
Lecture 1: Variations on the Theme of Symmetry

Introduction

The ideas discussed here about symmetry in field theory represent joint work with Constantin

Teleman and Greg Moore; large parts of these notes are adapted from a forthcoming paper.1 We

give a conceptual framework for some of the developments of the past few years around “global

categorical symmetries”. A few immediate comments to give some perspective.

Remark 1.1.

(1) The word ‘global’ can be dropped: we are discussing symmetries of a field theory which are

analogous to symmetries of any other mathematical structure. The word ‘global’ is often

used in contradistinction to ‘gauge’ symmetries, but gauge symmetries are not symmetries

of theories: they are encoded in the (higher) groupoid structure of fields.

(2) The word ‘categorical’ can also be dropped. Mathematics is traditionally expressed in the

language of sets and functions, and when mathematical objects have internal symmetries

they organize into (higher) categories rather than sets. The symmetries we discuss often

have this higher structure, so naturally involve categories.

(3) There is a large amount of work over the past few years on the topic of symmetry in

quantum field theory, and in particular the application of “global categorical symmetries”

to dynamics and other questions. We give some excerpts from this literature to illustrate

how the framework we develop here applies. However, we emphasize that the topic of

symmetry in quantum field theory is a large one with many facets, and the framework here

does not apply to all of it.

(4) We restrict to the analog of finite group symmetry, including homotopical versions;2 it will

be interesting to generalize to the analog of Lie group symmetry. It is more natural in

quantum theory to have algebras of symmetries, rather than groups of symmetries, and so

in particular we encounter non-invertible symmetries.

(1.2) Main idea. The motivating thought is simple: we separate out the abstract structure of

symmetry from its concrete manifestation acting in a particular situation. Historically, the concept

of an abstract group was introduced to synthesize and further develop diverse instances of group

symmetry in geometry, in algebra (Galois), in number theory (Gauss), etc. Perhaps it is Arthur

Cayley in 1854 who first articulated the definition of an abstract group—I’m no historian—and now

every student of mathematics learns this concept early on. The structure of groups is then used to

study representations—linear and nonlinear. Similar comments apply to algebras. The elements of

an algebra act as linear operators on any module. In the context of field theory, the analog of an

algebra of symmetries is a topological field theory together with a boundary theory. The analog of

PI Lectures on Finite Symmetry in QFT, Dan Freed, June, 2022
1The paper will include many references; these notes only give minimal direction for further exploration.
2which include “higher form symmetries” (though we do not use this term: there are no differential forms in the

finite case) and “2-group symmetries”
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2 D. S. Freed

elements of an algebra are defects in the topological field theory, which act on any quantum field

theory which is a “module” over the topological field theory.

In this lecture we begin with a brief discussion of groups and algebras before turning to symmetry

in field theory. We return at the end to further aspects of groups and algebras whose analogs in

field theory play an important role in later lectures.

Groups

(1.3) Taxonomy. The simplest dichotomy is between (1) discrete groups, and (2) groups which

have a nontrivial topology. For the former we distinguish according to the trichotomy of cardi-

nalities: finite, countable, uncountable. The nature of finite groups is quite different from that of

infinite discrete groups; the phrase ‘discrete group’ evokes very different images from the phrase

‘finite group’, even though finite groups are discrete. For example, linear representations of a finite

group are rigid—they do not deform—whereas, for example, the infinite cyclic group Z has a con-

tinuous family of 1-dimensional complex unitary representations n ÞÑ eixn parametrized by x P R.

Among topological groups, the nicest are Lie groups. Here there is a dichotomy: compact vs.

noncompact. Compact Lie groups, which include finite groups, have a well-established structure

theory and representation theory; again, representations are rigid. Noncompact Lie groups, which

include countable discrete groups, also enjoy a robust structure and representation theory, but of

a very different nature. Moving on, there are infinite dimensional Lie groups as well as topological

groups which do not admit a manifold structure. In a different direction, there are homotopical

groups—finite and infinite. Namely, if X is any pointed topological space, then the space ΩX of

loops at the basepoint has the composition law of concatenation of loops, and this makes ΩX a

group up to homotopy. If X is connected, then its “base” has the form BG for a group G, and

there is a version in which G is a Lie group.

The field theory symmetry structure we study is analogous to that of a finite group, or, more

generally, to a homotopical group that is π-finite in the sense that it has only finitely many nonzero

homotopy groups, each of which is finite.

