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Spaces of physical systems
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(The actual phase diagram is
much more complicated.)

Spaces of physical systems can have
interesting and important homotopy types.
We learn about them as children, when we
learn a cartoon picture of {systems of
water}, and define

{phases} = π0{systems}.

Higher homotopy is also important. For example, topological
insulators are interesting maps

BU(1)× BZ2 = CP∞ ×RP∞ → {quantum systems}.

What makes them useful in applications is that they are
homotopically nontrivial: they are not homotopic to the constant
map.
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Phase classification, i.e. homotopy theory, of spaces of physical
systems is also mathematically interesting.

Example: (0+1)d QFT = quantum mechanics (QM). It is fully
mathematically rigorous: (super) Hilbert spaces H and
(unbounded) self-adjoint operators Ĥ.

(H, Ĥ) is compact if exp(−τ Ĥ) is trace-class for τ > 0. A
supersymmetric QM model (SQM) is one equipped with a
fermionic self-adjoint operator Q̂ such that Q̂2 = Ĥ (up to
conventions).

I {compact QM models} ' ∗

I {noncompact SQM models} ' ∗

I {compact SQM models} ' K, the classifying space of the
K-theory spectrum.
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A complete mathematical definition of quantum field theory in
high dimensions is far off. My work focuses on (1+1)d QFT.

{(1+1)d QFTs} ∞-dim space.
Optimistically, I expect a
definition within ∼ 10 years.

∪

{(1+1)d CFTs} finite-dim space.
Incomplete. Basic structure
understood: (certain) pairs
of Vertex Operator Algebras.

∪

{antiholo CFTs} 0-dim space.
Mathematically well-defined:
VOAs with no nontriv irreps.

C = conformal. CFTs are the critical points for a function on
{QFTs} called c , which is (hopefully) Morse–Bott. Its Morse flow
is the Renormalization Group Flow. Low c = infrared.
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Expectation: The space SQFT = {compact (1+1)d SQFTs} is
homotopically interesting, just like SQM = K.

compact: Spectral constraint, like “exp(−τ Ĥ) is trace-class.”

S(upersymmetric): Fermionic operator Q̂ such that Q̂2 = ∂
∂z̄ ,

where z , z̄ = t ± x are the light cone coordinates on R1,1.

If you are an applied scientist: K-theory, because it classifies
SQM models, has had enormous impact in the design of quantum
materials. I expect there are finer SQFT-valued invariants.

How? A (d+1)-dimensional quantum material becomes a (0+1)d
effective model by compactifying: treating all space directions as
“small.” If instead you compactify (d−1) dimensions, you get a
(1+1)d effective model.

Math example: Start with 6d (2, 0) SCFT. Compactify on a
4-manifold. Gukov–Pei–Putrov–Vafa: top’l Vafa–Witten invariants.



8/27

The Witten index
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Expectation: The space SQFT = {compact (1+1)d SQFTs} is
homotopically interesting, just like SQM = K.

Question: Does SQFT even have multiple components?

Answer: Yes! The Witten index is a map ZRR : π0SQFT→ MFZ
= weak (pole at cusp) modular forms with integral q-expansion.

ZRR(F)(τ) :=

∫
fields φ∈F

exp

(
−
∫
Eτ

Lagrangian(φ)

)
.

Eτ is the elliptic curve with complex structure τ , and nonbounding,
aka RR, spin structure.
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A priori, ZRR(F)(τ, τ̄) is a real-analytic weak modular form, i.e. a
real-analytic function on the moduli space M of elliptic curves.
(weak: pole at cusp.)

But formal arguments with path integrals give:

∂

∂τ̄
ZRR(F) ∝

∫
φ∈F

(Ĥ − P̂) e
∫
Eτ

Lag(φ) ∝
∫
φ∈F

Q̂[Q̂] e
∫
Eτ

Lag(φ)

where Ĥ, P̂, and Q̂2 are the energy, momentum, and
supersymmetry operators, so that Ĥ − P̂ = ∂

∂z̄ = Q̂2.

Q̂ acts like the de Rham d. In particular, if F is compact,∫
φ∈F

Q̂[X̂ ] e
∫
Eτ

Lag(φ) = 0

for any operator X̂ . This is a version of Stokes’ theorem.
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So ZRR(F)(τ) is holomorphic, i.e. a weak modular form ∈ MFC.

Moreover, the q-expansion of ZRR(F)(τ) ends up counting (with
signs) supersymmetric ground states in F , because it is an index in
K-theory. Thus ZRR(F)(τ) ∈ MFZ. Since integers cannot deform,
ZRR(F) is a deformation invariant.

Example: A string structure on a Riemannian manifold M is a spin
structure together with a trivialization of the fractional Pontryagin
class p1

2 (TM) ∈ Ĥ4(M). Any string manifold determines a sigma
model. (The string structure becomes the quantum B-field.)

