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P. DELIGNE
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0. Introduction

0.1. Fix an algebraically closed field k of characteristic 0. We term a k-tensorial category

a system (A, ⌦, some auxiliaries) of the following type:

(0.1.0) A is an essentially small category (equivalent to a small category);

(0.1.1) it is abelian k-linear;

(0.1.2) the tensor product ⌦ is a functor from A ⇥ A to A exact and k-linear in each
variable;

(0.1.3) it has associativity, commutativity, and unit constrants (the unit is denoted 1);

(0.1.4) (A,⌦) is rigid : each object X in A is dualizable in the sense that there exists X_,
the dual of X, with � : 1 ! X ⌦ X

_ and ev : X_ ⌦ X ! 1, such that the morphisms
composed of � and ev:

X ! X ⌦X
_ ! X and X

_
toX

_ ⌦X ⌦X
_ ! X

_

are the identity;

(0.1.5) k
⇠! End(1).

A k-tensorial category is said to be finitely ⌦-generated if it admits a ⌦-generator : an
object X such that each object is built by iterated application of the operations of direct
sum, tensor product, dual, passage to a sub-object or to a quotient object.

0.2. Example. The category Rep(G) of linear representations of finite dimenion of a
scheme of a�ne groups G over k is k-tensorial. It is of finite ⌦-generation if and only
if G is of finite type over k, i.e. a linear algebraic group.

According to Saavedra (1972), the k-tensorial category Rep(G) determines G, up to an
isomorphism unique up to an inner automorphism. The notion of k-tensorial category can
thus be regarded as a generalization of that of a scheme of a�ne groups. Vague question:
can we describe the classification of k-tensorial categories in terms of more concrete objects?
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CATÉGORIES TENSORIELLES 2

0.3. Recall that, systemmatically replacing commutative rings by Z/2-graded rings which
are commutative in the graded sense (xy = (�1)deg(x) deg(y)yx of x ad y homogeneous),
we can, paraphrasing a part of algebraic geometry, obtain “super algebraic geometry”. If
we are working over k, it comes down to replacing the category with tensor product of
vector spaces over k by that of super vector spaces: the Z/2-graded vector spaces, the
commutativity of the tensor product being given by the Koszul rule.

In super algebraic geometry over k, the group µ2 = {±1} acts on each object; on a super
vector space, �1 acts by the parity automorphism x 7! (�1)deg(x)x for x homogeneous.

The super analog of 0.2 is the following. Let G be a super scheme of a�ne groups over
k. Then it is the spectrum of a super commutative Hopf algebra O(G), the a�ne algebra of
G. Let ✏ be an element of G(k) of order dividing 2 and such that the automorphism int(✏)
of G is the parity automorphism. Let Rep(G, ✏) be the category of super representations
of finite dimension (V, ⇢) of G, such that ⇢(✏) is the partity automorphism of V . This is a
k-tensorial category and it is of finite ⌦-generation if and only if G is of finite type over k.

0.4. Examples. (i) If O(G) is purely even, i.e. if G is a scheme of a�ne groups seen as
a super scheme of groups, ✏ is central. The k-tensorial category Rep(G, ✏) is identified
with Rep(G), with a new commutativity constraint: for each representation (V, ⇢) of G,
the involution ⇢(✏) defines a Z/2-grading on V and the commutativity isomorphism for the
tensor product is given by the Koszul rule.

For ✏ trivial, we recover the k-tensorial category Rep(G) from 0.2.
(ii) Let H be a super scheme in a�ne groups, and act by µ2 on H by the the parity action.

The k-tensorial category Rep(µoG, (�1, ✏)) is the category of super representations of H.
Our principal result is an internal characterization of which k-tensorial categories of finite

⌦-generation are of the form Rep(G, ✏) — and precisely, they are ⌦-equivalent to such a
category.

Proposition 0.5. (i) Let X be an object of a k-tensorial category A. The following condi-

tions are equivalent:

(a) There exists a Schur functor (1.4) that annihilates X.

(b) The tensor powers of X are of finite length and there exists N such that for all n � 0
we have length(X⌦n)  N

n
.

(ii) The colleciton of objects of A verifying (a) is stable for direct sums, tensor products,

passage to duals, extensions and subquotients.

Theorem 0.6. For a k-tensorial category of finite ⌦-generation to be of the form Rep(G, ✏),
it is necessary and su�cient that every object verifies the equivalent conditions from 0.5 (i).

A painful reduction to the case of finite⌦-generation verifies that 0.6 remains true without
the finite generation hypothesis. We have not written.

Corollary 0.7. Let A be a k-tensorial category of finite ⌦-generation all of whose objects

are of finite length. If it has a finite number of isomorphism classes of simple objects, then

it is of the form Rep(G, ✏).

Corollary 0.8. If furthermore A is semisimple, then there exists a finite group G and ✏ 2 G

central of order dividing 2, such that A is ⌦-equivalent to Rep(G, ✏).

Etingof and Gelaki (1998) prove an analogous theorem for triangular semisimple Hopf
algebras of finite dimension and their categories of modules.
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0.9. Here’s the plan of the proof, and of the article. In section 1, we prove 0.5 (ii) (1.13,
1.18, and 1.19) and that for each object X of a k-tensorial category, condition (b) of 0.5 (i)
implies condition (a) (1.12). We prove also that to give in a category Rep(G, ✏) each object
verifies both conditions (a) and (b) (1.21).

A super fiber functor of a k-tensorial category A over a super commutative k-algebra R

is a k-linear exact ⌦-functor ! from A to the monoidal category of R-super modules. Here
and in the rest of the article, a ⌦-functor is a functor F with an isomorphism 1 ! F (1)
and a natural isomorphism F (X) ⌦ F (Y ) ! F (X ⌦ Y ) compatible with the associativity,
commutativity, and unit constraints. A super fiber functor over R 6= 0 is automatically
faithful: note that if X 6= 0, ev : X_ ⌦X ! 1 is an epimorphisms and that !(X) is hence
nontrivial. For Rep(G, ✏), the functor ”underling super vector space” is a super fiber functor
over k. Reciprocally, according to Deligne (1990), 8.19, if ! is a super fiber functor of the
k-tensorial category A over k, while G is the super scheme in groups of ⌦-automorphisms of
! and ✏ the parity automorphism of !, then ! induces an equivalence of A with Rep(G, ✏).

Our strategy will be to show that if the objects of A verify the condition 0.5 (i) (a), then
A admits a super fiber functor over k. In section 2, we show that A admits a super fiber
functor over a suitable super k-algebra R 6= 0. In section 3, we generalize to the “super”
case one part of the theory of fiber functors. So that the question of signs stays hidden in the
commatuvity of the tensor product, it will be convenient to generalize more, and replace the
k-tensorial category (s�Vect) of super vector spaces of finite dimension with an arbitrary
k-tensorial category verifying the finitude property of (2.1.1). As an application, we verify
in section 4 that if A is of finite ⌦-generation and ! is a super fiber functor over R, then
there exists a super subalgebra R

0 of R, of finite type over k, such that ! provides by
extension of scalars (3.1) a super fiber functor !0 over R0. Because k is algebraically closed,
if R and therefore R

0 are not trivial, there exists a homomorphism � : R0 ! k. Extending
scalars by �, we obtain a super fiber functor over k. We conclude section 4 with the ends
of the proofs of 0.5 and 0.6, and with the proofs of 0.7 and 0.8.

1. Preliminaries

Proposition 1.1. Given a k-tensorial category all of whose objects are of finite length, its

Hom(X,Y )s are finite dimensional.

