) = {0}.

For example, SO(3)→ Aut(PH). The double cover SU(2) 2→ SO(3) is simply connected and semi-
simple. So any projective representation of SO(3) gives an ordinary representation of SU(2). Sim-
ilarly, the (connected component of the) Lorentz group L is covered by simply-connected SL(2,C),
so has the same story. And it’s much easier to work with ordinary representations than with
projective representations. (The story does not work with R2n, which has an infinite irreducible
projective representation, even though any ordinary irrep is one-dimensional.)

Question from the audience: How do we get a cocycle? Answer: We have α : G→ Aut(PH).
For each x, chose Ux implementing α(x). This is only defined up to scalar multiple. UxUy =
c(x, y)Uxy. Associativity in Aut implies the cocycle condition **and the unknown scalars are
the boundaries**. When G is topological, you cannot make this choice continuous, but you’d
like to make it at least measurable. If H is separable, Aut can be given topology of a complete
metric space (not locally compact), and from that there are theorems that can go and chose c to
be measureable.
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Incidentally, the complete metric space for Aut makes it into a Polish space; these do not have
Haar measure, but the homology was worked out nicely by Prof Moore in our department.

We should mention another aspect of this story. Given G and a cocycle c : G → T , we can define
the convolution

(f ?c g)(x) def=
∫
f(y) g(y−1x) c(y, y−1x) dy

This is associative iff c is a 2-cycle almost everywhere. So we get a C∗(G, c), and if c′ and c are
homologous, then the corresponding algebras are isomorphic (indeed, the boundary tells how to
build the isomorphism). Look at c(s, t) = e2πist on R2; then C∗(R2, c) ∼= B0(L2(R)). We can, of
course, stick in a constant, and promote the product to a dot-product: c(s, t) = e2π~i〈s,t〉. This is
one view on what we’ve been doing. Even more generally, we can build C∗(G,A, α, c) where c is
an A-valued cocycle and α a representation. There is a very nice treatment in this language of the
Quantum Hall Effect.

For the last five minutes, some special example. Let G = Zd (we use m, n for elements of G, not
the dimension). Let θ ∈Md(R) be a d× d matrix. Define

cθ(m,n) def= e2πi(m·θn)

This is a bicharacter, i.e. for n fixed, m 7→ cθ(m,n) is a character (element of Ẑd). An easy check:
a bicharacter is a 2-cocycle. We will not prove:

Theorem: Every 2-cocycle on Zd with values in T is homologous to a bicharacter.

Now we will study C∗(Zd, cθ). For θ = 0 (or all integers), this is just C∗(Zd) = C(T d) continuous
functions on the d-dim torus. In general, C∗(Zd, cθ) are called non-commutative tori (or “quantum
tori”). These are the easiest examples of non-commutative differentiable manifolds.

32: April 4, 2008

We begin with some homological algebra. We have C2(G,A) = {c : G × G → A} and we define
∂c(x, y, z) = c(xy, z)c(x, y) − c(y, z)c(x, yz). For c ∈ C1 = {c : G → A}, we define ∂c(x, y) =
c(x)c(y)c(xy). Then the second homology H2 = Z2/B2 = ker ∂/ im ∂ classify extensions 0→ A→
Ec → G → 0, at least at the algebraic level. Since Bn may not be closed in Zn, the quotient can
get a non-Hausdorff topology; this adds difficulty to the theory.

32.1 A specific class of examples

We have matrices θ ∈ Md(R) and Z2, and we define a cocycle cθ(m,n) = e2πim·θn. **We should
call θ a 0, 2-tensor.** We look at projective unitary reps of Zd for bicharacter cθ:

UmUn = cθ(m,n)Um+n (4)
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We look at the universal C∗-algebra generated by the unitary symbols Um (U0 = 1) and the the
relation (4).

We can construct this. Zd ↪→ Cc(Zd) with the twisted convolution

(f ?θ g)(m) def=
∑
n

f(n)g(m− n)cθ(n,m− n)

We need a ∗-operation. The relation (4) gives UmU−m = cθ(m,−m) = cθ(m,m), so (Um)∗ =
(Um)−1 = cθ(m,m)U−m. Saying this again, for Cc:

f∗(m) = cθ(m,m)f(−m)

Then on this algebra the universal C∗-norm ‖f‖C∗ is well-defined. Indeed, looking at (the integrated
form of) a representation f 7→

∑
f(m)Um, we see that ‖Uf‖ ≤ ‖f‖`1 .

Question from the audience: Do you have a specific representation in mind? Answer: No.
This is for any rep. Question from the audience: And the cocycle condition is equivalent to
associativity? Answer: Yes. This is a bicharacter, so certainly a cocycle.

So, we can complete Cc(Zd) — by the way, the “c” here means “of finite support”, it doesn’t have
anything to do with the cocycle — to get C∗-algebra Aθ, and this is the universal C∗-algebra as
above. Are there any projective representations? Look at the left-regular representation, and see
what you can do. Let Cc(G) act on `2(Zd), a fine Hilbert space by left convolution:

(f, ξ) 7→ f ?θ ξ

for ξ ∈ `2(Zd)

Question from the audience: I’m still confused. Why didn’t we just define Ac as the universal
algebra? Answer: We did. This is a description, using (4). If you take any juxtaposition of
these symbols, we just get a scalar times another symbol. So any combination is a linear combina-
tion.

In any case, the norm you would get on this space is the “reduced” norm. We will see later that
the full norm is the reduced norm.

We’d like to understand better the structure of the algebra Aθ. Certainly this will depend on θ —
when θ is 0 **mod Z** we get the commutative algebra with the usual convolution; when θ is
not zero, we do not expect a commutative answer.

The dual group Ẑd ∼= T d = Rd/Zd, where we identify the character et(n) = e(n · t) def= 〈n, t〉 **bah,

dot products**, and have adopted the notation e(τ) def= e2πiτ . There is an action α of T d on Aθ
via

(αt(f)) (m) = 〈m, t〉f(m)
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This action is independent of θ. We can check

(αt(f ?θ g)) (m) = 〈m, t〉
∑

f(n)g(m− n)cθ(n,m− n)

=
∑
〈n, t〉f(n) 〈m− n, t〉g(m− n) cθ(n,m− n)

= (αt(f) ?θ αt(g)) (m)

In general, for any G (discrete, or even non-discrete) abelian, and cocycle c, then Ĝ acts on C∗(G, c)
exactly by the analog of this pairing. This is because if G abelian acts on a C∗-algebra A by an
action β, then Ĝ acts on the cross-product algebra A×β G. The formula is the same — we get the
“dual action”.

Question from the audience: What can we say about A ×β G ×α Ĝ? Answer: Quite a lot.
More generally, we can consider G C[G] a Hopf algebra, and Ĝ the dual Hopff algebra. There’s
a lot to be said about C∗-Hopff algebras. Compact case is more-or-less understood, but locally
compact quantum groups are hard even to define. E.g. no one knows how to prove the existence
of a Haar measure in the non-compact case.

In any case, the action (αt(f)) (m) = 〈m, t〉f(m) is strongly continuous: t 7→ αt(f) is continuous
for the norm ‖ · ‖Aθ . It’s worth generalizing. Let G be a compact Abelian group with an action α
on some C∗-algebra A. We can try to do “Fourier analysis” We have Ĝ discrete. For a ∈ A and
m ∈ Ĝ, the mth Fourier coef of a is

am
def=
∫
G
αt(a) 〈t,m〉 dt ∈ A

33: April 11, 2008

**I arrived late.** When G is compact, Ĝ is discrete, (if G is not abelian, Ĝ are the equivalence
classes of irreps of G) and given the right set-up **an action of G on Banach space B?**, we
can average and define an “isotypic subspace”: Bm = {ξ : αx(ξ) = 〈x,m〉ξ}.

Another view: Let em(x) = 〈x,m〉. Then em ∈ L1(G), and (em ? en)(x) =
∫
G em(y) en(x− y) dy =∫

G 〈y,m〉〈x− y, n〉dy = 〈x, n〉
∫
〈y,m− n〉dy. Based on experience with these things over, e.g. the

torus, we can show that this integral is
∫
〈y,m− n〉dy = δm,n. So em is an idempotent in L1(G)

and em ? en = 0 if m 6= n. So set ξm = αem(ξ); then αem is a projection of B onto Bm.

Prop: If ξm = 0 for all m, then ξ = 0.

Proof:

αem(ξ) = 0. The finite linear combinations of the ems form a subalgebra under pointwise
multiplication — emen = em+n — and under complex conjugation. There are lots of char-
acters of a compact group: we even have the machinery to show this **and sketched the
proof verbally, but I didn’t catch it**. This algebra separates points, hence is dense in
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C(G) with ∞-norm, so dense in L1(G). Thus αf (ξ) = 0 for any f ∈ L1(G). But let fλ be an
approximate identity for L1(G), so 0 = αfλ(ξ)→ ξ. �

Question from the audience: So this is saying that if all the Fourier coefficients of a function
are zero, then it’s zero? Answer: Precisely. And more generally.

Cor: If a ∈ Aθ = C∗(Zd, cθ), and if an = 0 for all n, then a = 0.

If G compact Abelian, α and action on C∗-algebra A, we can define Am for each m ∈ Ĝ. We pick a ∈
Am and b ∈ An; then αx(ab) = αx(a)αx(b) = 〈x,m〉a 〈x, n〉b = 〈x,m + n〉ab. So ab ∈ Am+n. And
a∗ ∈ A−m. So then

⊕
Am is a dense subalgebra fibered over Ĝ. **I would call this “graded”.**

We can even do this in the nonabelian case. These are often called “Fell bundles”.

So, back in our torus case, let Um be a unitary generator for Aθ (corresponds to δm).

(Um)n =
∫
〈x,m〉αx(Um) dx

=
∫
〈x, b〉〈x,m〉Um dx

=
∫
〈x,m− n〉dxUm

=
{

0, m 6= n
1, m = n

So (Aθ)m = span(Um). We can try to ask at a convergence level whether a ∼
∑
amUm. This

doesn’t have a good answer, even in the continuous case: Which collections of Fourier coefficients
come from continuous functions?

For G acting on a C∗-algebra A, the fiber over 0 is a C∗-subalgebra. A0 = {a : αx(a) = a∀x} def= AG.
If P = αe0 , then P (a) =

∫
G αx(a) dx.

Prop: P is a conditional expectation from A onto AG:

(a) If a > 0, then P (a) > 0.

(b) If a ∈ A and b ∈ AG, then P (ba) = bP (a) and P (ab) = P (a)b.

(c) P (αx(a)) = P (a)∀x ∈ G.

For Aθ, P (a) =
∫
T d αx(a) dx = a0U0 = a01. So we can view P as a linear functional τ : a 7→ a0 ∈ C.