(1.4) Fibering over BG. Let G be a finite group. A classifying space BG is derived from a con-

tractible topological space EG equipped with a free G-action by taking the quotient; the homotopy

type of BG is independent of choices. If X is a topological space equipped with a G-action, then

the Borel construction is the total space of a fiber bundle

(1.5)

XG

π

��

“ EGˆG X

BG

with fiber X. If ˚ P BG is a chosen point, and we choose a basepoint in the G-orbit in EG labeled

by ˚, then the fiber π´1p˚q is canonically identified with X. We say the abstract symmetry data
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is the pair pBG, ˚q, and a realization of the symmetry pBG, ˚q on X is a pair consisting of a fiber

bundle (1.5) over BG together with an identification of the fiber over ˚ P BG with X.

Remark 1.6. We are already moving to homotopy theory, and it is more natural to take the ho-

motopy fiber, which is a special case of a homotopy fiber product. For continuous maps f, g we can

realize the homotopy fiber product as the space F and dotted maps indicated in the diagram

(1.7)

F

��~~
X

f   

Z

g��
Y

A point of F is a triple px, z, γq in which x P X, z P z, and γ is a path in Y from fpxq to gpzq. The

homotopy fiber Z over the basepoint in (1.5) is the homotopy fiber product

(1.8)

Z

""~~
˚

  

XG

||
BG

Exercise 1.9. Construct a homotopy equivalence X
»
ÝÝÑ Z. (You may want to know the homotopy

lifting property for the fiber bundle XG Ñ BG.)

(1.10) Homotopical groups3. A pair pX, ˚q consisting of a π-finite topological space X and a base-

point ˚ P X is a generalization of pBG, ˚q. Here is the formal definition.

Definition 1.11.

(1) A topological space X is π-finite if (i) π0X is a finite set, (ii) for all x P X, the homotopy

group πqpX, xq, q ě 1, is finite, and (iii) there exists Q P Zą0 such that πqpX, xq “ 0 for all

q ą Q, x P X. (For a fixed bound Q we say that X is Q-finite.)

(2) A continuous map f : Y Ñ Z of topological spaces is π-finite if for all z P Z the homotopy

fiber4 over z is a π-finite space.

(3) A spectrum5 E is π-finite if each space in the spectrum is a π-finite space.

3By ‘homotopical group’ we mean an H-group. This nomenclature pertains if X is path connected; see Remark 1.14
below. We allow disconnected spaces.

4As in (1.8), the homotopy fiber over z P Z consists of pairs py, γq of a point y P Y and a path γ in Z from z
to fpyq.

5A spectrum is a sequence of pointed topological spaces tEquqPZ and maps ΣEq Ñ Eq`1.



4 D. S. Freed

Example 1.12. An Eilenberg-MacLane space Kpπ, qq is π-finite if π is a finite group. We use

notation which emphasizes the role of X as a classifying space: if q “ 1 we denote Kpπ, 1q by Bπ,

and if q ě 1 and A is a finite abelian group, we denote KpA, qq by BqA. Just as there are group

extensions of ordinary groups, so too there are group extensions of homotopical groups. These are

often Postnikov towers. For example, let G be a finite group and let A be a finite abelian group.

Then extensions of the form

(1.13) 1 ÝÑ B2A ÝÑ X ÝÑ BG ÝÑ 1

are classified by group actions of G on A together with a cohomology class in H3pBG;Aq, where

the coefficients A are twisted by the group action. Thus X is a topological space with only two

nonzero homotopy groups: π1X “ G, π2X “ A. This class of spaces was studied long ago by George

Whitehead. Nowadays we might say that X is the classifying space of a 2-group.

Remark 1.14. If X is a path connected topological space with basepoint x P X, then X is the

classifying space of its based loop space ΩX, where the latter is a H-group by composition of based

loops.

Remark 1.15.

(1) A topological space X gives rise to a sequence of higher groupoids π0X, πď1X, πď2X,. . . ,

or indeed to an 8-groupoid. There is a classifying space construction which passes in the

opposite direction from higher groupoids to topological spaces. An 8-groupoid is π-finite if

it satisfies the conditions in Definition 1.11(1), which hold iff the corresponding topological

space is π-finite.

(2) In a similar way, one can define π-finiteness for a simplicial set.

Algebras

(1.16) The sandwich. Let A be an algebra, and for definiteness suppose that the ground field is C.

Partly for simplicity, and partly by the analogy with finite groups, assume that A and the modules

that follow are finite dimensional. Let R be the regular right A-module, i.e., the vector space A

furnished with the right action of A by multiplication. The pair pA,Rq is abstract symmetry data:

the realization of pA,Rq on a vector space V is a pair pL, θq consisting of a left A-module L together

with an isomorphism of vector spaces

(1.17) θ : R bA L
–
ÝÝÑ V.

The tensor product in (1.17)—an algebra sandwiched between a right and left module—is a general

structure that recurs in these lectures.