Proof. The identities (0.1.4) between � and ev are equivalent to the functor Y 7! Y ⌦
X

_ being a right adjoint to the functor Y 7! Y ⌦ X, for the morphisms of adjunction
Y 7! Y ⌦ X ⌦ X

_ and Y ⌦ X
_ ⌦ X 7! Y are derived from � and ev. In other terms,

Hom(X,Y ) := Y ⌦X
_ is an internal Hom: we have a functorial isomorphism

Hom(Z,Hom(X,Y )) = Hom(Z ⌦X,Y ).

For Z = 1, we obtain
Hom(1,Hom(X,Y )) = Hom(X,Y ) (1.1.1)

The object 1 being simple (Deligne–Milne 1982, 1.17), there results from (0.1.5) and (1.1.1)
that n linearly independent morphisms fi : X ! Y define a morphism from 1n inHom(X,Y ).
If Hom(X,Y ) is of finite length, there is a largest such n and Hom(X,Y ) is of finite dimen-
sion. ⇤
1.2. We will use categories with tensor product (A,⌦, some auxiliaries) that are more
general than those from 0.1, checking only the following conditions.
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(1.2.1) A is additive, k-linear and karoubian: all idempotent endomorphisms are split. An
idempotent endomoprhism e of X has then an image, and X is decomposed as a direct sum
of Im(e) and Ker(e).

(1.2.2) The tensor product is additive and k-linear in each variable.

(1.2.3) it is under the constraints of additivity, commutativity, and unity.

1.3. The hypothesis (1.2.1) permits the following construction:
For X in A and V a vector space of finite dimension over k, we define the objects V ⌦X

and Hom(V,X) of A by

Hom(V ⌦X,Y ) = Hom(V,Hom(X,Y )) and (1.3.1)

Hom(Y,Hom(V,X)) = Hom(V ⌦ Y,X). (1.3.2)

The choice of a basis (ei)i2I of V identifies V ⌦X with the sum of a family of copies of X
indexed by I, and Hom(V,X) is canonically isomoprhic to V

_ ⌦X.
If a finite group S acts on X, the endomorphism e := 1

|S|
P

s of X is idempotent. The

direct factor Im(e) of X, seen as a subobject of X, is denoted X
S (invariants). Seen as a

quotient of X by Ker(e), it is denoted XS (coinvariants). If V is a linear representation of
S, S acts on Hom(V,X), and we have

HomS(V,X) := Hom(V,X)S . (1.3.3)

If we choose a representative V� of each isomorphism class of irreducible linear representa-
tions of S, it results formally that k[S]

⇠!
Q

Endk(V�) and the application
M

V� ⌦HomS(V�, X) ! X (1.3.4)

is an isomorphism.

1.4. For A as in 1.2 and X an object of A, the symmetric group Sn acts on the tensor
powers X⌦n. We identify the isomorphism classes of irreducible representations of Sn with
partitions of n, and four each partition � we choose V� of class �. The Schur functor S� is

S�(X) := HomSn(V�, X
⌦n), (1.4.1)

and (1.3.4) specializes to M
V� ⌦ S�(X)

⇠! X
⌦n (1.4.2)

(sum over the partitions of n).

Notations. a partition � is a sequence (�1, . . . ,�r) of integers �1 � · · · � �r > 0; for s > r,
we have �s := 0; we define |�| =

P
�i and we say that � is a partition of |�|. The diagram

[�] of � is the collection of pairs (i, j) of integers � 1 such that j  �i. For example, if � is
the partition (3, 1) of 4, [�] is

(1, 1) (1, 2) (1, 3)

(2, 1)

Note the matrix, rather than cartesian, arrangement of the (i, j)s. If to the diagram of �
we apply the involution (i, j) 7! (j, i), we obtain the diagram of the transposed partition �

t.
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Examples. For the partition (n) (resp. (n)t = (1n) = (1, . . . , 1)) of n, we have V� = k,
under the action of Sn by the trivial (resp. sign) character. We moreover have S(n)(X) =
Symn(X) and S(n)t(X) =

Vn
X.

1.5. Let n1, . . . , nr be integers that sum to n; mapping the product of Snis into Sn iden-
tifies {1, . . . , n} with the disjoint sum of {1, . . . , ni}s. If, for each i, µi is a partition of ni,
the tensor product of Vµis is an irreducible representation of the product

Q
Sni of the Snis.

If � is a partition of n, we denote by [� : µ1, . . . , µr] the multiplicity of this representation
in the restriction of V� to

Q
Sni . By Frobenius reciprocity, this is also the multiplicity of

V� in the induction of ⌦Vµi to Sn:

[� : µ1, . . . , µr] = [V�;
O

Vµi ] = [IndSnQ
Sni

(
O

Vµi) : V�].

These multiplicites are given by the Littlewood–Richardson rule therefore we use the
following consequences:

(1.5.1) If |�| = |µ|+ 1, we have [� : µ, (1)] = 1 if [µ] ⇢ [�], 0 else. Using the formula

[� : µ1, µ2, µ3] =
X

�0

[� : �0
, µ3][�

0 : µ1, µ2]

that expresses the transitivity of restriction to a subgroup, we deduce that four |µ|  |�|,
the following conditions are equivalent: [µ] ⇢ [�]; there exists a partition ⌫ of |�|� |µ| such
that [� : µ, ⌫] 6= 0; [� : µ, (1), . . . , (1)] 6= 0].

(1.5.2) Fix r and a partition � of n. For there to exist n1, . . . , nr of sum n such that
[� : (n1), . . . , (nr)] 6= 0, it is necessary and su�cient that [�] has at least r rows.

(1.5.3) Fix r, s and a partition � of n. For there to exist n1, . . . , nr,m1, . . . ,ms of sum n

such that [� : (n1), . . . , (nr), (m1)t, . . . , (ms)t] 6= 0, it is necessary and su�cient that

[�] ✓ {(i, j) : i  r or j  s},

i.e. (r + 1, s+ 1) 62 [�].

As classically, and with the same proof, the Schur functors obey 1.6, 1.8, 1.11, and 1.15
below.

Proposition 1.6. Sµ(X) ⌦ S⌫(X) ⇠
L

S�(X)[�:µ,⌫], the sum running over the partitions

� of n = |µ|+ |⌫|.

Proof. We have

Sµ(X)⌦ S⌫(X) = HomS|µ|⇥S|⌫|

�
Vµ ⌦ V⌫ , X

⌦|µ| ⌦X
⌦|⌫|�

.

By 1.4.2, we have

X
⌦|µ| ⌦X

⌦|⌫| = X
⌦n =

M

�

V� ⌦ S�(X)

and 1.6 follows. ⇤

Applying (1.5.1), we conclude from 1.6 the

Corollary 1.7. If Sµ(X) = 0, then S�(X) = 0 for all partitions � such that [µ] ⇢ [�].



CATÉGORIES TENSORIELLES 6

The tensor power (X � Y )⌦n is the sum over p+ q = n of inductions

IndSn
Sp⇥Sq

(X⌦p ⌦X
⌦n).

It then results that:

Proposition 1.8. If � is a partition of n, we have

S�(X � Y ) ⇠
M

(Sµ(X)⌦ S⌫(Y ))[�:µ,⌫], (1.8.1)

the sum running over the partitions µ, ⌫ such that |µ|+ |⌫| = n.