It’s positive, from what we’ve seen, and P (1) = P (U0) = 1, so it’s a state, but also tracial:
τab = τ(ba). It’s enough to check this on generators:

τ(UmUn) =
∫
〈m,x〉Um〈n, x〉Un dx =

{
0, m 6= −n

UmU−m = cθ(m,−m), m = −n

Cor: Aθ contains no proper α-invariant ideal.
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Proof:

If I is an ideal, a ∈ I, a 6= 0, then a∗a ∈ I and a∗a 6= 0. So P (a∗a) =
∫
αx(a∗a) dx > 0, but

it is in C1, so 1 ∈ I, so I ∈ Aθ. �

Cor: The rep of Aθ on L2(Zd) is faithful.

Next time.

Cor: τ is the only α-invariant tracial state.

Proof:

If τ0 is another one, then τ0(a) = τ0(αx(a)) =
∫
G τ0(αx(a))dx = τ0

(∫
αx(a)dx

)
= τ0(a0) =

τ0(τ(a)1) = τ(a). �

34: April 14, 2008

Recall we have Aθ and the “dual” action α of T d. Aθ has no proper α-invariant ideals.

Theorem: The rep π of Aθ on `2(Zd) (the GNS rep of the (unique) tracial state)

π(f)ξ def= f ?cθ ξ

is faithful, i.e. kernel = 0.

Proof:

Slogan: “α is unitarily implemented on `2(Zd).” I.e. there is a unitary representation W of
T d on `2(Zd) such that, for x ∈ T d:

π(αx(a)) = Wxπ(a)W ∗x (5)

What this is saying is that (π,W, `2(Zd) is a covariant rep for (Aθ, T d, α).

If so (we haven’t justified the above yet), then if a ∈ kerπ, then αx(a) ∈ ker for all x ∈ T d, so
kernel is α-invariant. But the kernel is not the whole algebra — there are non-zero operators
— then by last time, ker = 0.

Ok, so for unitary equivalence, set:

(Wxξ) (m) def= 〈m,x〉ξ(m)

This is almost the same formula as for α: (αx(f)) (m) def= 〈m,x〉f(m). From these, it’s an
easy exercise to sort out the slogan (5). �
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Well, so, from before, UmUn = cθ(m,n)Um+n, and U∗m = cθ(m,n)U−m. These are unitary genera-
tors of the algebra; we can multiply each by a complex number of modulus 1, and we’ll still have
unitary generators. So, set

Vm
def= cθ/2(m,m)Um = e2πim· θ

2
nUm

Claim:

• V ∗m =
(
cθ/2(m,m)Um

)∗ = cθ/2(m,m) cθ(m,m)U−m = cθ/2(−m,−m)U−m = V−m

• VmVn = cζ(m,n)Vm+n, where ζ =
(
θ − θt

)
/2 is the skew-symmetric. What’s going on

is that the cocycle cθ is homologous to cζ .

We’re using the fact that in T d everything has a square root. This is not always the case for dual
groups, e.g. of finite groups. We won’t check the second fact in the claim on the board. In any
case, when convenient, we can always insist that θ be skew-symmetric. (Recall that θ is a real d×d
matrix, and we can take it up to mod Z.)

For a given n, consider the conjugation of Aθ by Un.

UnUmU
∗
n = cθ(n,m)Um+ncθ(n, n)U−n

= cθ(n,m)cθ(n, n)cθ(m+ n,−n)Um
= e2πi(n·θm−m·θn)Um

= cθ−θt(m,n)Um
def= ρθ(m,n)Um

Writing “∼” for “homologous”, we see that ρθ =
(
c(θ−θt)/2

)2 ∼ c2
θ. Then ρθ(·, n) ∈ Ẑd ∼= T d is a

character. And indeed
UnUmU

∗
n = αρθ(·,n)(Um)

(We can turn things around and get rid of the complex conjugate sign.)

So, view ρθ as a map Zd → T d by n 7→ ρθ(·, n). There’s no reason whatsoever why the image
should be a closed subset. Let Hθ = {ρθ(·, n) : n ∈ Zd} be the closure of the image in T d. So Hθ is
a closed subgroup of T d. Then there’s a little taking duals: any closed subgroup has a connected
component of the identity, and any connected closed subgroup is another torus stuck in skew-wise.
So

Hθ
∼= T e × F

where e ≤ d and F is finite abelian. We like this version, because we have a compact group and
we’d like to average over it, and we know how to do so on each piece.

Let J be any closed 2-sided ideal in Aθ. Then αρθ(·,n)(J) = UnJU
∗
n = J . But α is continuous, and

the ρθ(·, n) are dense in Hθ, so αx(J) = J for all x ∈ Hθ. On a ∈ Aθ, define the average

Q(a) =
∫
Hθ

αx(a) dx
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This is a conditional expectation, and Q ≥ 0 and Q is faithful. Then Q(J) ⊆ J .

If Hθ = T d (big if), then Q(Aθ) = P (Aθ) = C1 from last time. So if J is not the zero ideal, still in
the θ = T d case, then 1 ∈ J . In sum:

Theorem: If {(θ−θt)(n) : n ∈ Zd} is dense in Rd/Zd, then Aθ has no proper ideals, i.e. is a simple
C∗ algebra. It’s certainly unital and ∞-dimensional, but definitely not GCR. Nevertheless,
we can write down many irreducible representations.

35: April 16, 2008

35.1 Irreducible representations of algebras Aθ

Let H = L2(R), and pick θ ∈ Rr {0}. Let U be the operator that translates by θ:

(Uξ)(t) def= ξ(t− θ)

Let V be the operator that multiplies by a phase:

(V ξ)(t) def= e2πitξ(t)

Then the C∗ algebra generated by V is C(T ), where T is the circle T = R/Z.

Question from the audience: Why? The closure is dense in the sup norm, not the operator
norm. Answer: The sup norm is the operator norm for any of these pointwise multiplication, as
long as your measure has full support.

Then, if f ∈ C(T ), we have Vf = f × (−). And UVf = Vα(f)U , where (α(f))(t) def= f(t − θ). In
particular, taking Vf = V itself, i.e. f = e2πit, then we conclude the commutation relation:

UV = e−2πiθV U

So we let W (p, q) def= UpV q, and W (p, q)W (p′, q′) = UpV qUp
′
V q′ = e2πiqp′θW (p + p′, q + q′). This

generates the C∗ algebra:

C∗(Z2,

(
0 0
θ 0

)
)

or perhaps the transpose of that matrix. But iterating the action α, it’s clear that this algebra is
a crossed product:

C(T )×α Z

Given a discrete group G, and α and action of G on M compact, we get an action α on C(M).
Hence, we can form C(M)×α G. How can we construct some irreps of this algebra?

Well, pick some point m0 ∈ M , and consider its orbit Om. We have a bijection G/Gm0 → Om,
where Gm0 is the stabilizer subgroup. Of course, the orbit might be infinite, so will have limit
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points. We form `2(G/Gm0), which we view as `2(Om), with the counting measure — this gives
the measure of a compact space to be ∞. In any case, we can pull back continuous functions to
bounded functions, and hence to bounded operators (multiplication):

C(M) //

π: f 7→f×(−)

22
Cb(Om) // B(`2(G/Gm0))

Then the π(f)s separate points of G/Gm0 , and so we get a covariant rep of C(M), G. Exercise:
this representation is irreducible.

E.g. θ is irrational. Then there are uncountably many different orbits, and each will give a different
irrep of C(T ) ×α Z above. Similarly, for L2(T,Lebesgue); this is a different Hilbert space, but we
can play the same game, so we get more irreps inequivalent to any of these. Classification theorem:
you will never explicitly construct all irreducible representations.

**comment on von Neuman algebras, that I missed**

These algebras — C(T )×αZ — are called rotation algebras. Even the rational rotation algebras are
interesting, although not as much as the irrational ones. More generally, we can look at C(Tm)×θZn
where these rotate at different speeds; this is a special case, because on each of C(Tm) and Zn have
commuting generators.

Question from the audience: Does any measure on the circle give an irrep? Answer: No, I
need it to be invariant under the rotations.

We saw that UmUnU∗m = ρθ(m,n)Un, with perhaps a different convention last time, where ρθ is
a bicharacter, and ρθ(m,n) = αρθ(m,n). Let Zρθ

def= {m : ρθ(m,n) = 1 ∀n}; then Um ∈ Z(Aθ) the
center iff m ∈ Zρθ . **Lecture uses the same symbol for the integers Z and the variable
Z; either is reasonable in this context.** Un is central iff αt(Un) = Un for any t ∈ Hρθ . Recall
αt(Un) = 〈n, t〉Un. We defined

Q(a) =
∫
Hρ

αt(a) dt

and so

Q(Un) =
{
Un, n ∈ Zρθ
0, n 6∈ Zρθ

This requires a little bit of Fourier analysis. **Recall that H is the closure of the image of
Zd in T d under the pairing ρθ.**

In any case, Zρθ is a subgroup of Zd, and Range(Q) ⊆ C∗(Zρθ) ⊆ Z(Aθ) the center, and if a ∈ Z(Aθ),
then Q(a) = a. Hence C∗(Zρθ) is exactly the center of Aθ.

Ok, so we now can decompose the algebra Aθ as a field of algebras over the center, and it turns
out that each of the fibers is one of these simple algebras.
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35.2 Differentiation

Smooth structures, in our experience, come from differentiation. We have Aθ and an action α of
T d. We have a surjection Rd → T d. Let’s generalize a little.

Let B be a Banach space, and α a strongly continuous action of R on B. We don’t really need this,
but for simplicity, let’s think of this action as by isometries. Let b ∈ B, and look at t 7→ αt(b), which
is norm-continuous on R with values in B. Is this function once-differentiable (at 0 is enough)?
I.e., we want to know if

lim
t→0

αt(b)− b
t

exists for the norm ‖ · ‖B on B. In other words, does this limit equal some c ∈ B? Certainly, we’ll
want B to be complete. If the limit exists, we’ll say that b is differentiable, and we’ll write the limit
at D(b).

If D(b) exists, we can ask whether D(b) is differentiable. I.e. D(D(b)). And so on: does Dn(b)
exist?

**Picture this as B = C(R) and α is by translation.**

Let V be a finite-dimensional vector space over R (which we think of as Rd, but we don’t want
to be prejudicial about the basis). Let α be an action of V on B. For v ∈ V , we can ask for the
directional derivative in the direction of v:

Dv(b)
def= lim

αtv(b)− b
t

if the RHS exists. Given v1, . . . , vn, we can talk about Dvn . . . Dv1b.

We won’t need this generality, but it really does work: Let G be a connected Lie group, and take
G ⊆ GL(n,R) closed connected (we can do this up to a discrete subgroup). Then the Lie algebra
g of G is

g
def= {X ∈ gl(n,R) : exp(X) ∈ G}

There are substantial theorems about this. Then t 7→ exp(tX) gives a 1-parameter subgroup of G
for each X.