Remark 1.18. It may seem pedantic to introduce the module R here; one usually simply talks about

a left module over A. But I want to emphasize the distinction between the abstract symmetry

structure and its concrete action on a vector space, and for this we need to be able to recover the

vector space from the left module.
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Observe that the right regular module satisfies the algebra isomorphism

(1.19) EndApRq – A,

where the left hand side is the algebra of linear maps RÑ R that commute with the right A-action.

(1.20) Left vs. right. The choice of left vs. right in a given situation is made by choice or conven-

tion. My convention puts structural actions on the right and geometric actions on the left. Here

the right module R is part of the symmetry structure, and the left action is the geometric action on

the vector space. As another example, if V is a finite dimensional real vector space of dimension n,

then the space of bases BpV q—the set of isomorphisms Rn Ñ V—carries a right structural action

of GLnR and a left geometric action of AutpV q.

(1.21) The group algebra. Let G be a finite group. The group algebra A “ CrGs is the free vector

space on the set G, which is then a linear basis of A; multiply basis elements according to the group

law in G. A left A-module L is a linear representation of G. The tensor product in (1.17) recovers

the vector space which underlies the representation. In the setup of (1.4), take X “ L to construct

a vector bundle LG Ñ BG whose fiber over ˚ P BG is L.

There is an inclusion G Ă CrGs whose image consists of units, i.e., of invertible elements in the

algebra. But the typical element of CrGs is not invertible. For example, the sum g1 ` ¨ ¨ ¨ ` gk over

a conjugacy class in G is not invertible unless k “ 1. In general it is a central element. In fact, the

center of CrGs is generated by these elements.

Noninvertible elements in CrGs play an important role in the study of G-symmetry. For example,

when G is the symmetric group on n letters, then the theory of irreducible representations and their

associated Young tableaux is developed in terms of certain projectors in CrGs.

Example 1.22. Consider the Lie algebra su3, and let A “ Upsu3q be its universal enveloping

algebra (over C). The center of A is isomorphic to a polynomial algebra in 2 variables; it is

generated by the Casimir elements x2, x3 P A. These Casimirs act as linear operators on any

A-module—i.e., on a representation of SU3—and by Schur’s lemma they act by a scalar if the

module is irreducible. So these operators can be used to decompose an arbitrary A-module into a

direct sum of isotypical submodules. This is simply another illustration of: (1) the importance of

noninvertible elements in an algebra, and (2) the use particular elements in an abstract algebras

(here central elements) in concrete realizations.

(1.23) Higher algebra. The higher versions of finite groups in (1.10) have an analog in algebras as

well. For example, a fusion category A is a “once higher” version of a finite dimensional semisimple

algebra, and there is a well-developed theory of modules over a fusion category. In particular, A is a

right module over itself, the right regular module. A finite group G gives rise to the fusion category

A “ VectrGs of finite rank vector bundles over G with convolution product.
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Main Definitions

These are Definition 1.34 and Definition 1.37 below.

(1.24) Remarks about field theory. We begin with a few general remarks, deferring to Lecture 2

a more in-depth discussion.

Perhaps the first point to make is the metaphor of a field theory as a representation of a Lie

group, or better

(1.25) field theory „ module over an algebra

This is of course only a very rough analogy, but nonetheless it provides useful guidance and language.

(Our language sometimes seems to assume the module has an algebra structure, but that is not

an assumption we make.) We do always work in the Wick-rotated context, so for a quantum field

theory we work on Riemannian manifolds rather than Lorentz manifolds. As pioneered by Graeme

Segal, a Wick-rotated theory is a linear representation of a bordism category; it is the bordism

category which plays the role of the algebra in (1.25).

The field theories which encode finite symmetries are topological, and we bring to bear the

mathematical development of topological field theory. In particular, we work with fully local (or

fully extended) topological field theories. In the axioms this is realized by having the theory defined

on a higher bordism category of manifolds with corners of all codimension. The field theories on

which the symmetry acts are typically not topological, and for general quantum field theories the

fully local aspect has yet to be fully developed. Nonetheless, our exposition often implicitly assumes

full locality.

Remark 1.26. Just as one specifies a Lie group to talk about its representations, one must specify a

bordism category to talk about its representations: field theories. There are two sorts of “discrete

parameters”. First, there is a dimension n, which in the physical anti-Wick-rotated theory is the

dimension of spacetime. Second there is a collection F of background fields. We may use the

terminology ‘n-dimensional field theory on F ’ or ‘n-dimensional field theory over F ’. We define

background fields in the next lecture; for today’s lecture they remain in the deep background. We

often work in shorthand, illustrated by the following for a gauged nonlinear σ-model:

(1.27) F “ torientation, Riemannian metric, SO3-connection, section of twisted S2-bundleu