Sigma models are not mathematically well-defined, but their
taut-string limits are, and ZRR becomes an integral over M which
combines characteristic classes with Eisenstein series. Resulting
ZRR(M)(τ) is the Witten genus of M.
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{string manifolds} SQFT MFZ
sigma model ZRR

Witten genus

There is another object that also fits in the SQFT spot: the
generalized cohomology theory TMF of topological modular forms.
Just like SQM = K:

Conjecture (Witten, Segal, Stolz–Teichner): SQFT = TMF.

TMF• is a version of universal elliptic cohomology of
Landweber–Ravenel–Stong. Witten discovered his genus while
trying to understand the elliptic genus of Ochanine.

A proof of the conjecture (including a definition of (1+1)d QFT)
would provide an analytic model for TMF•. Currently its only
construction requires hard derived algebraic geometry.
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Physical theorem (Gaiotto–JF–Witten): SQFT carries an
Ω-spectrum structure: it provides a cocycle model for a generalized
cohomology theory.

Furthermore, cobordisms of string manifolds give homotopies of
SQFTs: the map

MString = {string manifolds}/{cobordism} → SQFT

is a map of generalized cohomology theories.

Remark: “zero” ∈ SQFT is any F in which supersymmetry is
spontaneously broken. I will call such F null. The supersymmetry
Q̂ is like a differential (although Q̂2 6= 0), and F is null when Q̂2 is
exact. If F ∼ zero, I will say it is nullhomotopic.
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Beyond the Witten index



15/27

The mathematical Witten index ZRR : π•TMF→ MFZ is fully
computed.

Method: There is a spectral sequence Hs(M; Lw )⇒ π2w−sTMF,
where M is the moduli space of elliptic curves, and Lw is the line
bundle whose sections are weight-w modular forms.

ZRR : π•TMF→ MFZ is neither an injection nor a surjection.

Theorem (Bunke–Naumann): In topology, there is a secondary
invariant, which sees beyond ZRR .

What is its meaning physically? Why does it exist?
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Recall the reason ZRR(F) was holomorphic:

∂

∂τ̄
ZRR(F) ∝

∫
φ∈F

dQ̂ e
∫
Eτ

Lag(φ) = 0 by Stokes’ theorem.

What if F is not compact? I.e. what if it has a “boundary”
S = ∂F? Then F is not really a point in SQFT, but rather a
nullhomotopy of S ∈ SQFT.

Physical Theorem (Gaiotto–JF): In this case, ZRR(F)(τ, τ̄)
satisfies a holomorphic anomaly equation

√
−8τ2η(τ)

∂

∂τ̄
ZRR(F) =

∫
φ∈S

Q̂ e
∫
Eτ

Lag(φ) =: 〈Q̂〉(S).

Also, f (τ) := lim
τ̄→−i∞

ZRR(F)(τ, τ̄) ∈ Z((q)). I.e. f (τ) is an integral

(generalized, weak) mock-modular form with shadow 〈Q̂〉(S).
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Thm redux: If S = ∂F , then 〈Q̂〉(S) is a shadow of an integral
mock-modular form.

Over C every modular form is a shadow. Over Z there may be an
obstruction.

obstruction(S) ∈ C((q))

Z((q)) + MFC
.

Physical Theorem (Gaiotto–JF): This obstruction is a
deformation invariant of S, called the secondary Witten index.



18/27

Example:

Since S3 = SU(2) is a Lie group, all of its characteristic classes
vanish, and so it has a canonical string structure.

Topologists write “ν” for any class represented by this S3.

Physical theorem (Gaiotto-JF-Witten): In the far infrared, the
SU(2) sigma model is an antiholomorphic free fermion theory.

Direct calculation:

ZRR(ν) = 0, 〈Q̂〉RR(ν) = η(τ̄)3,

obstruction(ν) =
1

24
+Z((q)) + MFC 6= 0.

So our mock-modularity invariant is nontrivial.
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Take a K3 surface, and remove 24 points. The result can be given
a string structure such that

∂(K3 r 24pt) = 24ν.

Up to convention-dependent factors:

ZRR(K3r24pt) ∝ q−1/8(−1+45q+231q2 +770q3 +2277q4 +. . . ).

It is mock-modular with shadow 24〈Q̂〉(ν) = 24η(τ̄)3.

Corollary: 24ν ' 0 ∈ SQFT.

Since Obstr(ν) = 1
24 (mod Z), ν ∈ π•SQFT has exact order 24.
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Mathieu Moonshine
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ZRR(K3r24pt) ∝ q−1/8(−1+45q+231q2 +770q3 +2277q4 +. . . ).

Observation (Eguchi–Ooguri–Tachikawa): The coefficients are
dimensions of irreps of the largest Mathieu group M24.

M24 is a sporadic finite simple group. EOT observation is an
analogue of McKay’s Monstrous moonshine observation that

j(τ) =
E 3

4

∆
− 744 = q−1

(
1 + (196883+1)q2 + (21296876+196883+1)q3

+ (842609326+21296876+2×196883+2)q4 + . . .
)

are dimensions of irreps of the Monster sporadic group M.