Let α be an action of G on B. Restrict to t 7→ exp(tX). We can define, if it exists:

DX(b) def= lim
αexp(tX)(b)− b

t

If DX(b) exists, we can ask about its differentiability, and so on, and let

B∞ = {b ∈ B : DXn . . . DX1b exists for all n and all X1, . . . , Xn}

Theorem: (Gärding **sp?**)

B∞ is dense in B.
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36: April 18, 2008

Question from the audience: When we defined the lie group of a Lie Algebra, we said X ∈ g iff
expX ∈ G. Whenever I’ve seen this defined, the latter part was exp(tX) ∈ G. Are they equivalent?
Answer: No, you want tX. E.g. there are matrices so that expX = 1, but exp(X/2) 6∈ G.

36.1 Smooth structures

Let G be a connected closed subgroup of GL(n,R). In particular, we elide a course on Lie group
theory, but G is a submanifold of GL. Let Lie(G) = g = {X ∈ Mn(R) : exp(tX) ∈ G ∀t ∈ R}.
Then if X,Y ∈ g, then [X,Y ] = XY − Y X ∈ g.

The situation we were in: α is a strongly-continuous action of G on a Banach space B by bounded
linear maps: α : G → B(B). (The same theory with semigroups comes up as well; when G is a
group, clearly we map into the invertible maps.) We defined the derivative DXb, if it exists. From
there we could define multiple derivatives, and hence the class of C∞ elements B∞ ⊆ B. This is
obviously a linear subspace of B.

Theorem: (Gärding)

B∞ is a dense linear subspace in B.

Proof:

The buzzwords are “smoothly” and “molifies”.

(E.g. Let α be an action of R on M a manifold, which could be chaotic evolution. (We
won’t define this, but see the paper: Lorenz just died, and he brought to life chaotic theory.)
We get an action on C∞(M) = B, and there will be functions that are differentiable in this
sense.)

Let b ∈ B be given, and let f ∈ C∞c (G). Then we claim αf (b) ∈ B∞. But let f run over an
approximate identity; then these will converge to b. Recall:

αf (b) def=
∫
G
f(x)αx(b) dx

where dx is Haar measure; f has compact support, so this is a continuous B-values function.

So, why is αf (b) ∈ B∞? Go back to the definition: given X ∈ g, we look at

1
t

(
αexp(tX)(αf (b))− αf (b)

)
Does this have a limit? For fixed t, we can pull into the integral sign, and commute past the
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number f(x):

1
t

(
αexp(tX)(αf (b))− αf (b)

)
=

1
t

(∫
G
f(x)αexp(tX)αx(b) dx− something

)
=

1
t

(∫
G
f(x)αexp(tX)x(b) dx− something

)
=

1
t

(∫
G
f(exp(−tX)x)αx(b) dx− something

)
=

∫
G

f(exp(−tX)x)− f(x)
t

αx(b) dx

And the inside fraction is just a derivative of a scalar-function in the Lie group: it’s just
DX(f)(x) def= lim f(exp(−tX)x)−f(x)

t . We have Taylor series: f(exp(−tX)x) = f(x)+(DXf)(x)+
1
2(D2

Xf)(x) +O(t3). Thus the difference is

f(exp(−tX)x)− f(x)
t

− (DXf)(x) = (continuous)(t) −→
t→0

0

uniformly in x (we have compact support). Thus we can integrate, so∫
G

f(exp(−tX)x)− f(x)
t

αx(b) dx −→
t→0

∫
G

(DXf)(x)αx(b) dx = αDXf (b)

But DXf ∈ C∞c (B), so DY (αDXf (b)) = αDYDXf (b). Iterate, and αf (b) ∈ B∞. �

Definition: The Gärding domain is the linear span of {αf (b) : f ∈ C∞c (B), b ∈ B}.

This is certainly dense in B, and contained in B∞. Did everybody catch why? Question from
the audience: Don’t you need that your representation is nondegenerate? Answer: The repre-
sentation is coming from an action. And such things are always nondegenerate, because we have
approximate identities. For instance, let f approximate a delta function at the identity in G.
Then

αf (b)− b =
∫

(f(x)αx(b)− b)dx

‖αf (b)− b‖ = ‖
∫

(f(x)αx(b)− b)dx‖

≤ sup{‖αx(b)− b‖ : x ∈ support(f)}

Question from the audience: These are unbounded operators. If we’re in a C∗ algebra, and
give it the standard Hilbert structure, we can ask if these are adjointable? Answer: I don’t know
if that’s been looked at. We can ask if the Gärding domain is equal to B∞. Dixmier-Melhann
**??** looked at a related question. They asked something like whether each element of C∞c (G)
is a convolution of things in there. They found groups for which that’s false, although any element
is a finite sum of convolutions. There are places where knowing things like that it useful. But we
will be working where the Lie algebra is abelian.
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Theorem: On B∞, [DX , DY ] = DXDY −DYDX = D[X,Y ].

This is a basic and important fact, and takes some analysis.

Suppose that A is a Banach algebra, and α is a (strongly continuous) action of G on A by Banach-alg
automorphisms. It’s easy to prove (a la freshman calculus) that

DX(ab) = (DX(a))b+ a(DX(b))

for a, b ∈ A∞. Cor: A∞ is a subalgebra of A.

Also, if A is a ∗-algebra and α is by ∗-automorphisms, then A∞ is a ∗-subalgebra.

Question from the audience: It seems like our notion of smoothness depends on the group.
Should we look for a maximal action of some sort to make sure we have the right functions?
Answer: That seems like a good idea, but nobody knows how to do that. If you look at examples
(interesting ones, nothing pathological), you find that they may have very few actions by Lie groups.
Then there doesn’t appear to be much differentiable structure. But the leap that Alain Connes has
taken is to say that A is a C∗-algebra, and view A ⊆ B(H). Let D be an unbounded self-adjoint
operator on H. Let Ut = e2πitD, and let αt(T ) = UtTU

∗
t for T ∈ B(H). We can talk about smooth

vectors B(H)∞. There’s no reason the action should carry the algebra into itself, but it may happen
that A ∩ B∞(H) is dense in A. a ∈ A ∩ B∞(H) iff, more or less (only densely define), [D, a] is
a bounded operator (on a dense domain, so extends — well, this is once differentiability, so need
to repeat. This picks out a smooth subalgebra of A. Then an operator is being used in this way,
Connes calls this a Dirac operator. Because it matches the notion on a Riemannian manifold, and
indeed we can recover the metric from the Dirac operator. So Connes says that this is the way to
do non-commutative Riemannian geometry. Question from the audience: What is H in this
manifold case? L2(M)? Answer: No, it’s L2 with values in the spinor bundle.

36.2 Returning to our main example

Ok, let’s return to the case at hand. We have Aθ, α, T d. α is an action of T d on a Banach space
B. For n ∈ T̂ d = Zd, we have Bn defined by

Bn = {b ∈ B : αx(b) = 〈x, n〉b}

where, of course, 〈x, n〉 = e2πix·n. For fixed b ∈ Bn, its span is an invariant one-dimensional
subspace in Bn.

On Rd, we vie the Lie algebra and Lie group as 0 0 ~v

0
. . .

0 0

 exp7→

 1 0 ~v

0
. . .

0 1
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So really exp(X) = X. Then for b ∈ Bn,

DX(b) = lim
αtX(b)−B

t
= lim

e2πitX·n − 1
t

b = (2πiX · n)b

Question from the audience: Fourier transform takes differentiation to multiplication? An-
swer: Precisely.

37: April 21, 2008

We were in the situation of having T d and α an action on B a Banach space. We had seen from
general considerations of Lie groups that you can form the space B∞ of smooth vectors, dense in
B.

On the other hand, for n ∈ Zd = T̂ d, we had Bn = {b : αt(b) = 〈n, t〉b}. (Recall: 〈n, t〉 = e2πit·n.)
Then if X ∈ Rd = Lie(T d), we defined

DXb
def= lim

r→0

αrX(b)− b
r

and on b ∈ Bn we have DXb = (2πiX · n)b.

Remember, on Aθ the noncom torus, we had a dual action

αt(Un) def= 〈n, t〉Un

and so (Aθ)n = CUn is just a one-dimensional span.

Question from the audience: What is αrX? Answer: αexp rX . But we’re writing T d addi-
tively.

So DX1 . . . DXkb = (2πi)k
(∏k

j=1 n ·Xj

)
b.

For b ∈ B∞, we expect to write incomponents: b ∼ {bn}. Then we expect (DX1 . . . DXkb)n ∼
DX1 . . . DXkbn = (2πi)k

(∏k
j=1 n ·Xj

)
bn. But the right and left should be in b; taking norms:

(2π)k
∏
|n ·Xj | ‖bn‖ ≤ ‖DX1 . . . DXkb‖

and the RHS is indep of n. The norm on the RHS is some constant, adjusting it we can say
that

‖bn‖ ≤
c

(1 +
∏
|n ·X|2)n

so the coefficients bn must die faster than any polynomial.

We define the Schwartz space: S(Zd) = {f : Zd → C such that n 7→ |f(n)p(n) is a bounded function
for all polys p}.
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Theorem: B∞ is the B-valued Schwartz space: it consists of all functions c : Zd → B such that
c(n) ∈ Bn and {n 7→ ‖cn‖} ∈ S(Zd).

Then in particular (Aθ)∞ “is” S(Zd) by f 7→
∑
f(n)Un. In any case, for p big enough, it’s clear

that S(Zd) ⊆ `1(Zd), and this sum converges.

This relates to a well-known fact: for g ∈ C(T d), g ∈ C∞(T d) iff the Fourier transform ĝ ∈
S(Zd).

Proof of Theorem:

If we have c ∈ RHS, we certainly have {n 7→ ‖c(n)‖} ∈ `1(Zd), so set b =
∑
c(n) converges just

fine, and bn = c(n). Using the differential quotient, you find that (DXb)n = (2πi)n ·X c(n),
and the sum of these things since we’re in the Schwartz space converges. So we have ⊇. (We
did not complete the proof, but it goes along pretty straightforwardly.)

In the opposite direction, let b ∈ B∞. **We spend some time on a calculation we had
done before, going the wrong direction.** We’re trying to show that {n 7→ ‖bn‖} ∈
S(Zd). Then DXb exists, and we need to show that (DXb)n = 2πi n · X bn. Write f(t) =
e2πi n·t. The limit DXb = lim(αrX(b)− b)/r is a uniform limit, so:

(DXb)n =
∫
f(t)αt(DXb) dt

= lim
∫
f(t)αt

(
αrX(b)− b

r

)
dt

= lim
1
r

(∫
f(t)αtαrX(b) dt−

∫
f(t)αt(b) dt

)
= lim

1
r

(∫
f(t− rX)αt(b) dt−

∫
f(t)αt(b) dt

)
= lim

∫
f(t− rX)− f(t)

r
αt(b) dt

= 2πi n ·X bn, since f = e2πin·t

Thus (DX1 . . . DXnb)n = p(n) bn, and so take norms and observe that we’re in S(Zd). �

Let A be a C∗ algebra, and let α be an action of T d on A. (E.g. let α be an action of T d on
a locally compact space X, e.g. a manifold, so can take A = C∞(X). Even this commutative
case is interesting.) So we have all these spaces An, and let am ∈ Am, an ∈ An, then αt(aman) =
αt(am)αt(an) = 〈m, t〉am 〈n, t〉an = 〈m + n, t〉am+n, and the multiplication is graded: AmAn ⊆
Am+n. Similarly, A∗m = A−m.