Corollary 1.9. In the k-tensorial category of super vector spaces of finite dimension, if X

is of super dimension p|q, i.e. if dimX
0 = p and dimX

1 = q, in order for S�(X) 6= 0, it is
necessary and su�cient that

[�] ⇢ {(i, j) : i  p or j  q}. (1.9.1)

Proof. If Y is purely odd, with underlying vector space |Y |, the underlying vector space
of Y ⌦n is |Y |⌦n, and the action of � 2 Sn on |Y ⌦n| is sgn(�) times the natural action on
|Y |⌦n. If ⌫t is the transposed partition of the partition ⌫ of n, we have V⌫t ⇠ sgn⌦ V⌫ and

|S⌫(Y )| ⇠ S⌫t(|Y |) (for Y odd). (1.9.2)

We decompose X into even and odd parts X
0 and X

1. According to 1.8, and 1.9.2, we
have

|S�(X)| =
M

|µ|+|⌫|=|�|

(Sµ(|X0|)⌦ S⌫t(|X1|))[�:µ+⌫]
.

In order for S�(X) 6= 0, it is necessary and su�cient therefore for the there to exist partitions
µ and ⌫ such that [µ] has at least p rows, [⌫] has at least q columns and that [� : µ, ⌫] 6= 0.
By (1.5.2) and (1.5.3), such is the case if and only if we have (1.9.1). ⇤
Corollary 1.10. Let p, q, r, s � 0, and �, µ, ⌫ three partitions verifying |�| = |µ| + |⌫|. If

(p+ r+ 1, q + s+ 1) 2 [�] and [� : µ, ⌫] 6= 0, then (p+ 1, q + 1) 2 [µ] or (r+ 1, s+ 1) 2 [⌫].

Proof. We apply 1.8, in the category of super vector spaces, to X of dimension p|q and Y

of dimension r|s. According to 1.9, we have S�(X � Y ) = 0. According to 1.8 and 1.9, the
conclusion expressed the vanishing of the right-hand side of (1.8.1). ⇤
Proposition 1.11. For � a partition of n, we have

S�(X ⌦ Y ) ⇠
M

(Sµ(X)⌦ S⌫(Y ))[Vµ⌦V⌫ :V�] (1.11.1)

(sum over µ, ⌫ partitions of n).

Proof. We use that

(X ⌦ Y )⌦n = X
⌦n ⌦ Y

⌦n =
�M

Vµ ⌦ Sµ(X)
�
⌦

�M
V⌫ ⌦ S⌫(Y )

�

=
M

Vµ ⌦ V⌫ ⌦ (Sµ(X)⌦ S⌫(Y )).

⇤
Corollary 1.12. Let p, q, r, s � 0 and �, µ, ⌫ three partitions of n. If (pq+ rs+1, ps+ qr+
1) 2 [�] and [Vµ ⌦ V⌫ : V�] 6= 0, then (p+ 1, q + 1) 2 [µ] or (r + 1, s+ 1) 2 [⌫].

The proof is parallel to that of 1.10, with � replaced by ⌦ and 1.8 by 1.11.
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Corollary 1.13. For A as in 1.2, the collection of objects of A annihilated by at least one

functor of Schur is stable under direct sums and tensor products.

Proof. We suppose that Sµ(X) = S⌫(Y ) = 0. Let p, q, r, s � 0 such that

[µ] ⇢ [1, p+ 1]⇥ [1, q + 1] and [⌫] ⇢ [1, r + 1]⇥ [1, s+ 1],

of type that if (p + 1, q + 1) 2 [µ0] (resp. (r + 1, s + 1) 2 [⌫ 0]), we have [µ] ⇢ [µ0] (resp.
[⌫] ⇢ [⌫ 0]). If � is such that

(p+ r + 1, q + s+ 1) 2 [�] (resp. (pr + qs+ 1, ps+ qr + 1) 2 [�]),

it results from 1.7, 1.8, and 1.10 (resp. 1.7, 1.11, and 1.12) that S�(X�Y ) (resp. S�(X⌦Y ))
is zero. ⇤

1.14. If X is dualizable, with dual X_, we verify as in 1.1 that the functor Y 7! Y ⌦X
_

is right adjoint to the functor Y 7! Y ⌦X. The morphisms 1 ! X
_ ⌦X and X ⌦X

_ ! 1
derived from � and ev by the symmetry of the tensor product mave X into a dual to X

_.
The functor Y 7! Y ⌦X

_ is therefore also left adjoint to Y 7! Y ⌦X. If A is abelian, the
functor Y 7! Y ⌦X is therefore exact, since it is both a right and a left adjoint.

1.15. We leave it to the reader to verify that if X and Y are dualizable, so also X ⌦ Y

(resp. X � Y ) is dualizable, with dual X_ ⌦ Y
_ (resp. X_ � Y

_), the morphisms � and ev
being the tensor product (resp. direct sum) of � and ev for X and Y .

A direct factor A of a dualizable object X is moreover dualizable. If X = A�B and e is
the idempotent endomorphism “projection onto A” of X, A admits for its dual the image
A

_ of the idempotent endomorphism of X_ given by the transpose of e. If A and A
_ are

seen as subobjects (resp. quotients) of X and X
_, ev (resp. �) for A is derived from ev

(resp. �) for X.

Particular case 1.15.1. Suppose that a finite group S acts on X dualizable, and act by S

on X
_ by the contragradient action. The direct factors XS and X

_
S of X and X

_ are then
in duality. The morphism � : 1 ! XS ⌦X

_
S is the composition 1 ! X ⌦X

_ ! XS ⌦X
_
S .

Notation 1.16. If X is dualizable, an endomorphism f of X corresponds by 1.1.1 to a
morphism �(f) : 1 ! X ⌦X

_. We define the trace Tr(f) 2 End(1) of f as the composition

ev � �(f) : 1 ! X ⌦X
_ = X

_ ⌦X ! 1,

and dim(X) := Tr(IdX) = ev � �.

A ⌦-functor transforms dualizable objects into dualizable objects and preserves traces
and dimensions.

By induction in n we prove:

Lemma 1.17. If X is dualizable and X
⌦n = 0, then X = 0.

Proof. We can suppose n � 2. We tensor the composition

IdX : X ! X ⌦X
_ ⌦X ! X

with X
⌦n�2. We obtain that the identity on X

⌦n�1 factors through X
⌦n ⌦ X

_ = 0: we
have X

⌦(n�1) = 0 and we conclude by recurrence. ⇤
Proposition 1.18. If X is dualizable, S�(X) is dualizable, with dual isomorphic to S�(X_).
In particular, if S�(X) = 0, we have S�(X_) = 0.
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Proof. The representations of Sn are self-dual, as results from 1.4.2. ⇤

Proposition 1.19. In a k-tensorial category, each object annihilated by some Schur func-

tor is of finite length, and the collection of such objects is stable under subquotients and

extensions.

Proof. If Y is a subobject ofX, we have by the exactness of the tensor product Y ⌦n
,! X

⌦n,
and for � a partition of n

Hom(V�, Y
⌦n) ,! Hom(V�, X

⌦n).

By exactness of the functor “Sn invariants”, S�(Y ) is a subobject of S�(X). Dually, if Y is
a quotient of X, S�(Y ) is a quotient of S�(X). This proves the stability for subquotients.

If X is an extension of X 0 by X
00, the exactness of the tensor product provides an Sn-

equivariant filtration of X⌦n with associated graded (X 0�X
00)⌦n. This induces a filtration

of S�(X) with associated graded S�(X 0 �X
00) and the stability for extensions results from

the stability for direct summs 1.13.
More generally, a finite filtration F of X induces a filtration of S�(X) with associated

graded S�(GrF (X)). A tensor product of non-zero objects is non-zero, since “Y is non-zero”
is equivalent to “ev : Y ⌦Y

_ ! 1 is an epimorphism”, a stable condition for tensor product.
If GriF (X) is non-zero for n values of i, S�(GrF (X)) contains the tensor product of these
GriF (X)s, and S�(X) 6= 0. If S�(X) 6= 0, X is therefore of length < n. ⇤

1.20. This verifies that in any k-tensorial category, condition (b) of 0.5 (i) implies (a). If
the S�(X)s are all non-zero, (1.4.2) gives

length(X⌦n) �
X

|�|=n

dim(V�) �
⇣X

dim(V�)
2

⌘1/2
= (n!)1/2

and (n!)1/2 grows more quickly than any geometric progression.