(1.28) Domain walls and boundary theories. Let σ1, σ2 be pn ` 1q-dimensional theories on back-

ground fields F1,F2. A domain wall δ : σ1 Ñ σ2 is the analog6 of a “pσ2, σ1q-bimodule”; see Figure 1

for a depiction. We remove the scare quotes and use the convenient terminology ‘pσ2, σ1q-bimodule’

for a domain wall. The triple pσ1, σ2, δq is formally a functor with domain a bordism category of

6We emphasize that σ1 and σ2 are not assumed to be algebra objects in the symmetric monoidal category of field
theories.
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Figure 1. A domain wall δ : σ1 Ñ σ2

smooth pn`1q-dimensional manifolds with corners which are equipped with a partition into regions

labeled ‘1’ and ‘2’ separated by a cooriented codimension one submanifold (with corners) which is

“δ-colored”. This is illustrated in Figure 2. As a special case, a domain wall from the tensor unit

theory 1 to itself is an n-dimensional (absolute, standalone) theory. More generally, we can tensor

any domain wall δ : σ1 Ñ σ2 with an n-dimensional theory to obtain a new domain wall. There is

a composition law on topological domain walls which are “parallel” (in the sense that they have

trivial normal bundles and one is the image of a nonzero section of the normal bundle of the other,

using a tubular neighborhood):

(1.29)
σ1

δ1 //

δ2˝ δ1

66σ2
δ2 // σ3

Id : nightboundmyho
←

I r

Th 0
,

( nm) - dim 'd (na) - dink

p
o leftbomdarythory

←

wn
"

D
0 I

nud.mil Theory
species "

É
Deff : Let ✗ be an inoeribe Cnn)- dim 'd field Thy .

I A-
An ad field thy F with anand ✗

is a left bdy Theory for 2 .

Figure 2. Domain walls in the manifold W

(1.30) Boundary theories. Following the metaphor of domain wall as bimodule, there are special

cases of right or left modules. For field theory these are called right boundary theories or left

boundary theories, as depicted in Figure 3. (Normally, we omit the region labeled ‘1’ in the

drawings: it is transparent.) A right boundary theory of σ is a domain wall σ Ñ 1; a left boundary

theory is a domain wall 1Ñ σ.

Remark 1.31. The nomenclature of right vs. left may at first be confusing; it does follow standard

usage for modules over an algebra—the direction (right or left) is that of the action of the algebra

on the module. In fact, following our general usage for domain walls, we use the terms ‘right

σ-module’ and ‘left σ-module’ for right and left boundary theories. But a right boundary theory

appears on the left in drawings, just as a right module R over an algebra A appears to the left of

the algebra in the expression ‘RA’.
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Figure 3. A right boundary theory and a left boundary theory

(1.32) Abstract finite symmetry in field theory. We turn now to the central concept in these

lectures.

Definition 1.33. Fix n P Zě0. Then finite field-theoretic symmetry data of dimension n is a

pair pσ, ρq in which σ is an pn` 1q-dimensional topological field theory and ρ is a right σ-module.

The dimension n pertains to the theories on which pσ, ρq acts, not to the dimension of the field

theory σ. We do not insist on the burdensome nomenclature ‘finite field-theoretic symmetry data

of dimension n’, but simply refer to the pair of a topological field theory and a right boundary

theory. One might want to assume that ρ is nonzero, which is true for the particular boundaries

in Definition 1.34 below. Our statement of Definition 1.33 has not made explicit the background

fields, but they are there in the background (and there are issues to address concerning them).

This definition is extremely general. The following singles out a class of boundary theories which

more closely models the discussions in (1.4) and (1.16). We freely use the language and setting of

fully local topological field theory. Recall that if C1 is a symmetric monoidal n-category, then there

is a symmetric monoidal Morita pn` 1q-category AlgpC1q whose objects are objects in C1 equipped

with an algebra structure and whose 1-morphisms A0 Ñ A1 are pA1, A0q-bimodules.

Definition 1.34. Suppose C1 is a symmetric monoidal n-category and σ is an pn` 1q-dimensional

topological field theory with codomain C “ AlgpC1q. Let A “ σpptq. Then A is an algebra in C1

which, as an object in C, is pn ` 1q-dualizable. Assume that the right regular module AA is n-

dualizable as a 1-morphism in C. Then the boundary theory ρ determined by AA is the right

regular boundary theory of σ, or the right regular σ-module.

We use an extension of the cobordism hypothesis to generate the boundary theory ρ from the right

regular module AA. Observe that AA is the value of the pair pσ, ρq on the bordism depicted in

Figure 4; the white point is incoming, so the depicted bordism maps pt Ñ ∅.

← ←

I r r 1

P E

•P •

<

•

Figure 4. The bordism which computes AA

Remark 1.35.
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(1) The right regular σ-module ρ satisfies Endσpρq – ρ; compare (1.19).