Let θ be given, and build the cocycle cθ(m,n). Let (π, U,H) be a faithful covariant representation
of (A, T d, α). T d acts on H, so we can factor

H =
⊕
n∈Zd

Hn

68



You can check: if am ∈ Am and ξn ∈ Hn, then π(am)ξn ∈ Hm+n.

Now we will do something weird. Continuing to use these labels to tell you where things come
from, define:

πθ(am)ξn
def= π(am)ξncθ(m,n) ∈ Hm+n

. Next time, we will explore this. We will find that all of this is well-defined on A∞, and we’re
twisting this algebra by a cocycle.

38: April 23, 2008

I keep forgetting, you need to turn in a third problem set, and I don’t want it at the end of the
semester. Is it unreasonable to ask for it on Monday? If you won’t be turning it in on Monday,
please talk to me.

38.1 We were doing somewhat strange things

We have T d and α an action on C∗-algebra A. This gives us a smooth algebra A∞, which sort of
looks like the Schwartz space, except for functions values in An. Then we get subspaces An ⊆ A∞
for n ∈ Zd. We had (π, U,H) a covariant representation of (A, T d, α), and we assume π is faithful.
Then we have Hilbert spaces Hn, and if m 6= n, then Hn ⊥ Hm. Exactly the same proof that
eigenspaces of self-adjoint operators are orthogonal.

Question from the audience: The direct sum of Ans is dense in A∞? Is it all of it? Answer: A∞

is the set of sequences {an} where each an ∈ An, and where the map {n 7→ ‖an‖} ∈ S(Zd) ⊆ `1(Zd).
For any a we can get a sequence of an, but it’s almost impossible to say what sequences come from
general functions. So the direct sum is dense, but not complete in the Frechet topology; the direct
sum is all the finite ones. Question from the audience: A∞ is the sums of these sequences?
Answer: Yes. Or define the space of these sequences as a graded algebra, and there’s a bijection
between A∞ and these sequences, by summing in one direction, and in the other direction by taking
Fourier modes.

In the non-commutative case, it’s more complicated, but you still get a decomposition of the C∗

algebra of functions via the group action. Question from the audience: With a non-compact
Lie group? Answer: For each irreducible representation, you can define a space An. Where you
get into trouble: if we multiply two characters, you get a character, but in higher dimension the
tensor product of two irreducible representations may not be irreducible, and the bookkeeping gets
harder.

So, given θ ∈Md(R) and cocycle cθ. For any ξn ∈ Hn, and am ∈ Am, define

πθ(am)ξn
def= π(am)ξncθ(m,n)
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For any ξ ∈ H, we have ξ =
∑
ξn.∥∥∥∥∥∥πθ(am)

∑
‖n‖≤M

ξm

∥∥∥∥∥∥
2

=
∥∥∥∑π(am)ξncθ(m,n)

∥∥∥2

=
∑
‖π(am)ξncθ(m,n)‖2 by orthogonality

≤
∑
‖π(am)‖ ‖ξn‖

= ‖π(am)‖ ‖ξ‖ where ξ =
∑
ξn

So
∑

n∈Zd π
θ(am)ξn converges, and we call the limit πθ(am)ξ.∥∥∥πθ(am)ξ

∥∥∥ ≤ ‖π(am)‖‖ξ‖ ≤ ‖am‖‖ξ‖

Thus for a ∈ A∞, set
πθ(a)ξ def=

∑
πθ(am)ξ

and πθ(am) is `1. Then

πθ(am)πθ(an)ξp = πθ(am) (π(bn)ξpcθ(n, p))
= π(am)π(bn)ξpcθ(n, p)cθ(m,n+ p)
= (π(am)π(bn)cθ(m,n)) ξpcθ(m+ n, p)

So, on A∞, we define a product

a ?θ b =
∑

am bn cθ(m,n)

and since these sequences in norm are `1, we see that this series converges without any difficulty.
Then

πθ(a)πθ(b) = πθ(a ?θ b)

Moreover, the ∗: (
πθ(an)

)∗
= a∗ncθ(n, n) def= a∗θn

In any case, this gives a ∗-algebra structure on Aθ and a ∗-rep on H. We want π faithful. Then
we get a C∗-norm on A∞. Complete this to get a C∗-algebra Aθ. This is not the same as Aθ from
earlier.

Question from the audience: Why do you do this just for A∞ and not all of A? Answer: The
twisted C∗ norm is not continuous for all of A. E.g. A = C(T d), then Aθ = Aθ, but the norm on
Aθ is not equivalent to the sup norm on A, just on A∞. Well, we could work on `1.

A bit of context: where does this come from? θ defines a “Poisson bracket” on A∞ in the obvious
sense: choose an orthonormal basis for Rd = Lie(T d), which might as well be the “standard” basis
{Ej}. Then the Poisson bracket of a and b is

{a, b}θ,α
def=
∑

θjkDEj (a)DEk(b)
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This is really best after we change so that θt = −θ is skew-symmetric. If M is a manifold, and T d

acts smoothly on M , then T d acts on C∞(M), and it’s very natural to define a Poisson bracket
{f, g} =

∑
θjkDEj (f)DEk(g). The first person to do our more general case carefully was a student

of Alan Weinstein’s, by the name of **missed**.

When A = C∞(M), we have Aθ, which we should view as a “quantization” of C∞(M) in the
direction of the Poisson bracket. To make this precise, we need to get Plank’s constant ~ ∈ R in
here. Then ~θ is again skew-symmetric, so we can define A~θ. I.e. ~ 7→ A~θ is a one-parameter
family of algebras, and when ~ = 0 we get the original algebra. Then for a, b ∈ A∞,∥∥∥∥a ?~θ b− b ?~θ a

~
− 2i{a, b}θ

∥∥∥∥ ~→0−→ 0 (6)

Says that the “semi-classical limit” of the A~θ is A equipped with the Poisson bracket {}θ.

So if you take the opinion that the world is quantum, then in the classical limit, the remnant of
the quantum world is the Poisson bracket in the ordinary world.

Another way of putting equation (6):

a ?~θ b = ab+ i~{a, b}+O(~2)

The limit (6) is often called the “correspondence principle”.

For Rn acting on A, we again have A∞, and for θ we can define a ?θ b. This is technically more
difficult, because we don’t have subspace An.

By the same formula as before, T d acts on Aθ by multiplying by the corresponding character
independent of θ. We see that (Aθ)∞ = A∞. And so given θ1, θ2, via the Rd action,(

Aθ1
)θ2

= Aθ1+θ2

and in particular we can twist by θ and then twist back by −θ.

These are “uniform deformation formulas”, also called “deformation quantization”. There are other
kinds of quantization, e.g. by approximating an algebra by an algebra of matrices. Want: for any
Lie group G with “compatible” Poisson bracket, i.e. for any “Poisson Lie group”, and any action
α of G on a C∗-algebra A, we would want a construction to deform A∞ in the direction of the
Poisson bracket.

Most quantum groups people construct are made by doing this at the purely algebraic level, where
a Lia algebra acts on an algebra. At this algebraic level, that’s tough. It’s even tougher in our
analytical context. Some interesting papers exist, but it’s presently under research.
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39: April 25, 2008

39.1 Further comments on deformation quantization

SO(n+ 1) acts on Sn in a natural way, and so long as n ≥ 3, we can find inside SO(n+ 1) two or
more copies of the rotation group:

cos 2πr sin 2πr
− sin 2πr cos 2πr

cos 2πs sin 2πs
− sin 2πs cos 2πs

. . .


So we have roughly a (n + 1)/2-dimensional torus acting on Sn, so pick a θ and build (Sn)θ.
M.R. had described our deformation quantization in general; Alain Connes became interested in
examples, and in particular the quantum spheres (Sn)θ.

Moreover, M.R. gave the prescription for building quantum groups like (SO(n+ 1))θ, a quantum
group, but others did the examples, and (SO(n+ 1))θ acts on (Sn)θ. This is a relatively tame
situation.

Question from the audience: So when you deform a group to get a quantum group, you have
different multiplication by same comultiplication? Answer: Well, there are different versions. If
we have a compact group, we use

C(G) ∆→ C(G) ⊗
C∗
C(G) = C(G×G)

f 7→ (∆f)(x, y) def= f(xy)

Then the comultiplication encodes the group structure, and a quantum group is some algebra with
a coassociative comultiplication.

39.2 Differential forms

Let G be a Lie group, α and action on A. Then we have A∞, αX = DX for X ∈ g = Lie(G). Given
a ∈ A∞, define da : g→ A∞, i.e. da ∈ g′ ⊗A∞ (where g′ is the dual algebra of g **why not use
ĝ?** by

(da)X def= αX(a)

Then
d(ab)X = αX(ab) = αX(a)b+ aαX(b) = ((da)b+ a(db)) (X)

Definition: For any algebra A, a first-order differential calculus over A is a pair (Ω1, d) where Ω1

is an A-bimodule and d is a map d : A→ Ω1 satisfying the Leibniz rule d(ab) = a db+ da b.
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Often, we require additionally that Ω1 be generated as a bimodule by d(A). In this case, if
1 ∈ A, the Leibniz rule provides that Ω1 is generated by d(A) as a left (or as a right) module.

Every A (with 1) has a universal first-order calculus: we let Ω1 is (a subspace of) the algebraic
tensor product A ⊗ A, where da def= 1 ⊗ a − a ⊗ 1. Then in particular a db = a ⊗ b − ab ⊗ 1. We
have the algebra multiplication a map m : A ⊗ A → A, and then m(a db) = 0. You can check:
span{a db} = ker(m). Sometimes people define Ω1 as this kernel, but this, at a philosophical level,
is from convenience rather than general principles.

Question from the audience: In what notion is this universal? Answer: Any other first-order
differential calculus is a quotient of this one.

In any case, above (Lie group) is an example. In non-commutative geometry, the notion of “tan-
gent space” becomes less useful. Any algebra A might have lots of derivations, but the space of
derivations is not really a module over A. By non-commutativity, if D is a derivation, then aD
probably is not.

But here we have cotangent spaces: differential forms. Indeed, we have a proliferation of them.
Without getting too deep, we certainly have higher-order differential calculi:

A // Ω1 d // Ω2 d // Ω3 d // . . .

where we demand that d2 = 0. Once we have this type of structure, we can define a cohomology
for our differential calculus: Zn

def= ker(Ωn d→ Ωn+1) and Bn def= ker(Ωn−1 d→ Ωn), and Hn def=
Zn/Bn.

For the universal calculus, we can take Ω2 as the span of symbols of the form a0 da1 da2, manipulated
in the obvious way (where we be careful about keeping the order in tact, as we are noncommutative).
For G and an action α on A, we can use Ωn = (

∧n g′) ⊗ A∞. Question from the audience:
Normally we let the wedge product be anti-commutative. In the non-commutative case, shouldn’t
this be worse? Answer: Well, we want n-linear alternating A-valued forms on g. The Leibniz rule
is complicated:

d(ωpω) = (dωp)ω + (−1)pωp(dω)

where ω can be any form, and ωp is homogeneous of degree p.