Theorem (Frenkel–Lepowski–Meurman): There exists an
M-equivariant holomorphic bosonic CFT whose Hilbert space
V =

⊕
Vn has graded dimension j(τ) such that the characters

g 7→ q−1
∑

n tr(g ;Vn)qn are all modular forms (for subgroups
Γ ⊂ SL(2,Z)). (q−1 factor comes from the central charge.)



22/27

ZRR(K3r24pt) ∝ q−1/8(−1+45q+231q2 +770q3 +2277q4 +. . . ).

Theorem (Gannon): This is the graded dimension of a graded
M24-module V =

⊕
Vn such that for each g ∈ M24, the character

g 7→ q−1/8
∑

n tr(g ;Vn)qn is a mock modular form (for a specific
subgroup Γ ⊂ SL(2,Z)) with shadow tr(g ;Perm)× η(τ̄)3. (Perm
is the standard permutation rep of M24.)

Gannon’s proof is number-theoretic. It does not tell much about
M24, and does not use K3, QFT, . . . .

Mathieu Moonshine Problem: Build this M24-module as the
Hilbert space of a (1+1)d SQFT.
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Mathieu Moonshine Solution, first attempt:

M24 acts on 24ν = ∂(K3 r 24pt) as the permutation module. If
24ν ' 0 M24-equivariantly, then the corresponding nullhomotopy
would give an SQFT whose Hilbert space has an M24-action, with
mock-modular characters and correct shadows.

In fact, it would suffice if this held in twisted-equivariant
cohomology. Physicists call twistings ’t Hooft anomalies.

Theorem (JF): 24ν is not twisted-M24-equivariantly
nullhomotopic, for any value of the twisting.

Proof: If it were, then it would also be M23-equivariantly
nullhomotopic, where M23 ⊂ M24 is the second largest Mathieu
group. Since H•(M23;Z) vanishes in degrees • ≤ 5, there is no
anomaly. This means we can gauge the M23-action, i.e. push
forward along M23 → {1}. Result is 29ν 6' 0.
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Mathieu Moonshine Solution, second attempt:

The modular form ∆ is not in the image of ZRR : TMF→ MFZ.
But 24∆ is. It is represented by a unique antiholomorphic SCFT
discovered by Duncan. Its automorphism group is the largest
Conway group Co1, another sporadic simple group.

Nonequivariantly, 24∆× ν = 0 ∈ π•TMF.

Conjecture: 24∆ ∈ π•TMF has a twisted-Co1-equivariant
refinement. (JF–Treumann: value of the twisting.)

Conjecture: 24∆× ν is not nullhomotopic Co1-equivariantly, but
it is nullhomotopic M24-equivariantly. Note: M24 ⊂ Co1.

Theorem (JF): The twistings and shadows match: up to an
overall normalization, ZRR(F) will have the same mock-modularity
as predicted in generalized Mathieu Moonshine.
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To call something moonshine, you should have a version of the
genus-zero property. In Monstrous Moonshine, this is the
statement that each character defines an isomorphism (upper half
plane)/Γ

∼→ CP1 for some Γ ⊂ SL(2,R).

Theorem (Cheng–Duncan): This is equivalent to an optimal
growth condition on the behaviour of the characters near cusps.
Optimal growth makes sense for mock-modular forms.

Pre-theorem (JF): The optimal growth condition in Mathieu
Moonshine is equivalent to saying that 24∆× ν is nullhomotopic
among M24-equivariant topological cusp forms Tcf.

Remark: Not yet clear which physics leads to strong modular
forms (regular at τ = i∞) or to cusp forms (vanish at τ = i∞).

Remark: Non-topologically, cf = mf∆ ∼= mf. But ∆ is not a
topological modular form, and Tmf 6∼= Tcf.
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Conjecture redux: 24∆× ν ' 0 in M24-equivariant TMF.

Theorem (JF): The appropriate Borel-equivariant
Tmf[ 1

2 ]-cohomology group vanishes.

Borel-equivariant cohomology approximates genuinely-equivariant
cohomology by replacing stacks with their classifying spaces.

Expect that Borel-equivariant is a power series completion of
genuinely-equivariant. (Compare: Atiyah–Segal completion in
K-theory.) So theorem ⇒ conjecture perturbatively (p 6= 2).

Method: Direct calculation with Atiyah–Hirzebruch spectral
sequences, Steenrod operators, etc.

Direct p=2 calculation is too hard: we do not even know the
ordinary cohomology of M24 at the prime p=2.
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Thank you!

Further details:

[arXiv:1811.00589] Holomorphic SCFTs with small index

[arXiv:1902.10249] A note on some minimally supersymmetric
models in two dimensions

[arXiv:1904.05788] Mock modularity and a secondary elliptic
genus

[arXiv:2006.02922] Topological Mathieu moonshine

[these slides] http://categorified.net/Dal-SQFTs.pdf

http://arxiv.org/abs/1811.00589
http://arxiv.org/abs/1902.10249
http://arxiv.org/abs/1904.05788
http://arxiv.org/abs/2006.02922
http://categorified.net/Dal-SQFTs.pdf
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