1.21. The objects of a category Rep(G, ✏) verify conditions (a) and (b) of 0.5 (i): (a)
results from 1.9, and (b) from this because if a super representation X of G is of super
dimension p|q, the length of X⌦n is at most the dimension (p+ q)n of the underlying vector
space.

2. Existence of super fiber functors

The key result of the article is the following.

Proposition 2.1. If for each object of a k-tensorial category A there exists a Schur functor

that annihilates it, then there exists a super fiber functor over a non-zero super commutative

k-algebra.

If the hypotheses of 2.1 are verified, it results from 1.19 that

(2.1.1) every object of A is of finite length, and by 1.1, the Hom(X,Y )s are therefore of
finite dimension over k.

For an example of a k-tensorial category that does not verify (2.1.1), see Deligne (1990),
2.19.
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2.2. Let A be a k-tensorial category verifying (2.1.1) and IndA the category of its Ind-
objects. This is an abelian category of which A is a plain subcategory. The hypothesis
(2.1.1) assures that the subcategory A of IndA is stable under subquotients and that every
object of IndA is the filtered inductive limit of its sub-objects.

Model: (finite dimensional vector spaces) ⇢ (vector spaces)
The tensor product of A provides IndA with a tensor product defined by

(colimXi)⌦ (colimYj) = colim(Xi ⌦ Yj)

for filtered inductive systems (Xi) and (Yi) in A.
The category IndA, under this tensor product, is as in 0.1, except for the smallness

(0.1.0) and the existence of duals (0.1.4). An Ind-object is not dualizable if it is not in A.
Indeed, if X is dualizable with dual X_, there exists a subobject X 0 of X that is in A and
such that � : 1 ! X ⌦X

_ factors through X
0 ⌦X

_. The commutative diagram

IdX : X X ⌦X
_ ⌦X X

X
0 ⌦X

_ ⌦X X
0

⇢ ⇢

shows that X 0 = X.
That (IndA,⌦) is as in 1.2 su�ces to define, in IndA, the notions of associative and

commutative algebra with unit (we say simply “algebra”) and of module over such an
algebra. A homomorphism of algebras f : A ! B is supposed to transform the unit 1 ! A

of A into that of B.

2.3. If A is an algebra in IndA, the A-modules form an abelian category ModA. Under
the tensor product

M ⌦A N := coker(M ⌦A⌦N ◆ M ⌦N),

this is of the type considered in 1.2. The unit object 1A is the A-module A. The tensor
product is right exact. An A-module P is called flat (resp. faithfully flat) if the functor
M 7! M ⌦A P is exact (resp. exact and faithful). For X in IndA, the A-module A⌦X is
flat, since M ⌦A (A ⌦X) = M ⌦X. Each A-module M is a quotient of a flat A-module,
for example the A-module A⌦M , and we can therefore formulate the usual Tor functors.
In particular, if an exact sequence 0 ! M ! N ! P ! 0 with P flat is tensored with an
A-module, the result is exact.

An A-algebra is an algebra B along with a homomorphism f : A ! B. If B is an A-
algebra, and M a B-module, the morphism product � (f ⌦M) : A ⌦M ! B ⌦M ! M

makes M into an A-module. This functor of restriction of scalars is left adjoint to the
functor of extension of scalars

M 7! MB := B ⌦AM

from ModA to ModB. For M in ModA and N in ModB, the isomorphism HomB(MB, N) !
HomA(M, restriction(N)) and its inverse are

u : MB ! N 7! M = A⌦A M ! B ⌦A M
u! N

v : M ! N 7! MB = B ⌦A M
v! B ⌦A N ! N

The functor of extension of scalars is a ⌦-functor.
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Particular case. the isomorphism 1 ⌦ 1 ! 1 makes 1 an algebra. Every object of IndA
admits a unique structure as a module over this algebra via the isomorphism 1 ⌦ M !
M . This defines an equivalence Mod1 ⇠ IndA. The unit 1 ! A of an algebra is a
homomorphism of algberas. It is either injective, or zero, in which case A = 0. The functor
of extension of scalars for 1 ! A, from IndA to ModA, is the exact functor M 7! A⌦M .
It if faithful if A 6= 0.

2.4. Notation. We denote by � the functor

�(X) := Hom(1, X)

from IndA to k-vector spaces. For A an algebra of IndA, �(A) is a k-algebra (commutative).
By the adjunction,

HomA(1A, 1A) = Hom(1, A) = �(A).

The dimension (1.16) of a dualizable A-module is an element of �(A).

Definition 2.5. We say that a system of objects and morphisms in IndA has locally a
property if this property remains true after extension of scalars to a convenient non-zero
algebra.

For example, X is locally isomorphic to Y if there exists a non-zero algebra A such that
the A-modules XA and YA are isomoprhic. If A 6= 0, k injects into �(A). It results therefore
from 1.16 that two locally isomorphic objects of A are of the same dimension.

The terminology “locally” is inspired by the usable from the topology fpqc (faithfully flat
quasi-compact) in algebraic geometry.

Example 2.6. In a k-tensorial category Rep(G), two objects having the same dimension
are locally isomorphic. Indeed, the algebras of IndRep(G) are identified by A 7! Spec(A)
with a�ne schemes S over k along with an action of G, and two representations X,Y of G
are locally isomorphic if and only if their inverse images over a convenient nonempty S are
isomorphic equivariant vector bundles. If X and Y are of the same dimension n, we can
set S = Isom(X,Y ) with the action g(f) = gfg

�1 of G. The scheme Isom(X,Y ) is a�ne
and nonempty because it is isomorphic to GL(n).

Example 2.7. In a k-tensorial category Rep(G, ✏), two objects X and Y are locally iso-
morphic if and only if they are of the same super dimension (1.9).

Lemma 2.8. Let M be a dualizable module over a non-zero algebra A. For there to exist

a non-zero A-algebra B such that the B-module 1B is a direct factor of MB, it is necessary

and su�cient that Symn
A(M) 6= 0 for all n.

Proof. For each A-algebra B, we let Fact(B) denote the collection of pairs

↵ : 1B ! MB, � : MB ! 1B

such that �↵ = 1, i.e. that make 1B into a direct factor of MB. This is a covariant functor
in B. We will construct the universal (B0,↵0,�0), i.e. that corepresents the functor Fact.

(a) The data of � : MB ! 1B is equivalent by adjuntion to that of a morphism of
A-modules M ! 1B = B: to

v : M ! B

corresponds the composition

product � (B ⌦ u) : B ⌦M ! B ⌦B ! B.
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The data of v is equivalent in turn to that of a morphism of A-algebras

valg : SymA(M) =
M

Symn
A(M) ! B

(b) The data of ↵ : 1B ! MB is equivalent to that of a morphism of A-modules A !
B ⌦M , and to that of u : M_ ! B: to

u : M_ ! B

corresponds the composition

(u⌦M) � � : 1A
�! M ⌦M

_ = M
_ ⌦M ! B ⌦M.