Well, this is all somewhat weird. I’m sure you’ve heard that even in ordinary differential geometry,
as soon as you get to dimension 7, the 7-sphere and higher have exotic differential structures. This
happens in non-com-land, e.g. for non-commutative tori, when n ≥ 4: On T 4, we can have θ1 and
θ2 where Aθ1 ∼= Aθ2 but A∞θ1 6∼= A∞θ2 . Finding the right invariants to show all this is hard, and gets
into K-Theory. It is in the direction we want to go in.
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39.3 Vector Bundles

We won’t assume that you know too much about vector bundles in detail, but the general picture is
that you have some space M and a bundle of vector spaces over M **a standard picture**

E

��
M

so that locally E ∼= O × Rn or Cn, i.e. local triviality. We can think about smooth cross-sections.
We write Γ(E) for the space of continuous cross-sections, and by local triviality we can take bump
functions, giving lots of continuous cross-sections (certainly we also have the 0-section).

Take M compact for simplicity. Then we have C(M), and given f ∈ C(M) and ξ ∈ Γ(E), we can
define fξ in the obvious way. By looking at an open neighborhood of each point, it’s clear that
this again is a continuous cross-section. Written briefly: Γ(E) is a module over C(M).

In fact, these are somewhat special modules. We know from working with vector spaces that it’s
useful to have inner products. Since we’re assuming compactness, we can cover M with a finite
number of open sets O1, . . . ,Ok over which E is trivial. Then we can find a continuous partition of
unity {φj} subordinate to {O1, . . . ,Ok}: i.e. the support of φj is contained in Oj for each j, and∑
φj = 1 and 0 ≤ φk ≤ 1.

Then for ξ, η ∈ Γ(E), we look at E over Oj , over which it looks like Oj × Rn (or perhaps Cn),
then we can view ξ, η|Oj as living in Oj × Rn, and then we can form the standard inner product
in terms of our choice of trivialization and get a function 〈ξ, η〉Rn . Multiplying by φj gives us a
function that’s 0 near the boundary, and so extends to the whole space. Then we can get a global
inner product:

〈ξ, η〉C(M)
def=
∑
j

φj〈ξ|j , η|j〉Rn (7)

This is a continuous function, i.e. it is an element of C(M). This is a good example of an “A-valued
inner product” (for A = C(M)) on Γ(E). In the real case, these are called “Riemannian metrics”
on the bundle, and in the complex case called “Hermetian metrics”. A good neutral term is bundle
metric.

We should set this machinery up to avoid the following stupid possibility: A = C([0, 1]) and
E = [0, 1] × Rn, and we could set 〈ξ, η〉A(t) = t〈ξ(t), η(t)〉. This is an inner product, and has
the property that if 〈ξ, ξ〉 = 0 then ξ = 0. So this A-valued inner product satisfies all the right
conditions for an inner product, but it seems wrong to have the zero inner product even at a point.
What’s wrong is that it’s not self-dual. Our earlier inner product (7) is self-dual in the sense that
if F ∈ HomA(Γ(E), A) then there is (unique) η ∈ Γ(E) such that F (ξ) = 〈ξ, η〉A for every ξ. (We
are in the commutative case, so the order we write in doesn’t really matter.) These modules are
called projective.
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40: April 28, 2008

40.1 More on vector bundles

We had been talking about vector bundles, in preparation of the non-commutative case. It will be
more convenient to use right modules.

Definition: Let A be a unital C∗-algebra (or a “nice” ∗-subalgebra thereof), and Ξ a right A-
module. An A-valued inner product on Ξ is a map

〈·, ·〉A : Ξ× Ξ→ A

satisfying “A-sesquilinearity” and “positivity”:

(a) Bi-additivity **bilinearity over Z**

(b) 〈ξ, ηa〉A = 〈ξ, η〉Aa

(c) 〈ξ, η〉∗A = 〈η, ξ〉A (Hence 〈ξa, η〉A = a∗〈ξ, η〉A)

(d) 〈ξ, ξ〉A ≥ 0 (the notion of positivity requires something about C∗-algebras)

(e) Sometimes: 〈ξ, ξ〉A = 0 implies ξ = 0

E.g. E a vector bundle over M compact, and Ξ = Γ(E), A = C(M). Then take the inner-product
that’s C-linear in the second variable.

We say that Ξ is a “Hilbert C∗-module over A”. Question from the audience: In order to use
the name “Hilbert”, shouldn’t there be some sort of completeness? Answer: Yes. So perhaps
above is a “pre-Hilbert module”. We can set a norm

‖ξ‖Ξ
def= ‖〈ξ, ξ〉A‖1/2A

We can show this is a norm, and for Hilbert we need some sort of Cauchy-Schwarts condition. Our
above example will be complete once you do all that.

Well, if you have a Hilbert space, it’s common to discuss rank-one operators. Here we can do the
analogous thing: Given ξ, η ∈ Ξ, we set 〈ξ, η〉0 (= 〈ξ, η〉E , for “endomorphism”, but a different “E”
than in the above example) to be the element of EndA(Ξ) defined by

〈ξ, η〉0ζ = ξ〈η, ζ〉A

We write A-things on the right so that we can put endomorphisms on the left; then there is no
crossing. The formalism works just like with rank-one operators.

We write B(Ξ) for the bounded operators for the above norm, except that sometimes operators
don’t have adjoints, and this is sad. Hence, we use:
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• The adjoint (with respect to the norm 〈, 〉A) of an operator T ∈ EndA(Ξ) is an operator
S ∈ EndA(Ξ) such that

〈Tξ, η〉A = 〈ξ, Sη〉A
for every ξ, η ∈ Ξ. If 〈, 〉 is definite, then S is unique, and we write S = T ∗.

• Then
B(Ξ) def= {T ∈ EndA(Ξ) : ‖T‖, ‖T ∗‖ <∞}

In any case, we see that 〈ξ, η〉∗0 = 〈η, ξ〉0. If T ∈ B(Ξ), then T 〈ξ, η〉0 = 〈Tξ, η〉0. So “〈·, ·〉0 is a
B(Ξ)-valued inner-product, where we consider Ξ as a left-module over B(Ξ).”

E.g. In the above vector-bundle example, this works, and is appropriately continuous (the notion
of continuity can be derived from a suitable open cover).

Question from the audience: Most of these notions are in your paper? Answer: Various
papers, yes.Question from the audience: Do the rank-one operators form an ideal? Answer:
No, you have to take sums. The rank-one operators span an ideal; denote its closure K(Ξ) for
“compact”: these are not compact in the usual range sense, but it’s an extremely useful ideal.
If span〈ξ, η〉A is dense in A (we never said how big a module we had; this means it’s not tiny),
then

K(A)ΞA

is a Morita equivalence. **Perhaps the left subscript should be K(Ξ)? The board says
K(A), which is a natural notion, as in the subsequent question.**

Question from the audience: Is this a simple ideal, topologically? Answer: No. For instance,
take A, with the obvious right-action and inner product. If A is unital, then K(A) = A, so you
can’t say much.

In our vector-bundle E π→ M example, we pick a cover Oj with partition-of-unity φj and trivial-
ization π−1(Oj) ∼= Oj × Cn. Then pick unit vectors ek of Cn, and set ζjk = φj(x) ek. Then

Tj
def=
∑
k

〈
ζjk(x), ζjk(x)

〉
0
≥ c(x)1

for c(x) 6= 0 if φj(X) 6= 0. Then T
def=
∑
Tj has

T (x) =
∑

Tj(x) ≥ c(x)1 ≥ ε1

where c(x) is some always-positive function, and M is compact, hence c(x) ≥ ε > 0.

Now set S(x) = T (x)−1/2, and ηjk = Sζjk. Then∑
j,k

〈
ηjk, η

j
k

〉
0

=
∑
j,k

〈
Sζjk, Sζ

j
k

〉
0

= S
∑
j,k

〈ζjk, ζ
j
k〉0S = STS = 1

so K(E) includes the identity operator.
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Definition: Given unital C∗-algebra A and a right-module Ξ with 〈, 〉A. By a “standard module
frame” for Ξ we mean a finite set {ηj} of elements of Ξ such that 1Ξ =

∑
j〈ηj , ηj〉0.

This is not entirely standard language, but is catching on. Some people think about infinite sums,
with all their subsequent convergence questions. We’ve seen that any vector bundle over a compact
space can receive an inner product with a standard module frame. In general, a frame has many
more vectors than the dimension; nevertheless, frames are like bases, and are increasingly used in
simple old Hilbert land.

Equivalent Definition: For any ξ ∈ Ξ,

ξ = 1Ξξ =
∑
〈ηj , ηj〉0ξ =

∑
ηj〈ηj , ξ〉A

which looks just like the reconstruction formula for a basis in finite-dimensional-land. This stuff is
useful for, e.g., error-correction and signal processing.

Definition: Let R be a unital ring (possibly non-commutative). We will always deal with finitely-
generated modules. A free module (right or left) over R is a (right- or left-) module isomorphic
to Rn (as a right- or left-) module, for some n.

Question from the audience: Does finitely-generated assure a unique n? Answer: Absolutely
not. E.g. R = B(H).

Definition: A projective module is a direct summand of a free module.

Next time:

Theorem: Let A be a unital C∗-algebra (or nice subalgebra), and Ξ, 〈, 〉 a (Hilbert, but we don’t
so much need this, by finite-generated-ness) C∗-module over A. If Ξ has a standard module
frame, then Ξ is a projective A-module and is self-dual for 〈, 〉A.

Corollary: (Swan’s theorem)

For M a compact space and E a vector bundle, Γ(E) is a projective C(M)-module (and
conversely).