(2) The regular boundary theory is also called a Dirichlet boundary theory.

(3) Not every topological field theory σ can appear in Definition 1.33. For example, the main

theorem in 7 asserts that “most” 3-dimensional Reshetikhin-Turaev theories do not admit

any nonzero topological boundary theory, hence they cannot act as symmetries of a 2-

dimensional field theory. On the other hand, the Turaev-Viro theory σΦ formed from a

(spherical) fusion category Φ takes values in the 3-category AlgpCatq for a suitable 2-

category Cat of linear categories. Thus σΦ admits the right regular σ-module defined by

the right regular module ΦΦ.

(4) Let G be a finite group. Then G-symmetry in an n-dimensional quantum field theory is

realized via pn`1q-dimensional finite gauge theory. The partition function counts principal

G-bundles, weighted by the reciprocal of the order of the automorphism group. The regular

boundary theory has an additional fluctuating field: a section of the principal G-bundle.

(1.36) Concrete realization of finite symmetry in field theory. Let pσ, ρq be a topological field

theory together with a right σ-module. We now define a concrete realization of pσ, ρq as symmetries

of a quantum field theory.

Definition 1.37. Let σ be an pn ` 1q-dimensional topological field theory and let ρ be a right

σ-module. Let F be an n-dimensional field theory. A pσ, ρq-module structure on F is a pair p rF , θq

in which rF is a left σ-module and θ is an isomorphism

(1.38) θ : ρbσ
rF

–
ÝÝÑ F

of absolute n-dimensional theories. Exapbelof.CI
4) p of

É is the dneusimd reduction
p s Psjiiacde with finite homotopy type , pash connected

of The Cnn) - drink theory on
r

•
I

; E og finite homotopy Inn) - drill theory
p basepo.it (Dirichlet)5) As usual ,

use this symmetry (/anomaly /
stroke to constrain dynamics - 't Hooft anomaly = cocyde on $

.

6) If an augmentation/Neumann boundary Thy
µ ⇒

c- exists ,

we can use it in plate of P c fusion category

to
"

gauge
The symmetry

"

g 3.sink Turner - Vino Thy based me

@ = Alg / Cate

7) Condensation ? p night regular module Cc

Figure 5. The “sandwich”

Here ‘ρ bσ rF ’ notates the dimensional reduction of σ along the closed interval with boundaries

colored with ρ and rF ; see Figure 5. The bulk theory σ with its right and left boundary theories ρ

and rF is sometimes called a “sandwich”.

Remark 1.39.

(1) The theory F and so the boundary theory rF may be topological or nontopological, and we

allow it to be not fully extended (in which case we use truncations of σ and ρ).

7Daniel S. Freed and Constantin Teleman, Gapped boundary theories in three dimensions, Comm. Math. Phys.
388 (2021), no. 2, 845–892, arXiv:2006.10200.

http://dx.doi.org/10.1007/s00220-021-04192-x
http://dx.doi.org/10.1007/s00220-021-04192-x
http://arxiv.org/abs/arXiv:2006.10200
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(2) The sandwich picture of F as ρbσ rF separates out the topological part pσ, ρq of the theory

from the potentially nontopological part rF of the theory. This is advantageous, for example

in the study of defects. It allows general computations in the abstract symmetry data which

apply to every realization as a symmetry of a field theory.

(3) Typically, symmetry persists under renormalization group flow, hence a low energy approx-

imation to F should also be a pσ, ρq-module. If F is gapped, then at low energies we expect

a topological theory (up to an invertible theory), so we can bring to bear powerful methods

and theorems in topological field theory to investigate topological left σ-modules. This leads

to dynamical predictions.

Examples

Example 1.40 (quantum mechanics n “ 1). Consider a quantum mechanical system defined by

a Hilbert space H and a Hamiltonian H. The Wick-rotated theory F is regarded as a map with

domain Bordx0,1ypFq for

(1.41) F “ torientation, Riemannian metricu.

Roughly speaking, F ppt`q “ H and F pXq “ e´τH{~ for τ P Rą0 and X “ r0, τ s with the standard

orientation and Riemannian metric. We refer to a recent preprint of Kontsevich-Segal 8 for more

precise statements.

Now suppose G is a finite group equipped with a unitary representation S : G Ñ UpHq, and

assume that the G-action commutes with the Hamiltonian H. To express this symmetry in terms

of Definition 1.33 and Definition 1.37, let σ be the 2-dimensional finite gauge theory with gauge

group G. If we were only concerned with σ we might set the codomain of σ to be C “ AlgpC1q for

C1 the category of finite dimensional complex vector spaces and linear maps. But to accommodate

the boundary theory rF for quantum mechanics, we let C1 be a suitable category of topological

vector spaces. The pair pσ, ρq is defined on Bord2 “ Bordx0,1,2y with no background fields. Then

σpptq “ CrGs is the complex group algebra of G, and ρpptq is its right regular module.