In turn, u corresponds to a morphism of A-algebras

ualg : SymA(M
_) ! B

(c) Let ↵ and � give u and v. In order for �↵ : 1B ! MB ! 1B to be the identity, it is
necessary and su�cient for its restriction to 1A to be the natural morphism 1A ! 1B. This
restriction is the composition

1A
�! M ⌦M

_ = M
_ ⌦M

u! B ⌦M
v! B ⌦B ! B,

i.e. it is obtained by applying to � the product u.v of u and v: M ⌦M
_ ! B ⌦B ! B.

In total, the data over B of ↵,� making 1B into a direct factor of MB is equivalent to
that of a homomorphism

SymA(M)⌦A SymA(M
_) =

M
Symp

A(M)⌦ Symq
A(M) ! B

such that the unit 1A
⇠! Sym0

A(M) ⌦ Sym0

A(M
_) and � : 1A ! M ⌦A M

_ have the same
image.

For x a morphism of A-modules from 1A to an A-algebra C, the ideal (x) created by x is
the image of the multiplication by x:

C = 1A ⌦A C
x! C ⌦A C ! C.

The quotient C/(x) is the universal quotient of the algebra C in which x is killed. With
this terminology, the universal (B0,↵0,�0) that we are looking for is the quotient of the
algebra SymA(M) ⌦A SymA(M

_) by the ideal (� � 1), and M admits locally 1 as a direct
factor if and only if B0 = 0, or, what is the same, if the unit morphism 1 ! B0 is zero.

The multiplication by � is a morphism

Symp
A(M)⌦ Symq

A(M
_) ! Symp+1

A (M)⌦ Symq+1

A (M_) (2.8.1)

and
B0 =

M

a2Z
colim

n
Symn

A(M)⌦ Symn+a
A (M_),

the transition morphisms in the inductive limit being given by (2.8.1).
The unit of B0 is the inductive limit of morphisms

�
n : 1 ! Symn

A(M)⌦ Symn
A(M

_).

The functor Hom(1, ) commutes with filtered inductive limits. In order for the unit of B0

to be zero, it is necessary and su�cient therefore that for some n we have �
n = 0.

The symmetric algebra SymA(M) is a quotient of the tensor algebra (noncommutative)L
M

⌦n, and �
n is the image of

�
⌦n : 1A ! M

⌦n ⌦M
_⌦n.
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This morphisms if the morphism � for a duality between M
⌦n and (M_)⌦n. According to

(1.15.1), �n is therefore the morphism � for a duality between Symn
M and Symn

M
_. It is

zero if and only if Symn
M = 0. ⇤

Proposition 2.9. Suppose we are given in a k-tensorial category A verifying (2.1.1) an

object 1̄ such that 1̄⌦1̄ is isomorphic to 1 and the commutativity automorphism of the tensor

product 1̄⌦ 1̄ ! 1̄⌦ 1̄ is the multiplication by �1. For X in A, the following conditions are

equivalent.

(i) There exists p and q such that X is locally isomorphic to 1p � 1̄q.
(ii) There exists a Schur functor S� such that S�(X) = 0.

For V a super vector space of finite dimension, we set

F (V ) : V 0 ⌦ 1� V
1 ⌦ 1̄.

The coice of the isomorphism 1̄⌦ 1̄ ! 1 provides a functorial isomorphism

F (V )⌦ F (W ) ! F (V ⌦W )

and the hypotheses made on 1̄ assure that F is a ⌦-equivalence of the k-tensorial category
(s-Vect) of super vector spaces of finite dimension with the plain subcategory h1, 1̄i of A
whose objects are sums of copies of 1 and 1̄.

Proof of (i) ) (ii). If XA is isomorphic to (1p�1̄q)A, S�(X)A is isomorphic to S�(1p�1̄q)A.
According to 1.9, there exists � such that S�(1p� 1̄q) =. If A 6= 0, that S�(X)A = 0 implies
that S�(X) = 0. ⇤

Proof of (ii) ) (i). Suppose that after extension of scalars to a non-zero algebra A, 1r� 1̄s

becomes a direct factor of X:

XA = 1rA � 1̄sA �R.

The A-module R is dualizable being a direct factor of the dualizable A-module XA (1.15).
We distinguish three cases.

a. All the Symn
A(R) are non-zero. According to 2.8, there exists then a non-zero A-algebra

B such that RB admits 1B as a direct factor, hence a decomposition

XB = 1r+1

B � 1̄sB �R
0
.

b. All the Symn
A(1̄ ⌦ R) are non-zero. Because Symn

A(1̄ ⌦ R) ⇠ 1̄⌦n ⌦
Vn

AR, this is
equivalent to the non-nullity of all the

Vn
AR. Over a convenient non-zero B, we can then

extract a factor 1B of 1̄⌦RB, which returns a factor 1̄B of RB, hence a decomposition

XB = 1rB � 1̄s+1 �R
0
.

c. If neither a. nor b. are applicable, there exists n and m such that Symn+1

A R =Vm+1

A R = 0. Let k be an integer > nm. According to 1.7, for all partitions � of k, we have
S�(R) = 0. By 1.4.2, we have R

⌦k = 0, hence the result that R = 0 (1.17).
Thus from A = 1, r = s = 0 and R = X and iteratively applying the constructions a. or

b. we obtain that either X is locally isomorphic to 1p � 1̄q for some p and q, or X admits
locally a direct factor 1p � 1̄q with p + q arbitrarily large. In the second case, contrary to
our hypothesis, the S�(X) are all non-zero: if � is a partition of n, we can choose p and q

such that n < (p+ 1)(q + 1), and S�(1p � 1̄q), non-zero according to 1.9, is locally a direct
factor of S�(X) that therefore is non-zero. ⇤
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Recollection 2.10. In a k-tensorial category verifying (2.1.1), all short exact sequences

are locally split.

This is Deligne (1990), 7.14. We begin by reducing to the case of short exact sequences of

the form 0 ! X
a! Y

b! 1 ! 0: replace the short exact sequence 0 ! A ! B ! C ! 0 by
the corresponding short exact sequences 0 ! Hom(C,A) ! E ! 1 ! 0. This being done,
the proof is analogous to that of 2.8, and even simpler. If bt : 1 ,! Y

_ is the transpose of
b, we are left to verify the non-nullity of the algebra

Sym(Y _)/(bt � 1) = colimSymn(Y _)

(transition morphisms: the multiplication by b
t).

2.11. Proof of 2.1. Assume first that A contains an object 1̄ as in 2.9. For each isomor-
phism class of objects of A, represented by X, choose a non-zero algebra B such that XB is
isomorphic to a sum of copies of 1B and 1̄B. This is possible by 2.9. For each isomorphism
class of short exact sequences in A, represented by ⌃, choose a non-zero algebra C such
that ⌃C is split. This is possible by 2.10. Let A be the tensor product of these algebras:
the inductive limit of tensor products of a finite number of them. The algebra A is non-zero
and, after extension of scalars to A, each object of A becomes isomorphic to a sum of copies
of 1A and 1̄A and each exact sequence of A becomes split.

We identify as in 2.9 the k-tensorial category (s-Vect) with the subcategory h1, 1̄i of A,
and we identify Indh1, 1̄i ⇢ IndA with the category of all super vector spaces. For M in
IndA, denote by ⇢(M) the largest subobject of M in Indh1, 1̄i. It is identified with the
super vector space with even part and odd part Hom(1,M) and Hom(1̄,M).