41: April 30, 2008

Last time we defined a standard module frame:

Theorem: A is a unital C∗-algebra (or smooth subalgebra), and Ξ a right A-module equipped
with 〈, 〉A an A-valued inner product. If Ξ has a (finite) standard module frame {ηj}nj=1 —
i.e. the sum of the corresponding rank-one operators

∑
〈ηj , ηj〉0 = 1Ξ, or equivalently there’s

a reconstruction formula ξ =
∑
ηj〈ηj , ξ〉A — then Ξ is projective, and in fact “isometric” to

a direct summand of An (viewed as a right module), and Ξ is self-adjoint for 〈, 〉A.
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Proof:

(Because of our conventions with left and right, everything is simple; using other conventions
makes for painful bookkeeping.) Define Φ : Ξ → An by ξ 7→ (〈ηj , ξ〉)nj=1. It’s clear that Φ is
an A-module homomorphism. Furthermore, by the reconstruction formula, this is injective.
So Ξ is (equivalent to) a submodule of An, and to show it’s projective, we need to show it’s
a summand. This consists of displaying a projection An � Ξ. Let P ∈ Mn(A) the matrix
algebra, acting on An from the left. Let P be given by Pjk = 〈ηj , ηk〉A. Then

(P 2)ik =
∑
j

PijPjk

=
∑
j

〈ηi, ηj〉A〈ηj , ηk〉A

=

〈
ηi,
∑
j

ηj〈ηj , ηk〉A

〉
A

= 〈ηi, ηk〉 = Pik

Moreover, (P ∗)ij = (Pji)∗ = 〈ηj , ηi〉∗ = 〈ηi, ηj〉 = Pij . So we have a self-adjoint projection.
But

(P (Φξ))j =
∑
k

Pjk(Φξ)k

=
∑
〈ηj , ηk〉A〈ηk, ξ〉A

=

〈
ηj ,
∑
k

ηk〈ηk, ξ〉

〉
= 〈ηj , ξ〉 = (Φξ)j

So PΦ = Φ, so Φ(Ξ) is contained in the range of P . On the other hand, if v ∈ An and if
v ∈ range(P ), so Pv = v, then

vj = (Pv)j

=
∑
k

〈ηj , ηk〉vk

=

〈
ηj ,
∑
k

ηkvk︸ ︷︷ ︸
ξ

〉

= (Φξ)j

So P is the self-adjoint projection onto Φ(Ξ). And

An = P (An)︸ ︷︷ ︸
∼= Ξ

⊕(1− P )(An)
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For isometricity, we use the standard inner-product 〈a, b〉A =
∑

j a
∗
jbj on An. Then

〈Φξ,Φ, ζ〉A =
∑

(ΦΞ)∗j (Φζ)∗j

=
∑
〈ξ, ηj〉〈ηj , ζ〉

=
〈
ξ,
∑

ηj〈ηj , ζ〉
〉

= 〈ξ, ζ〉

And last to prove is self-adjointness: Let φ ∈ HomA(Ξ, AA). Then for ξ ∈ Ξ, we have

φ(ξ) = φ
(∑

ηj〈ηj , ξ〉
)

=
∑

φ(ηj)〈ηj , ξ〉

=

〈∑
ηjφ(ηj)∗︸ ︷︷ ︸
∈Ξ

, ξ

〉
�

Question from the audience: This P (A) is closed, because it’s continuous. So any pre-Hilbert
module is a Hilbert module? Answer: Certainly if A is C∗, yes. But all of this works for any
∗-subalgebra of a C∗-algebra.

The smooth algebra are spectrally invariant: if A∞ ⊆ A a C∗-algebra, and if a ∈ A∞ and a is
invertible in A, then a is invertible in A∞. This implies that the spectrum of a in A agrees with
that in A∞. Hence, we have a good notion of positivity. E.g. C(T ) ⊇ C∞(T ) ⊇ trigonometric
polynomials; the MHS is spectrally invariant in the LHS, but the RHS is not, even though it’s
dense.

Let Q be any self-adjoint projection in An, and let Ξ = Q(An). Let {ej} be the standard basis
for An, and ηj = Qej . Then {ηj} is a standard module frame for Ξ. Some cultural remarks: Let
H be an ∞-dim Hilbert space and Q ∈ B(H) be a self-adjoint projection, and let {ej}∞j=1 be an
orthonormal basis for H. Set ηj = Qej ; then {ηj} is a “normalized frame” for QH, in the sense
that we have a (convergent) reconstruction formula:

ξ =
∞∑
ηj〈ηj , ξ〉H

Conversely, given a Hilbert space and a normalized frame, then there exists a bigger Hilbert space
so that the frame is the projection of an orthonormal basis.

Let A = C(T ) be the continuous functions on the circle T = R/Z; so A is the 1-periodic functions
on R. Then simplest non-trivial vector bundle is the Möbius strip:

{ξ ∈ CR(R) s.t. ξ(t− 1) = −ξ(t)}
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This is not a free module. Define the inner product in the obvious way: 〈ξ, η〉A(t) = ξ(t)η(t). Then
find a standard module frame. More generally, we can write

Ξ−p = {ξ ∈ CR(R) s.t. ξ(t− p) = −ξ(t)}

Ξ+
p = {ξ ∈ CR(R) s.t. ξ(t− p) = +ξ(t)}

Don’t turn these in — there are no more problem sets — but try them anyway.

Question from the audience: Do you want a bar somewhere? Answer: No, over real numbers.
Over the complex numbers, the Möbius bundle is trivial. Do that example too.

Next time we will have more examples. We are heading towards the non-commutative torus.

42: May 5, 2008

42.1 Vector bundles and projective modules

Theorem: (Swan, 1962)

Let E be a (R or C) vector bundle over X compact. Then Γ(E) is a projective A module
for A = C(X). Conversely, suppose Ξ is a projective A module. Then by definition there
exists Ξ1 such that Ξ ⊕ Ξ1

∼= (An)A. Let Q be the projection of An onto Ξ along Ξ1. I.e.,
Q ∈ EndA(An) = Mn(A) and Q2 = Q (in this generality we don’t have self-adjointness; in
this case Q is called “idempotent”); view Q as a matrix of functions: Mn(C(X → k)) =
C(X →Mn(k)) for k = ground field R or C. Define E a vector bundle by: the fiber Ex above
x is the range of Q(x) in kn. This function is clearly continuous in x, so essentially it is a
bundle. We check local triviality: if b1, . . . , bk is a basis for range(Q(x0)), then view bi ∈ kn,
and then write down Q(x)bj and (1 −Q(x))bj . We take the determinant of these n vectors;
they’re a basis at x0, so this determinant is non-zero, and determinant is continuous in the
coefficients, so it’s a basis in a small neighborhood. �

Question from the audience: If X is not connected, there might be dimension change from
component to component? Answer: Absolutely. Our definition of “vector bundle” allows for
this

When X is not compact, the story is more complicated. But usually when we have non-compact
spaces, we control the behavior at infinity by having in mind a particular compactification, and
that throws us back into this story. For instance, we might use the one-point compactification; this
makes our bundle trivial at infinity, i.e. there’s a large enough compact set in X so that on the
complement, the bundle is trivial.

For any ring R with 1, we can consider the finitely generated projective modules (if you’re very
careful, that’s not a set, but you know how to deal with this), and we consider them up to isomor-
phism class: S(R) is the set of isomorphism classes. Given projective modules Ξ1, Ξ2, it’s obvious
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that Ξ1 ⊕ Ξ2. (Everywhere finitely generated, but I don’t want to go into that. Question from
the audience: Meaning n is finite? Answer: Well, a little more complicated. Question from
the audience: Every kind of projective module we’ve defined is f.g. Answer: Yes) This sum
interpreted as bundles is fiber-wise, called the “Whitney sum”. This defines an addition on S(R),
which is certainly commutative, and the 0 module is an identity element. So S(R) is a commuta-
tive semigroup with 0. This is an invariant of R. I.e. this is all functorial, but I’m glossing over
that.

S(R) is interesting to calculate. As a teaser, let θ ∈Md(R), and build Aθ. If θ has at least one irra-
tional entry, then we can describe S(Aθ) in pretty explicit terms; indeed, up to isomorphism we can
construct all the projective modules. The description depends on θ and is a little bit complicated.
On the other hand, for θ = 0, we have C(T d), and for d & 10, S(C(T d)) is basically unknown:
it corresponds to homotopy classes of something, but it’s way too complicated. Similarly for the
d-sphere above a certain dimension. In a surprising number of cases, the quantum world ends up
being nicer like this than the classical world: the classical world ends up being “degenerate”.

Let’s indicate some of the obstructions. Last time, we gave some projective modules over the
circle. Let’s look at S2 ⊆ R3 the unit two-sphere. Then we have the tangent bundle and cross-
sections Γ(TS2) = {ξ : S2 → R3 s.t. ξ(x) · x = 0∀x ∈ S}. We know the hairy ball theorem:
this is not the trivial bundle, i.e. it’s not A2

A, where A = C(S2 → R). We can also define the
normal bundle Γ(NS2) = {ξ : S2 → R3 s.t. ξ(x) ∈ Rx}. This is the trivial bundle AA. Well,
Γ(TS2)⊕Γ(NS2) = A3

A is a trivial (i.e. free) bundle. So Γ(TS2)⊕A ∼= A2⊕A, but Γ(TS2) 6∼= A2,
so S(C(S2 → R)) is not cancelative. Even presenting semigroups in which cancelation fails is
complicated. We can play the same game over C, but have to get to d ≥ 5 for cancelation in
S(C(Sd → C)) to fail. So the moral of the story: calculating S(R) can be hard.

On the other hand, in a paper some years ago by R., we show that in the noncommutative torus
and a non-zero **or non-rational, I didn’t hear** entry in θ, cancelation holds.

Given a semigroup S commutative with 0, force cancellation. I.e. consider s ∼ t if ∃r with
s + r = t + r. Check: then S/ ∼ is a commutative unital cancelative semigroup. Call it cS,
standing for cancelation. **Board says “C(S)”, but also “there are too many Cs around”,
so I’ll use this notation.** So we set C(R) = cS(R). This is also an invariant of R, and can be
a bit easier to calculate, but still possibly daunting.

Ok, remember how to construct the integers from the positive integers? That procedure works for
any semigroup with cancelation. Recall: we look at pairs (m,n) which we think of as m− n, and
consider (m,n) ∼ (m′, n′) if m + n′ = m′ + n. For a cancelative commutative semigroup C, we
can embed it in an abelian group gC. **“groupify”** This procedure again loses information.
We define K0(R) def= gC(R) = gcS(R). This is the 0-group of K-theory, and finially gets us
to a homology theory. For complicated examples, this can still be difficult to calculate. C(R)
is a “positive cone” inside K0(R); it may be degenerate (e.g. it can be all of K0). So denote
C(R) = K+(R), and we often see written the pair (K0(R),K+(R)), which of course has exactly the
data of C(R).
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Everything is functorial: Given rings R1 and R2 and a unital map φ : R1 → R2, we have S(φ) :
ΞR1 7→ ΞR1 ⊗

R1R1

(R2)R2 , where we view R2 as a left-R1-module using φ. This extends to K0. Given

a short exact sequence
0→ J → R→ R/J → 0

we want a long exact sequnce in K∗. We need to define K0(J). First we form J̃ by adjoining a unit.
Then we have a homomorphism J̃ → Z (it’s really better if everything is with algebras over a field
k; certainly this works in that case, but probably works if k = Z). Then we have K0(J̃)→ K0(Z),
and we define K0(J) = ker(K0(J̃)→ K0(Z)). E.g. if J = C∞(X), then J̃ = C(X̃), where X̃ is the
one-point compactification. Anyway, then we get

K0(J)→ K0(R)→ K0(R/J)

but to extend that takes more work. This is an interesting direction, but not one we will pur-
sue.

43: May 5, 2008

43.1 Some K theory

It’s been asked that we define K1.

When φ : A → B, we get a map K0(A)
φ→ K0(B), because if [Ξ1] − [Ξ2] ∈ ker(φ), then [φ(Ξ1)] ∼

[φ(Ξ2)] in K0(B).