Figure 6. Three bordisms evaluated in (1.42) in the theory pσ, rF q

8Maxim Kontsevich and Graeme Segal, Wick rotation and the positivity of energy in quantum field theory,
arXiv:2105.10161.

http://arxiv.org/abs/arXiv:2105.10161
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Now we describe the left boundary theory rF , which has as background fields (1.41), as does the

(absolute) quantum mechanical theory F . Observe that by cutting out a collar neighborhood it

suffices to define rF on cylinders (products with r0, 1s) over rF -colored boundaries. The bordisms in

Figure 6 do not have a well-defined width since there is a Riemannian metric only on the colored

boundary. That boundary has a well-defined length τ in (b) and (c). We refer to §2.1.1 of 7 for the

conventions about arrows of time. Evaluation of these bordisms under pσ, rF q gives:

(1.42)

(a) the left module CrGsH

(b) e´τH{~ : CrGsH ÝÑ CrGsH

(c) the central function g ÞÝÑ TrH
`

Spgqe´τH{~
˘

on G

Of course, this is not a complete construction of the nontopological σ-module rF , but it gives some

intuition for that theory.

Figure 7. Quantum mechanics with G-symmetry

Figure 7 illustrates the G-action on the quantum mechanics theory F . Although we have not

discussed defects yet, we illustrate how they work in this basic example. A point defect in F is

what is usually called an observable. Think of time running up vertically, and then a point defect δ

is the insertion of an observable, or operator, at a given time, as depicted in Figure 8. Also shown

is the link of the point, which is a 0-sphere. The possible defects on the point are the elements of

the topological vector space

(1.43) lim
ÐÝ
εÑ0

Hom
`

1, F pS0
ε q
˘

.

Here ε measures the size of the linking 0-sphere, and one takes an inverse limit as this size shrinks

to zero. That inverse limit is a space of singular operators on H; see 8. In these lectures we mostly

compute with defects in topological theories, and for these there is no need to take a limit. Here,

for ease of notation and because we are after more formal points, we denote this space of operators

as ‘EndpHq’, even though the notation suggests bounded operators.

Now we look at defects in the sandwich picture in Figure 7 and transport to point defects in the

theory F . First consider a point defect on the rF -colored boundary, as in Figure 9.
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Figure 8. A point observable in quantum mechanics

Figure 9. A point defect on the rF -boundary

The link of the point is depicted, and its value under the pair pσ,Fq is computed at the bottom of

the figure. (There should be an inverse limit, which is omitted.) The result is that such a defect

is an operator on H which commutes with the G-action. Of course, such an operator need not be

invertible. Also, since rF is not topological, this is not a topological defect.

At the other extreme is a point defect on the ρ-colored boundary, which we call a point ρ-defect ;

see Figure 10. Now the link is in the topological field theory pσ, ρq; that is, the bulk topological

theory σ with topological boundary theory ρ. The value of the link is the vector space which

underlies the group algebra A “ CrGs. Hence the point defect is labeled by an element of A.

This may be an element of the group, which is a unit in A, or it may be a nonunit (noninvertible

element) in A. This is a topological defect, as it is a defect in the topological field theory. Now

imagine having both of these point defects. Since the point ρ-defect is topological, it can be moved

in time without changing any correlation functions. Visibly it commutes with the point defect on

the rF -boundary, which recall is an operator that commutes with A.

One can have a point defect in the bulk theory, as in Figure 11. The link of this point is a

circle, and the value σpS1q of the finite gauge theory on the circle is a vector space which may be

identified with the center of the group algebra CrGs. As stated earlier, it has a basis labeled by
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Figure 10. A point ρ-defect

Figure 11. A central point defect

conjugacy classes: the central element of CrGs is the sum of elements in the conjugacy class. These

topological defects commute with the point defects in Figures 9 and 10.

Figure 12. A general point defect

The general point defect in F can be realized by a defect on the closed interval depicted in

Figure 12. When working on a stratified manifold, we evaluate on links working from higher

dimensional strata to lower dimensional strata. The space of labels on a given stratum may depend

on the labels chosen on higher dimensional strata, as they do at the endpoints in this case. We

do not explain the evaluation of the links in detail here, but simply report that: (1) the label in

the interior of the defect is an pA,Aq-bimodule B; (2) the label at the endpoint on the ρ-colored
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boundary is a vector ξ P B; and (3) the label at the endpoint on the rF -colored boundary is an

pA,Aq-bimodule map B Ñ EndpHq. Under the isomorphism θ, this maps to the point defect

labeled by T pξq in the theory F .