The multiplication A⌦A ! A induces on ⇢(A) the structure of an algebra, i.e. it makes
⇢(A) into a k-super algebra. For M an A-module, the multiplication A⌦M ! M induces
similarly a morphism ⇢(A)⌦ ⇢(M) ! ⇢(M) making ⇢(M) into a ⇢(A)-module. For M and
N two A-modules, taking the cokernels of the double arrows in

⇢(M)⌦ ⇢(A)⌦ ⇢(N) ⇢(M)⌦ ⇢(N)

M ⌦A⌦N M ⌦N

we obtain a morphism from ⇢(M)⌦⇢(A) ⇢(N) to M ⌦A N . This induces a morphism

⇢(M)⌦⇢(A) ⇢(N) ! ⇢(M ⌦A N). (2.11.1)

If M is of the form A⌦M0, with M0 in h1, 1̄i, we have

⇢(A)⌦M0

⇠! ⇢(M). (2.11.2)

If another N is of the form A⌦N0, with N0 in h1, 1̄i, we have

M ⌦A N = A⌦ (M0 ⌦N0)

and the commutative diagram

(⇢(A)⌦M0)⌦⇢(A) (⇢(A)⌦N0) ⇢(A)⌦ (M0 ⌦N0)

⇢(M)⌦⇢(A) ⇢(N) ⇢(M ⌦A N)

⇠ ⇠

⇠
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shows that (2.11.1) is an isomorphism.
Set R := ⇢(A) and forX in A let !(X) be the R-module ⇢(XA). By the construction of A,

each XA is of the form A⌦M0 with M0 in h1, 1̄i. The morphism (2.11.1) : ⇢(X)⌦R ⇢(Y ) !
⇢(X ⌦Y ) is therefore an isomorphism. For each short exact sequences ⌃ of A the sequence
⌃A is split. The sequence ⇢(⌃) therefore is too and in particular it is exact. The functor !
is the super fibered functor that was promised.

We move to the general case. Let A1 be the k-tensorial category of Z/2-graded objects
of A, with the commutativity constraint X⌦Y ! Y ⌦X being, for X and Y homogeneous
of degree n and m, that of A multiplied by (�1)nm. By 0.5 (ii), the k-tensorial category
A1 verifies also the hypotheses of 2.1. The object 1 in odd degree is an object 1̄ as in 2.9.
The category A1 admits therefore a super fiber functor of the type seen. The rest can be
had by restriction to A, identifying it with the subcategory of even objects in A1. ⇤

3. Formalism of super fiber functors

3.1. Let A and T be two k-tensorial categories verifying (2.1.1): all objects are of finite
length. Let R be an algebra of Ind T . Recall that our algebras are supposed to be commu-
tative and unital (2.2). A fiber functor ! of A over R is an exact ⌦-functor from A to the
category with tensor product ModR of R-modules. For T = (s-Vect) (0.9), we recover the
super fiber functors from 0.9.

According to 1.16, the !(A)s are dualizable R-modules. According to 1.14, they are
therefore flat (2.3) and for each R-algebra R

0, the ⌦-functor A 7! !
0(A) := !(A) ⌦R R

0 is
exact (c.f. 2.3): it is a fiber functor over R0.

A morphism f : F 0 ! F
00 of ⌦-functors is a morphism of functors making commutative

the diagrams

F
0(X)⌦ F

0(Y ) F
00(X)⌦ F

00(Y )

F
0(X ⌦ Y ) F

00(X ⌦ Y )
⇠ ⇠

and

F
0(X)⌦ F

0(Y ) F
00(X)⌦ F

00(Y )

F
0(X ⌦ Y ) F

00(X ⌦ Y )

⇠ ⇠

Lemma 3.2. Each morphism of ⌦-functors between fiber functors over R is an isomor-

phism.

Proof. If f : !0 ! !
00 is a morphism,

fX : !0(X) ! !
00(X) and fX_ : !0(X_) ! !

00(X_)

are contragradient and we apply Deligne (1990), 2.4. ⇤

For ! a fiber functor from A over R, we continue to denote by ! the extension of ! to
IndA that commutes with inductive limits. This is also a ⌦-functor.

Lemma 3.3. For every X in IndA, !(X) is flat, and faithfully flat if X 6= 0.

Proof. The module !(X) is flat as it is a filtered inductive limit of dualizable and hence flat
modules. If X 6= 0, X admits a non-zero subobject A in A. Because !(X/A) is flat, the
short exact sequence 0 ! !(A) ! !(X) ! !(X/A) ! 0 shows that the faithful flatness
of X results from that of A. Because A 6= 0, ev : A_ ⌦ A ! 1 is an epimorphism and if
!(A)⌦RM = 0, M is zero as it is a quotient of !(A_)⌦R!(A)⌦RM = !(A_⌦A)⌦RM . ⇤
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3.4. For ↵ and � two fiber functors from a category C into the category of dualizable
R-modules, let ⇤(↵,�) be the coend of the following contravariant in X and covariant in Y

bifunctor: X,Y 7! ↵(X)_ ⌦R �(Y ). By definition of “coend”, we have morphisms

↵(X)_ ⌦R �(X) ! ⇤(↵,�). (3.4.1)

For all morphisms f : X ! Y , the diagram

↵(Y )_ ⌦ �(X) ↵(Y )_ ⌦ �(Y )

↵(X)_ ⌦ �(X) ⇤(↵,�)

↵(f)t (3.4.1)

�(f)

(3.4.1)

(3.4.2)

is commutative and ⇤(↵,�) is universal for these properties. The data of the morphisms
(3.4.1) is equivalent to that of morphisms

�(X) ! ↵(X)⌦R ⇤(↵,�) (3.4.3)

and the commutativity of 3.4.2 is equivalent to the functoriality in X of (3.4.3).
For C = C0 ⇥ C00, ↵ = ↵

0 ⌦R ↵
00 and � = �

0 ⌦R �
00, we have

⇤(↵0 ⌦ ↵
00
,�

0 ⌦ �
00) = ⇤(↵0

,�
0)⌦R ⇤(↵00

,�
00).

For T a functor D ! C, we have a featured morphism

�(↵ � T,� � T ) ! ⇤(↵,�).

In particular, for C equipped with a bifunctor T : C⇥C ! C and ↵,� functorial isomorphisms

↵(T (X,Y )) = ↵(X)⌦R ↵(Y ) (3.4.4)

and the same for �, we discover a product

⇤(↵,�)⌦R ⇤(↵,�) ! ⇤(↵,�). (3.4.5)

If T is under compatible associativity, commutativity, and unity constraints (3.4.4), this
product is associative, commutative, and unital.

Lemma 3.5. If ↵ and � are two fibter functors from A over R, the R-module ⇤(↵,�) is

faithfully flat.

Proof. The category A ⌦k A from Deligne (1990), 5.1 and 5.13 is k-tensorial and verifies
also (2.1.1) (ibid. 5.17). Denote by ⌦k the structural functor A⇥A ! A⌦kA. The functor
↵(X)⌦R�(Y ) is exact in each variable, because ↵(X) and �(Y ) are flat. It defines therefore
an exact functor (ibid. 5.17 (vi)) from A⌦kA to R-modules, which will be denoted ↵⇥R �,
characterized by

↵⇥R �(X ⌦k Y ) = ↵(X)⌦R �(Y ).