On the other hand, given an isomorphism φ(Ξ1) ∼= φ(Ξ2) over B, one can ask whether we can lift
this to an isomorphism over A between Ξ1 and Ξ2. What this comes down to is whether given an
invertible element S of Mn(B), is there an invertible element T of Mn(A) so that φ(T ) = S. I.e.

“can you lift invertible elements?” We’re asking to what extent the map GLn(A)
φ→ B is onto.

More or less, vaguely, K1 measures the invertible elements that cannot be lifted. This is a very
vague statement.

Let’s make it more precise. We look for universally liftable elements of GLn(A) (which was the B
up above). We want φ : A→ B to be onto, and for the moment these are unital algebras without
topology. Let’s give some examples: 

1 0
1 rij

. . .
1


These clearly can all be lifted, since A→ B is onto, and is invertible for any single value rij . Call
the (normal) subgroup generated by such things Eln(A): then

GLn(A)/Eln(A)→ GLn+1(A)/Eln+1(A)→ · · · → limit = GL∞(A)/El∞(A)
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under

T 7→
(
T

1

)
and

GL∞(A) =


invertible

1
1

. . .


and we can look at the image of Eln(A) in GL2n(A), which sits in [GL2n(A), GL2n(A)] ⊆ El4n(A).
Then we define

Kalg
1 (A) def= GL∞(A)/[GL∞(A), GL∞(A)]

The denominator is the commutator subgroup, so this is abelian.

There is no good algebraic definition of K1 for non-unital algebras. One way to do it is to use an
ideal J ≤ A, and then writing down the sequence

Kalg
1 (J,A)→ Kalg

1 (A)→ Kalg
1 (J)

but it becomes even harder to get K2, etc., indeed someone won a Fields Medal for such stuff.

For unital Banach algebras, again we look for universally liftable elements of Mn(A). If T ∈Mn(A)
with an appropriate Banach norm on Mn(A), and if ‖T − 1‖ < 1, then we can use holomorphic
functional calculus to define log(T ) = S. Then T = eS , and any eS is liftable, because S is just some
matrix and we have a Banach homomorphism that’s onto. So everything close to 1 is universally
liftable; this is an open neighborhood of 1 in the group of invertible elements. And the point is that
the connected component of 1 in GLn(A) is algebraically generated by any open neighborhood of
the identity. Thus everything in GL0

n(A) is universally liftable. So in this context we define the
topological K1 by the sequence of discrete groups:

GLn(A)/GL0
n(A)→ GLn+1(A)/GL0

n+1(A)→ · · · → GL∞(A)/GL0
∞(A)

and, of course, [GL∞, GL∞] ⊆ GL0
∞. What happens is that we’re deviding out by more: Kalg

1 �
Ktop

1 . And

K1(non-unital A) = ker
(
K1(Ã)→ K1(field)

)
Then we have the famous

Bott periodicity theorem: If we are over C, then K2(A) ∼= K0(A).

So we don’t have to worry about K2 and higher. The surprise is that the following six-term sequence
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is exact everywhere:
J A A/J

K1 • // • // •

��
K0 •

OO

•oo •oo

Over R, the iso is K8(A) ∼= K0(A), because you get tied up in quaternions and Clifford alge-
bras.

Good questions: if G is discrete and we take C∗(G) or C∗r (G), what are the K-groups of these?
By now there is a large literature using non-commutative geometry in intense ways, e.g. Dirac
operators, to answer those questions at least for large classes of groups in a way that you could
imagine you might be able to actually compute these. Part of the difficulty is figuring out what all
the projective modules over these, e.g. Z10 no one has in an effective way shown how to list all of
the projective modules over the commutative 10-torus.

43.2 Return to tori and projective modules

For Ẑ2 = T 2, we have a commutative C∗-algebra A = C(T 2), where T 2 = R2/Z2. Then we skip
the proofs, and have:

Ξ(q, a) def= {ξ ∈ C(R2 → C) : ξ(s+ q, t) = ξ(s, t), ξ(s, t+ 1) = e2πiasξ(s, t)}

Theorem: Every projective module over C(T 2) is a free module or isomorphic to a Ξ(q, a). And
when a ≥ 0, the Ξ(q, a) are all isomorphic.

This does not give a particularly good clue how to deal with non-commutative tori. We have Zd
and a matrix θ ∈Md(R), and we form Aθ as before in terms of the bicharacter cθ.

In any case, Zd fits inside Aθ, not comfortably as a subgroup, because of the twisting, but as a
subgroup. And precisely this means that a projective module will give a “cθ-projective represen-
tation of Zd”, although we don’t have a Hilbert space. (This is a way of thinking of this stuff in
hindsight.) We can look for cθ-projective representations, and there aren’t a lot of ways to construct
these:

Let M be a locally compact Abelian group, and M̂ its dual group. Let G = M × M̂ ; then on
L2(M) we have

(π(x,s)ξ)(y) def= 〈y, s〉 ξ(y − x)

the “Schrodinger representation.” Then π is a projective representation of G on this Hilbert space,
with bicharacter β (easily enough computed).
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Strategy:

• Find embeddings of Zd into M × M̂ such that β|Zd = cθ.

• If Zd is a lattice in M×M̂ , restrict attention to Cc(M); then this leads to a projective module.

The difficulty: this gives zillions of projective modules, and it’s hard to figure out when two such
things are isomorphic.

44: May 7, 2008

44.1 We go through a careful computation

Recall, we’re interested in Zd and a cocycle cθ, and we want projective modules.

The strategy: let M be a locally compact abelian group: M = Rm ⊕ Zn ⊕ F for F finite abelian.
**If F is torsion but not finite, what do we get?** Then let G = M × M̂ , where M̂ is
the dual group, M̂ ∼= Rm ⊕ Tm ⊕ F̂ , where F̂ ∼= F , but not in a canonical way — none of these
equalities is canonical. Hence G ∼= R2m × Zn × Tn × F × F̂ .

Then G has a projective “Schrodinger” unitary rep on L2(M) with cocycle β. Then what we will
attempt is to find embeddings (as closed subgroup) Zd ↪→ M × M̂ , such that β|Zd = cθ. Then
we can hope that Cc(M) ⊆ L2(M) gives a projective module. The condition will be that if Zd
is cocompact in G — i.e. G/Zd is compact — then we do get a projective module. A necessary
condition is that 2m+ n = d. This all, at least in the abelian case, defines a lattice in G.

This generates a whole bunch of projective modules. It’s hard to tell, and we will not in this class,
whether these modules are isomorophic; to sort them out requires a non-commutative Chern class.
You can prove: if θ has an irrational entry, then every projective module is a direct sum of things
like this. But if θ is entirely rational, then the situation is Morita-equivalent to the commutative
(θ = 0) case, and you do not get all of the modules in this way, just a lot of modules.

Ok, so we begin the calculation. Let
(
π(x,s)ξ

)
(y) def= 〈y, s〉 ξ(y − x) for x, y ∈ M , s ∈ M̂ . We find

the cocycle: (
π(x,s)π(y,t)ξ

)
(z) = 〈z, s〉

(
π(y,t)ξ

)
(z − x)

= 〈z, s〉〈z − x, t〉ξ(z − x− y)(
π(x+y,s+t)ξ

)
(z) = 〈z, s+ t〉 ξ(z − (x+ y))(

π(x,s)π(y,t)ξ
)

(z) = 〈x, t〉
((
π(x+y,s+t)ξ

)
(z)
)

Hence we define
β((x, s), (y, t)) = 〈x, t〉

which is not skew-symmetric. Using u, v for letters in G = M × M̂ , we set

π∗u
def= β(u, u)π−u
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Now, let D (e.g. D ∼= Zd) be a discrete subgroup of M × M̂ = G. Much of what we do works with
any closed subgroup, which is fine, but everywhere where we’ll have a sum, you’ll need an integral.
We don’t need that generality, so we skip it. In any case, let’s restrict π to D, and we’re not going
to worry about how to match up β with cθ. In any case, restrict β to D, and then π in D is a
β-projective representation of D on Cc(M) ⊆ L2(M).

Another bookkeeping: we will use right-modules, since we need to consider endomorphisms (for us,
acting from the left) in order to show projectivity. So let’s make Cc(M) into a right Cc(D)-module
(a certain amount carries over to L2; of course, Cc(D) for D discrete is just the functions of finite
support): for ξ ∈ L2(M) and f ∈ Cc(D), we set

ξ · f def=
∑
u∈D

(π∗uξ) f(u)

the ∗ makes it a right-action. Check that this works out:

((ξ · f) · g) =
∑
u

π∗u(ξ · f) g(u)

=
∑
u

π∗u

(∑
v

(π∗vξ) f(v)

)
g(u)

=
∑
u,v

π∗uπ
∗
vξ f(v) g(u)

=
∑
u,v

(πvπu)∗ξ f(v) g(u)

=
∑
u,v

(β(v, u)πv+u)∗ ξ f(v) g(u)

=
∑

β̄(v, u)π∗v+u f(v) g(u)

=
∑

β̄(v, u− v)π∗uξ f(v) g(u− v)

=
∑
u

(π∗uξ)
∑
v

f(v) g(u− v) β̄(v, u− v)︸ ︷︷ ︸
f?β̄g restricted to D

Ok, so this works for ξ ∈ L2, but let’s move in the Cc direction. So we let A = (Cc(D), ?β̄), and
later complete to a C∗ algebra. We leave Hilbert space: let Ξ = Cc(M), later on completed. Let’s
pick the ordinary inner product 〈, 〉L2 on L2(M) to be linear in the first variable. Define a “bundle
metric”, i.e. an A-valued inner product on Ξ, by:

〈ξ, η〉A( u
∈D

) def= 〈ξ, π∗uη〉L2(M) = 〈πuξ, η〉L2(M) =
∫
y∈M

(πuξ)(y) η(y) dy

If u = (x, s), then ∫
y∈M

(πuξ)(y) η(y) dy =
∫
M
〈y, s〉 ξ(y − x) η(y) dy
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Now, if η and ξ are each of compact support on M , then for each s this is certainly of compact
support in x. This is more interesting; we still have this s to deal with, and there’s no reason why
this should be of compact support in s. Ok, so the solution is that we need to take a bigger space:
when M = Rm × Zn × F , we need the Schwartz space S(M): all derivatives in the Rm direction
should exist, and everything (including all derivatives) in the Rm and Zn directions should vanish
at infinity faster than any polynomial.

Lemma: If ξ, η ∈ S(M), then 〈ξ, η〉A ∈ S(D).

We’ll skip this proof.

45: May 9, 2008

MR will not be here next time; Prof. A will give the final lecture, on not this material but stuff
related to this course.

45.1 Continuation of last time

We make a correction from last time — a ∗ was mis-placed in the bookkeeping — and simplify
to M = R (the general case is just like R × Z/p, but even there the bookkeeping is hard). So
M × M̂ ∼= R2, and L2(M) = L2(R), and we have θ ∈ R with θ 6= 0 (we can have θ = 1, 2, . . . ; then
we get non-trivial bundles on the commutative torus).