Exercise 1.44. What happens if B “ A? (This is the transparent defect in the interior.)

Figure 13. Commuting point ρ-defects

We compute the action of the point ρ-defect labeled by g P G Ă CrGs on a general point defect

in F . This is a computation in the topological field theory pσ, ρq; it applies universally to any left

pσ, ρq-module. First, consider the special case of a topological point defect labeled by a P A “ CrGs,
as illustrated in Figure 13. Passing from the first picture to the second is the fusion of point defects,

which we will compute later is multiplication in A. The same fusion applies when passing from the

third picture to the second. So the effect of moving the g-defect past the a-defect is conjugation

of a. In Figure 14 we illustrate how the g-defect moves past a general (nontopological) point defect.

Now the label at the ρ-colored boundary is a vector ξ P B, where B is an pA,Aq-bimodule, and

again the effect is to conjugate ξ by g. Applying the isomorphism θ from the sandwich theory to

the theory F , we pass from T pξq to T pgξg´1q “ gT pξqg´1, since T is an pA,Aq-bimodule map.

This is the expected action on point defects.

Figure 14. Action of a topological point defect on a general point defect

Remark 1.45. The finite gauge theory σ can be constructed via a finite path integral from the

π-finite space BG; we discuss finite path integrals in the next lecture. Similarly, the boundary

theory ρ can be constructed from a basepoint ˚ Ñ BG: the principal G-bundles are equipped

with a trivialization on ρ-colored boundaries. A traditional picture of the G-symmetry of the

theory F uses this classical picture: the sheaf of background fields F is augmented to the sheaf
rF “ torientation, Riemannian metric, G-bundleu, which fibers over the sheaf B‚G “ tG-bundleu,

so in that sense “spreads over BG” as in §(1.4). There is an absolute field theory on rF which is

the “coupling of F to a background gauge field” for the symmetry group G. The framework we
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are advocating here of F as a pσ, ρq-module uses the quantum finite gauge theory σ: we sum over

principal G-bundles.

Remark 1.46. The finite path integral construction of the regular (Dirichlet) boundary theory makes

the isomorphism θ in (1.38) apparent. Namely, to evaluate pσ, ρq we sum over G-bundles equipped

with a trivialization on ρ-colored boundaries. Since the trivialization propagates across an interval,

the sandwich theory (Figure 5) is the original theory F without the explicit G-symmetry.

Example 1.47 (a homotopical symmetry). Let H be a connected compact Lie group, and suppose

A Ă H is a finite subgroup of the center of H. Let H “ H{A. Then a H-gauge theory in, say,

4 dimensions—for example, pure Yang-Mills theory—has a BA symmetry. In this case we take

σ “ σ
p3q
B2A

to be the A-gerbe theory based on the π-finite space B2A, and we take ρ to be the regular

boundary theory constructed from a basepoint ˚ Ñ B2A. The left σ-module rF is a H-gauge theory.

(Aspects of this example are discussed in more detail in 9.)

Quotients

For the remainder of this lecture we turn back to a general discussion of symmetry to remind

about two aspects that we will take up in field theory in subsequent lectures: quotients and pro-

jective symmetries.

If X is a set equipped with the action of a group G, then there is a quotient set X{G: a point

of X{G is a G-orbit in X. We now give analogs in the homotopy and algebra settings.

(1.48) The homotopy quotient. In the topological setting of (1.4), the total space XG of the Borel

construction plays the role of the quotient space X{G. Indeed, if G acts freely on X, then there is

a homotopy equivalence XG » X{G; in general, XG is the homotopy quotient.

For any map f : Y Ñ BG of topological spaces we form the homotopy pullback (see (1.7))

(1.49)

Z

}} ""
Y

f !!

XG

π||
BG

If Y is path connected and pointed, then there is a homotopy equivalence Y » BpΩY q. If BG also

has a basepoint, and if the map f : Y Ñ BG is basepoint-preserving, then f is the classifying map

of a homomorphism ΩY Ñ G “ ΩBG, at least in the homotopical sense. In this case Z is the

homotopy quotient of X by the action of ΩY . As a special case, if G1 Ă G is a subgroup, and

Y “ BG1 Ñ BG is the classifying map of the inclusion, then Z is homotopy equivalent to the

total space of the Borel construction XG1 . Hence (1.49) is a generalized quotient construction.

For G1 “ teu we have Y “ ˚ and we recover Z “ X, as in (1.8): no quotient at all.

9Daniel S. Freed and Constantin Teleman, Relative quantum field theory, Comm. Math. Phys. 326 (2014), no. 2,
459–476, arXiv:1212.1692.

http://dx.doi.org/10.1007/s00220-013-1880-1
http://arxiv.org/abs/arXiv:1212.1692
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(1.50) Augmentations of algebras. There is an analogous story in the setting (1.16) of algebras.