The structure of ⌦-functor of ↵ and � furnishes one over ↵⇥R�, extending the isomorphism

(↵⇥R �)(X 0 ⌦k Y
0)⌦ (↵⇥R �)(X 00 ⌦ Y

00) = ↵(X 0)⌦R �(Y 0)⌦R ↵(A00)⌦R �(Y 00)

= ↵(X 0)⌦R ↵(X 00)⌦R �(Y 0)⌦R �(Y 00) = ↵(X 0 ⌦X
00)⌦R �(Y 0 ⌦ Y

00)

= ↵⇥R �((X 0 ⌦X
00)⌦k (Y

0 ⌦ Y
00)) = ↵⇥R �((X 0 ⌦k Y

0)⌦ (X 00 ⌦k Y
00)),

and makes ↵⇥R � a fiber functor from A⌦k A over R. ⇤
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Let inj1 and inj2 be the functors X 7! X⌦k 1 and X 7! 1⌦kX from A to A⌦kA. These
are fiber functors from A into A⌦k A, i.e. over the algebra 1 in A⌦k A. Set

⇤0 := ⇤(inj1, inj2) (3.5.1)

This ⇤0 is universal in the sense that

⇤(↵,�) = ↵⇥R �(⇤0),

and according to 3.3 applied to ↵⇥R �, 3.5 results in

Lemma 3.6. ⇤0 6= 0.

Proof. Let T be the fiber functor of A⌦k A over A such that T (X ⌦k Y ) = X ⌦ Y . If we
apply it to ⇤0, we obtain the coend ⇤(IdA, IdA) of the bifunctor X,Y 7! X

_ ⌦ Y and the
morphisms ev : X_ ⌦X ! 1 furnish

T⇤0 ! 1. (3.6.1)

The object 1 of A furnishes a morphism (3.4.1)

1 ! ⇤0 (3.6.2)

and (3.6.1) � T ((3.6.2)) is the identity on 1. That ⇤0 6= 0 follows. ⇤

Remark 3.7. The construction 3.4, applied to ↵ and �, make ⇤(↵,�) into an R-algebra.
Applied to inj1, inj2 : A ! A⌦k A, it makes ⇤0 := ⇤(inj1, inj2) into an algebra in Ind(A⌦k

A). The isomorphism ↵⇥R �(⇤)
⇠! ⇤(↵,�) is an isomoprhism of R-algebras.

3.8. The R-algebra structure on the R-module ⇤ := ⇤(↵,�) is characterized by the comm-
tuativity of the diagram

�(X)⌦ �(Y ) (↵(X)⌦ ⇤)⌦ (↵(Y )⌦ ⇤)

↵(X ⌦ Y )⌦ (⇤⌦ ⇤)

↵(X ⌦ Y )⌦ ⇤�(X ⌦ Y )

(3.8.1)

If ↵⇤ and �⇤ are the fiber functors over ⇤ built from ↵ and � by extension of scalars from
R to ⇤, (3.4.3) defines a functorial morphism of ⇤-modules

' : �⇤(X) ! ↵⇤(X) (3.8.2)

and (3.8.1) expresses that this is a morphism of ⌦-functors, therefore and isomorphism
(3.2).

The R-algebra ⇤ and ' are universal: if ⇤1 is an R-algebra and '1 : �⇤1 ! ↵⇤1 is a
morphism of functors, '1 defines a functorial morphism

�(X) ! ↵(X)⌦R ⇤1,

necessarily built from f : ⇤ ! ⇤1, and f is a homomorphism of algebras if and only if '1

is a morphism of ⌦-functors.
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3.9. We pass to the geometric language of Deligne (1990), 7.5. Point of departure: we
define the category of a�ne T -schemes as the dual to the category of algebras of Ind T ,
we denote by Spec(A) the a�ne T -scheme corresponding to an algebra A, and we call A
its a�ne algbera, we say module over Spec(A) for A-module, fiber functor over Spec(A) for
fiber functor over A, Spec(A)-scheme or scheme over Spec(A) for A-algebra and inverse

image (of modules) for the extension of scalars.
A groupoid acting on a T -scheme S = Spec(A) is a T -scheme H provied with “source”

and “target” functions s, b : H ! S and an associative composition law H ⇥s,S,b H ! H

admitting units and inverses. It is the same to say that for each T -scheme T , s, b and the
composition law make the collection H(T ) := Hom(T,H) of T -points of H into a groupoid
acting over S(T ). The groupoid H is called transitive if (b, s) : H ! S⇥S is faithfully flat,
i.e. if the a�ne algebra of H is faithfully flat over that, A⌦A, of S ⇥ S.

If H is a groupoid acting over S, with c, d 2 S(T ) and h 2 H(T ), we write h : c ! d for “h
has source c and target d”. IfM is a module over S, the data of ' : s⇤M ! b

⇤
M is equivalent

to the data for each T and each h : c ! d over T of 'h : c⇤M ! d
⇤
M , compatible with base

changes T
0 ! T . In this language, an action of H on M is a morphism ' : s⇤M ! b

⇤
M ,

such that for id(a) : a ! a the identity of a, 'id(a) is the identity on a
⇤
M , and for c

f! d
g! e,

we have 'gt = 'g'f . It su�ces to verify these conditions in the universal case, over S and
H ⇥S H respectively.

3.10. Translating 3.8: the scheme Spec(⇤(↵,�)) over S = Spec(R) represents the functor
that to an S-scheme T associates the collection of isomorphisms of ⌦-functors �T ! ↵T

between the inverse images of ↵ and � over T . This justifies the notation Isom⌦
S (�,↵) :=

Spec(⇤(↵,�)).
If ↵ (resp. �) is a fiber functor over S (resp. T ), ↵ and � furnish by extension of scalars

fiber functors pr⇤
1
↵ and pr⇤

2
� over S ⇥ T . We set

Isom⌦
S⇥T (�,↵) := Isom⌦

S⇥T (pr
⇤
2�, pr

⇤
1↵) (3.10.1)

For three fiber functors ↵,�, � over S, T, U , the composition of isomorphisms furnishes a
morphism of S ⇥ U -schemes:

Isom⌦
S⇥T (�,↵)⇥T Isom⌦

T⇥U (�,�) ! Isom⌦
S⇥U (�,↵) (3.10.2)

and for ↵, �, � over S, T, U, V the morphisms (3.10.2) verify an associativity.
Particular case: let ! be a fiber functor over S and set

(↵, S) = (�, T ) = (�, U) = (�, V ) := (!, S).

The S ⇥ S-scheme q : Isom⌦
S⇥S(!) ! S ⇥ S, equipped with source s := pr2q and target

b := pr1q and with the composition law (3.10.2) is a groupoid acting over S. By construction,
the morphism (3.8.2) for ↵ = pr⇤

1
! and � = pr⇤

2
!,

' : s⇤! ! b
⇤
!,

is an action of the groupoid I := Isom⌦
S⇥S(!,!) over !(X), functorial in X and compatible

with the tensor product. The groupoid I is universal for these properties.

4. Existence of super fiber functors over k

Proposition 4.1. Let A be a k-tensorial category of finite ⌦-generation. If ↵ and � are

two super fiber functors from A over a super scheme S, the super scheme Isom⌦
S (↵,�) is

of finite presentation over S.
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Proof. We may suppose, and we will suppose, that S is a�ne non empty: S = Spec(R) with
R 6= 0. Let m be a maximal ideal in R and S0 the spectrum of the field k0 := R/m. By
extension of scalars of S to S0, we deduce from ↵ (or �, regardless) a fiber functor � over S0.
If X is a ⌦-generator of A, Isom⌦

S0
(�, �) is a subscheme in groups of GL(�(X)), therefore

is of finite type over S0. Because S0 is noetherian, this is the same as finite presentation
over S0.