We have Z2 ↪→ R2 generated by two generators π(1,0) and π(0,1). We pick (1, 0) 7→ (θ, 0) ∈ R2 and

(0, 1) 7→ (0, 1) ∈ R2. We write e(s) def= e2πis, and take ξ ∈ S(R) ⊆ L2(R). Then

(π(m,n)ξ)(t) = e(nt) ξ(t−m− θ)

and hence
β((m,n), (p, q)) = ē(mqθ)

For f ∈ Cc(Z2), or more generally in S(Z2), we have

(ξ · f)(t) =
∑
m,n

(π∗m,nξ)(t) f(m,n)

=
∑

β((m,n), (m,n)) (π−m,−nξ)(t) f(m,n)

=
∑

ē(mnθ) ē(nt) ξ(t+mθ) f(m,n)

=
∑

ē((t+mθ)n) ξ(t+mθ) f(m,n)

=
∑
m

ξ(t+mθ)
∑
n

ē((t+mθ)n) f(m,n)
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This looks like a Fourier mode. For g ∈ S(Z2), we set

g̀(m, t) def=
∑
n

ē(nt) g(m,n)

which is periodic in t with period 1. (The grave accent is half a hat, because we’re only transforming
one variable.) Then

(ξ · f)(t) =
∑
m

ξ(t+mθ)
∑
n

ē((t+mθ)n) f(m,n) =
∑
m

ξ(t+mθ) f̀(m, t+mθ)

Ok, then we have an action like C∞(T )×α Z. We have an inner product:

〈ξ, η〉`A(m, t) =
∑

ē(nt)〈ξ, πm,nη〉L2(R)

=
∑
n

ē(nt)
∫

R
ξ̄(s) e(ns) η(s−mθ) ds

=
∑
n

∫
ξ̄(s) η(s−mθ) ē((t− s)n) ds

=
∑
n

∫
ξ̄(s+ t) η(s+ t−mθ) e(sn) ds

We think of ξ̄(s+ t) η(s+ t−mθ) as some function h(s). Then we have∑
n

∫
R
h(s) e(ns) ds =

∑
n

ĥ(n) =
∑
n

h(n)

by the Poisson summation formula. So

〈ξ, η〉`A(m, t) =
∑
n

∫
ξ̄(s+ t) η(s+ t−mθ) e(sn) ds

=
∑
n

ξ̄(n+ t) η(n+ t−mθ)

is obviously periodic in t.

Question from the audience: The Poisson summation formula just expresses that Fourier trans-
form is an isometry? Answer: No, it is more subtle. For instance, L2 functions aren’t defined
at points, so plugging in n doesn’t work; it uses that we are in Schwartz space, and generalizes
slightly.
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Continuing on:

(f ?β g)`(m, t) =
∑
n

ē(nt)
∑
p,q

f(p, q) g(m− p, n− q) e(p(n− q)θ)

=
∑
n,p,q

f(p, q) ē(qt) g(m− p, n− q) ē((n− q)t) e(p(n− q)θ)

=
∑
n,p,q

f(p, q) ē(qt) g(m− p, n− q) ē((n− q)(t− pθ)) sum in n

=
∑
p,q

f(p, q) ē(qt) g̀(m− p, t− pθ) sum in q

=
∑
p

f(p, t) g̀(m− p, t− pθ)

This is exactly the cross-product formula for C(T )×αθ Z, (αθpφ)(t) def= φ(t− pθ):

(f̀ ? g̀)(m, t) =
∑
p

f̀(p, t) g̀(m− p, t− pθ)

Now we take a leap of faith, and ask if we can find ξ ∈ S(R) so that 〈ξ, ξ〉Aθ is a projection in A. If
we have the ordinary torus, then there are no projections. Suppose that 0 < θ < 1. Then we take
ξ to be a bump on [0, 1] that is 0 at 0, 1 at θ, and 0 again at 1 and 2θ. Then when translated by
θ, ξ doesn’t intersect itself. So

〈ξ, ξ〉A(p, t) =
∑

ξ̄(t+ n) ξ(t+ n− pθ)

has support only at p = −1, 0, 1.

Now look for projections in C(T ) ×αθ Z of the form P = δ−1φ + δ0ψ + (δ−1φ)∗ with ψ = ψ̄, and
ψ, φ ∈ C(T ). Then

P 2 = δ−1φδ−1φ + δ−1φ δ0ψ + δ0ψ δ01ψ + adjoints
= δ−2 α

θ
1(φ)φ + δ−1

(
φψ + ψαθ1(φ)

)
+ δ0 () + . . .

need = 0 want = φ

**I got a little lost in this next remark.** Then we have Aθ with a tracial state τ —
given f(p, t), we have τ(f) =

∫
T f(0, t), and we can graph φ and ψ, and what we discover is that

τ(P ) =
∫
ψ(t) = Θ. All of these projections correspond to projective modules.

46: May 12, 2008

**I was a little late.**
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46.1 Guest lecture by W. Arveson: Operator Spaces, “Quantized Functional
Analysis”

Lecture notes are available at http://math.berkeley.edu/∼arveson/Dvi/opSpace.pdf.

Let S ⊆ B(H) be a linear subspace that is ‖ · ‖-closed. We have a notion of completely contractive
maps, which form a category.

We will see some examples, which illustrate the non-commutativity in finite-dimensional set-
ting.

Consider B(Cp) for p = 1, 2, . . . . We have two particular operator spaces, the “row”-space R and
the “column” space C:

R =




z1 z2 . . . zp
0 . . . . . . 0
...

...
0 . . . . . . 0


 C =




z1 0 . . . 0

z2
...

...
...

...
...

zp 0 . . . 0




Given z = (z1, . . . , zp) ∈ Cp, we have Rz and Rc as above. Then ‖Rz‖ = ‖RzR∗z‖1/2 = ‖z‖ = ‖Cz‖.
Let φ : R → C be this isometry.

Now, what is Mn(R)? Well, they are n × n matrices with entries in R, but equivalently they
are

Mn(R) =




A1 A2 . . . Ap
0 . . . . . . 0
...

...
0 . . . . . . 0

 : Ai ∈Mn(C)


and similarly for Mn(C). We can extend φ to φn:

φn :


A1 A2 . . . Ap
0 . . . . . . 0
...

...
0 . . . . . . 0

 7→


A1 0 . . . 0

A2
...

...
...

...
...

Ap 0 . . . 0


Is φn an isometry? ∥∥∥∥∥∥∥∥∥


A1 A2 . . . Ap
0 . . . . . . 0
...

...
0 . . . . . . 0


∥∥∥∥∥∥∥∥∥ =

√
‖A1A∗1 + · · ·+ApA∗p‖
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and it’s important that the ∗s are on the right. On the other hand, in Mn(C), the ∗s are on the
left. And if n is large enough, in particular if n ≥ p, we can make these different. E.g. if n = p, and
if Ai are rank-one partial isometries with mutually orthogonal matrices Ai : e1 7→ ei, then {AiA∗i }
are mutually orthogonal projections, so their sum has norm 1. On the other hand, A∗iAi is the
projection onto e1, so the sum has norm p.

Incidentally, we can do the same thing with φ−1. In particular, ‖φn‖ ≥
√
p and ‖φ−1

n ‖ ≥
√
p. And

so φ is not a complete isometry. Remark: this does not show that R and C are not completely
isometric. But an easy generalization of the above calculation does show that R and C are not
completely isometric. So even a finite-dimensional Hilbert space can be realized in many different
ways as an operator space: “The same Banach space has many quantizations.”

Recall the basic tool of functional analysis: Hahn-Banach. We need such a theorem in this context;
this is what makes the theory fly:

Theorem: The non-commutative Hahn-Banach theorem

Let S ⊂ B(H) be an operator system and φ : S → B(K) be an operator map. Then this map
has a completely bounded norm — it might be a complete contraction — as we defined and
erased. Then there exists an extension

φ̃ : B(H)→ B(K)

with ‖φ̃‖CB = ‖φ‖CB.

In particular, any completely contractive map can be extended to a completely contractive map of
the ambient space:

S1
� � //

c.c. φ

��

S2
� � //

φ̃ c.c.||z
z

z
z

B(H)

B(K)

Let’s take a moment to talk about Stinespring’s Theorem. We have a GNS construction. On the
other hand,

Theorem: (Sz.-Nagy)

Suppose φ : C(X) → B(H) is linear with f ≥ 0 ⇒ φ(f) ≥ 0 (hence φ is bounded). Then
there exists a representation π : C(X)→ B(K) and V : H → K such that φ(f) = V ∗π(f)V .
I.e.

〈φ(f)ξ, η〉H = 〈π(f)V ξ V η〉K

This looks a lot like the GNS construction: if φ : A→ C is positive linear, then we get a represen-
tation π such that φ(a) = 〈π(a)ξ, ξ〉. Our formula is a lot like that, except involves V because of
the non-commutativity.
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Theorem: (Stinespring, 1955)

Let A be a unital C∗-algebra, and φ : A→ B(H) a completely positive map. (A positive map
is a map that takes self-adjoint positive elements of A to the same; completely positive maps
are positive on all Mn(A).) Then there exists a rep π : A→ B(K) and V : H → K such that
φ(a) = V ∗π(a)V for all a ∈ A.

By the way, the converse is true: if there is such a π and a V , then φ is completely positive. Stine-
spring generalizes both GNS and Sz.-Nagy. Even though he assumes more (complete positivity)?
Yes, because he proved in the same paper that a positive linear function is completely positive (i.e.
if H = C). And he proves that a positive linear map from a commutative C∗-algebra to an operator
space is completely positive.

This was the first penetration into the area of non-commutative functional analysis. There was no
further work for many years. A. was assigned the paper be thesis advisor, and it was beautiful,
but no one really understood it. In late 1970s, this theory started to take hold, and has become
popular in recent years.

All of this is discussed in more detail in the notes.
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mean, 34
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bundle, 86
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free, 77
Hilbert, 75
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Morita equivalence, 26
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multiplier, 38

Naimark, 27
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NGR, 29
non-commutative tori, 55
non-degenerate, 14
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nuclear, 36

observables, 39

partition of unity, 74
Polish space, 55
Pontyang, 48
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postliminal, 29
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primitive, 30
primitive ideal, 31
product

semi-direct, 47
projective, 74
projective module, 77

pure, 21

quantization, 71
deformation, 71

quantum tori, 55
quotient, 9

norm, 9

rank-one operators, 75
reduced, 43
reduced norm, 41
relations, 32
representation, 14

Schrodinger, 53
Riemannian metric, 74
rotation algebra, 62

Schrodinger representation, 84
Schur, 20
Schwartz space, 67, 87
second countable, 46
self-dual, 74
semi-classical limit, 71
spectral invariance, 79
spin, 50
stability subgroup, 49
standard module frame, 77
state, 10, 34
Stinespring, 92
Stone-Čech, 38
Sz.-Nagy, 91

tempered, 44
tensor, 35
Thoma, 30
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non-commutative, 55
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