An augmentation of an algebra A is an algebra homomorphism ε : A Ñ C. Use ε to endow the

scalars C with a right A-module structure: set λ ¨a “ λεpaq for λ P C, a P A. If L is a left A-module,

the vector space

(1.51) Q “ CbA L “ Cbε L

plays the role of the “quotient” of L by A.

Example 1.52. For the group algebra CrGs of a finite group G, there is a natural augmentation

(1.53)

ε : CrGs ÝÑ C
ÿ

gPG

λgg ÞÝÑ
ÿ

gPG

λg

where λg P C. The augmentation is the pushforward on functions under the map GÑ ˚. If L is a

representation of G, extended to a left CrGs-module, then the tensor product (1.51) is the vector

space of coinvariants:

(1.54) 1b ` “ 1b g ¨ ` “ 1b g1 ¨ `, ` P L, g, g1 P G,

in the tensor product with the augmentation. As a particular case, let S be a finite set equipped

with a left G-action, and let L “ CxSy be the free vector space generated by S. Then Cbε L can

be identified with CxS{Gy, the free vector space on the quotient set.

Exercise 1.55. Prove this last assertion.

Exercise 1.56. For the finite group G acting on the finite set S, consider the Borel construction

SG Ñ BG. Construct an isomorphism S{GÑ π0pSGq. Compare the information content of SG and

CbεCxSy. Which has more information? How can you alter the other to recover more information?

Remark 1.57. Recall the fusion category A in (1.23). The analog of an augmentation is a fiber

functor on A: a homomorphism A Ñ Vect. For A “ VectrGs the natural choice is pushforward

under the map GÑ ˚ to a point.

(1.58) Quotient by a subgroup. We can form the “sandwich” (1.51) with any right A-module in

place of the augmentation. For A “ CrGs, if G1 Ă G is a subgroup, then CxG1zGy is a right

G-module; for G1 “ G it reduces to the augmentation module (1.53). If L is a G-representation,

then the tensor product

(1.59) CxG1zGy bCrGs L – CbCrG1s L

is the vector space of coinvariants of the restricted G1-representation. This represents the quotient

by the subgroup G1.
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Central extensions and projective actions

(1.60) Projective representations. There are many situations in which one encounters projective

representations of groups. For example, suppose A is an algebra and L is an irreducible left module.

Let G be a finite group that acts on A by algebra automorphisms, i.e., via a group homomorphism

α : G Ñ AutA. They, typically, we can implement these symmetries on the module L: if g P G

then we can find a linear automorphism t : LÑ L such that

(1.61) tpaξq “
`

αpgqa
˘

tpξq, a P A, ξ P L.

The map t exists if the twisted A-module Lα is isomorphic to L, and by Schur’s lemma t is

determined up to a scalar. In other words, each g P G determines a Cˆ-torsor Tg, and the torsors

depend multiplicatively on G. They fit together into a group Gτ which is a central extension of G

by Cˆ:

(1.62) 1 ÝÑ Cˆ ÝÑ Gτ ÝÑ G ÝÑ 1

A familiar example10 has A a Clifford algebra, L an irreducible module, and G is the orthogonal

group. Then G acts projectively on the Clifford module, and one obtains the (s)pin central extension

of the orthogonal group.

Remark 1.63. For a group extension (1.62) one considers representations ρ : Gτ Ñ AutpV q for which

ρ
ˇ

ˇ

Cˆ is scalar multiplication.

(1.64) The twisted group algebra. Suppose G in (1.62) is a finite group. Let Lτ Ñ G be the

complex line bundle associated to the principal Cˆ-bundle (1.62). Define the twisted group algebra

(1.65) Aτ “
à

gPG

Lτg .

Then Aτ inherits an algebra structure from the group structure of G. Furthermore, Gτ Ă Aτ

is the group of units. An Aτ -module restricts to a linear representation of Gτ on which the

center Cˆ acts by scalar multiplication, and vice versa. Observe that there is no analog of the

augmentation (1.53) unless we are given a splitting of the central extension (1.62). More generally,

if H Ă G is a subgroup, then a splitting of the restriction of (1.62) over H induces an Aτ -module

structure on CxHzGy, and we can use this to define the quotient by H, as in (1.59). Absent the

splitting, the projectivity obstructs the quotient construction.

Exercise 1.66. Given an algebra homomorphism ε : Aτ Ñ C, construct a splitting of the central

extension (1.62).

Remark 1.67. In field theory, the analog of an action by the central extension of a group is called

an (’t Hooft) anomalous symmetry, and the central extension (1.62) is called the anomaly. In that

context too, the central extension obstructs the quotient construction (often called gauging).

10In this example one uses Z{2Z-gradings everywhere.
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