The super schemes Isom⌦
S⇥S0

(pr⇤
1
↵, pr⇤

2
�) and Isom⌦

S⇥S0
(pr⇤

1
�, pr⇤

2
�) are faithfully flat

over S⇥S0 (3.5). Let J be their fiber product. It is faithfully flat over S⇥S0 and therefore
over S. The inverse images over J of ↵,� and � are isomorphic, and the inverse image
over J of the S-super scheme Isom⌦

S (↵,�) is of finite presentaiton, being isomorphic to
the inverse image over J of the S0-super scheme of finite presentation Isom⌦

S0
(�, �). By

faithfully flat descent of finite presentation (cf. SGA1, VII, 3.4 and 1.10), Isom⌦
S (↵,�) if of

finite presentation over S0. ⇤
Remark 4.2. Let T0 be the tensorial category of super vector spaces of finite dimension
over the field k0. The proof of 4.1 makes use of the following property of T0:

(4.2.1) for X in T0, the algebra SymX is noetherian: for each ideal of SymX, there exists
N so as to be generated by its trace over

L
iN Symi

X.

This property is not true for all k-tensorial categories A verifying (2.1.1). Let indeed
Y be in A and E the A-scheme that represents the functor T 7! End(YT ). This is the
spectrum of the algebra Sym((EndY )_). Let A1 be the category of Z/(2)-graded objects
of A considered at the end of 2.11. THe proof of 2.9 shows that if Y is not annihilated
by any Schur functor, then, in A1, Y admits 1p + 1̄q locally as a direct factor, with p + q

arbitrarily large. It results that, regardless of n, Y admits locally an endomorphism u such
that Tr(un+1) = 1. This remains true after passing to A1: for A = A

+ + A
� and algebra

of A1, u : YA ! YA comes from u0 : Y ! YA that, because Y is in A, factors through YA+ :
U comes by extension of scalars from an endomorphism of YA+ . Let F be the subsceme of
E defined by the equations Tr(ui) = 0, (i � 1). We have just seen that a finite number of
these equations does not su�ce to define it. The algebra Sym((EndY )_) therefore is not
noetherian.

As an example of a k-tensorial category verifying (2.1.1) but not (4.2.1), we can therefore
take, for t transcendental, the category Rep(GLt) of Deligne–Milne (1982), 1.27: its natural
generator is not annihilated by any Schur functor.

By a standard argument of passage to the limit we deduce from 4.1

Corollary 4.3. Let A be a k-tensorial category of finite ⌦-generation and ! a super fiber

functor of A over the super commutative k-algebra R, a filtered inductive limit of R↵s. Set

S = Spec(R), S↵ = Spec(R↵). For ↵ su�ciently large, the groupoid I := Isom⌦
S⇥S(!,!)

acting over S comes from change of base from a groupoid I↵ acting over S↵, of finite

presentation over S↵ ⇥ S↵.

Because I is transitive, the super analog of EGA 1V (3rd part) 11.2.6.1 (pass to the limit
for flattness) shows that for convenient � � ↵, the groupoid I� acting over S� as built from
I↵ by change of base is transitive. Below, a small detour will permit us to use EGA IV,
11.2.6.1 unchanged, without superising.

An argument of faithfully flat descent shows as in Deligne (1990), 3.5.1 that
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Lemma 4.4. Let f : S ! T be a morphism of super schemes over k. If a groupoid I acting

over S comes by base change from S ⇥ S ! T ⇥ T of a transitive groupoid J acting over

T , the base change of T to S induces an equivalence of the category of T -modules equipped

with an action of J and that of S-modules equipped with an action of I.

Proposition 4.5. Let A be a k-tensorial category of finite ⌦-generation. If A admits a

super fiber functor ! over a super commutative k-algebra R 6= 0, then A admits a fiber

functor over k.

Proof. Let N be the ideal of R generated by the odd part of R. This is a nilpotent ideal
and therefore distinct from R if R 6= 0. Replacing R be R/n and ! by the fiber functor
build from ! by extension of scalars, we can suppose, and we do suppose, that R is purely
even.

The algebra R is the filtered inductive limit of its sub-k-algebras of finite type R↵. With
the notations from 4.3, the groupoid I acting over S = Spec(R) comes for R↵ su�ciently
large from I↵ acting over S↵ = Spec(R↵) and of finite presentation over S↵ ⇥S↵. For I↵ to
be flat over S↵⇥S↵, it is necessary and su�cient that the even and odd components O(I↵)+

and O(I↵)� of O(I↵) are flat over R↵ ⌦ R↵. The first is a commutative R↵ ⌦ R↵-algebra
of finite type, the second an O(I↵)+-module of finite type. For I↵ to be transitive, it is
necessary and su�cient that moreover O(I↵)+ is faithfully flat over R↵ ⌦R↵.

According to EGA IV, 11.2.6.1, for convenient R� � R↵, the groupoid I� acting over
S� = Spec(R�) built from I↵ by base change is transitive. According to 4.4, the functor of
extension of scalars from R� to R induces an equivalence of the category of super modules
over S� equipped with an action of I� with that of super modules over S equipped with an
action of I. Applying this to !(X), for X in A we obtain that the fiber functor ! comes
from a fiber functor !� over R� . Because R� is of finite type over k and non-zero, there
exists a homomorphism � from R� to k and, !� ⌦R)�,� k is a fiber functor over k. ⇤

4.6. End of the proof of 0.5 and 0.6. If the k-tensorial category A verifies the condition
(a) of 0.5 (i), it admits a super fiber functor over convenient R (2.1), therefore over k (4.5)
and according to Deligne (1990), 8.19 is of the form Rep(G, ✏).

It remains to verify that the conditions (a) and (b) of 0.5 (i) are equivalent, and we
already know that (b))(a) (1.20). If the condition (a) is verified, for each object X of A,
the plain subcategory of A ⌦-generated by X also verifies (a) and is finitely ⌦-generated.
It admits therefore a fiber functor !. If !(X) is of super dimenion p|q, that ! is exact and
faithful ensures that X⌦d is the length at most that, (p+ q)d, of !(X⌦d) = !(X)⌦d. This
verifies (b).

4.7. Proof of 0.7 and 0.8. The assertion 0.7 results from

Lemma 4.8. Let A be a k-tensorial category all of whose objects are of finite length. If A
has a finite number of isomorphism classes of simple objects, then for each X in A there

exists N such that

length(X⌦n)  N
n
. (4.8.1)

Proof. Let K(A) be the Grothenieck group of the abelian category A. If (Si)i2I is a system
of representatives of the isomorphism classes of simple objects, K(A) is the free Z-module
with basis the [Si]s. Let ` : K(A) ! Z be the function “sum of the coordinates”. For X in
A, we have

length(X) = `([X]).
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The tensor product of A makes K(A) into a commutative ring, and (4.8.1) can be written
as

`([X]n)  N
n
.

The matrix of multiplication by [X] has coe�cients integers � 0. If they are  a, we
have `([X][Y ])  |I| a `(Y ) and `([X]n)  (|I| a)n. ⇤
Proof of 0.8. Suppose further that A is semisimple, and let ! by a fiber functor from A
over k. Let X be the sum of the Sis. Each object of A is a subobject of a sum of copies
of X, the canonical function from !(X) ⌦ !(X)_ to ⇤(!,!) is surjective, and ⇤(!,!) is
therefore finite dimensional.

The k-tensorial category A is of the form Rep(G, ✏) with O(G) = ⇤(!,!), of finite
dimension. Divide the a�ne algebra O(G) of G by the ideal generated by its odd part. We
obtain the a�ne algebra of the algebraic subgroup Gred of G, necessarily finite.

Let G0 be the connected component of G. Because G
0

red
is trivial, the Lie algebra of G0

is purely odd. This determines G
0 : O(G0) is the dual to the enveloping algebra of the

commutative super Lie algebra Lie(G0).
Because G

0 is invariant under G, the restriction to G
0 of a semisimple super rep-

resentation of G is semisimple, therefore trivial: ! induces an equivalence of A with
Rep(G/G

0
, ✏). ⇤
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