
Lecture 3: Quotients and projectivity

This lecture has two main subjects: quotients and projectivity. In these notes—but not in the

actual lectures—we already treated these topics in the context of groups and algebras: see (1.48)

to the end of Lecture 1. Here we take up quotients by a symmetry of a field theory. Working in the

“sandwich” picture, which separates out the abstract topological symmetry from the potentially

nontopological field theory on which it acts, the quotient is effected by replacing the right regular

boundary theory (Dirichlet) with an augmentation (Neumann). We also introduce quotient defects,

which amounts to executing the quotient construction on a submanifold. In the literature these

are often called “condensation defects”, and the quotienting process is called “gauging”. Quantum

theory takes place in projective geometry, not linear geometry, and so in the second half of the

lecture we take up projectivity in the context of field theory. It is expressed via invertible field

theories. The projectivity of an n-dimensional field theory is an pn` 1q-dimensional invertible field

theory—its anomaly (theory)—and trivializations of the anomaly form a torsor over the group of

n-dimensional invertible field theories. In other words, the group of n-dimensional invertible field

theories acts on the space of all n-dimensional field theories, and theories in the same orbit share

many of the same properties. A symmetry may only act projectively, in which case it is said to

enjoy an ’t Hooft anomaly, and that obstructs the existence of an augmentation, so too obstructs

the existence of a quotient. We conclude with an example of quotients and twisted quotients for

theories with a BA-symmetry for a finite abelian group A.

Preliminary remarks

I began the lecture with two remarks.

(3.1) Invertibility. Anytime we have a (higher categorical) monoid—a set with an associative

composition law ˚ and unit 1—then we have a notion of invertibility: an element/object x is

invertible if there exists y such that x ˚ y “ 1 (or x ˚ y – 1 in a categorical context). This applies

in two situations: (1) the composition law (“stacking”) of field theories, which leads to the notion

of an invertible field theory ; and (2) the composition law (“fusion”) of local defects, which leads to

the notion of an invertible defect.

(3.2) Symmetries of a boundary theory. Not every left boundary theory F of a field theory α

indicates that α is acting as symmetries on F . In these lectures we define finite symmetry in

terms of a pair pσ, ρq; simply having a left module F for a theory α is not an action of symmetry.

Furthermore, in this paragraph we do not require that α be topological.27 On the other hand, if

pσ, ρq is finite symmetry data, then there is a notion of pσ, ρq acting by symmetries on F . Namely,

PI Lectures on Finite Symmetry in QFT, Dan Freed, June, 2022
27Nor do we require that α be invertible; if it is, then we say F is anomalous with anomaly theory α.
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Figure 23. The action of pσ, ρq on the boundary theory F of α

the left module structure data p rF , θq is a left module rF for σb α and an isomorphism as indicated

in Figure 23.

Quotients by a symmetry in field theory

One should think that the quotients in this section are “derived” or “homotopical”, though we

do not deploy those modifiers. (See Exercise 1.56.)

(3.3) Augmentations in higher categories.

Definition 3.4. Let C1 be a symmetric monoidal n-category, and set C “ AlgpC1q. Suppose A P C

is an algebra object in C1. Then an augmentation εA : AÑ 1 is an algebra homomorphism from A

to the tensor unit 1 P C.

Thus εA is a 1-morphism in C1 equipped with data that exhibits the structure of an algebra homo-

morphism. Augmentations may not exist.

Remark 3.5. A general 1-morphism AÑ 1 in C is an object of C1 equipped with a right A-module

structure. An augmentation is a right A-module structure on the tensor unit 1 P C1.

(3.6) Augmentations in field theory.

Definition 3.7. Let C1 be a symmetric monoidal n-category, and set C “ AlgpC1q. Let F be

a collection of pn ` 1q-dimensional fields, and suppose σ : Bordn`1pFq Ñ C is a topological field

theory. A right boundary theory ε for σ is an augmentation of σ if εpptq is an augmentation of σpptq

in the sense of Definition 3.4.

An augmentation in this sense is often called a Neumann boundary theory.
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(3.8) The quotient theory. We use notations in Definition 1.33 and Definition 1.37 in the following.

Definition 3.9. Suppose given finite symmetry data pσ, ρq and a pσ, ρq-module structure p rF , θq

on a quantum field theory F . Suppose ε is an augmentation of σ. Then the quotient of F by the

symmetry σ is

(3.10) F
ε

L

σ “ εbσ rF .

Figure 24. The quotient theory

We simply write ‘F
L

σ’ if the augmentation ε is understood from context. The right hand side

of (3.10) is the sandwich in Figure 24.

(3.11) Quotients in finite homotopy theories. Recall the definition of a semiclassical boundary

theory in (2.51). We now tell what an augmentation is in this context.

Definition 3.12. Let X be a π-finite space and suppose λ is a cocycle of degree m on X. A

semiclassical right augmentation of pX, λq is a trivialization µ of ´λ.

Observe that if λ “ 0, then µ is a cocycle of degree m. Also, there is a canonical choice of µ in this

instance: µ “ 0.

Remark 3.13. The cocycle λ encodes an ’t Hooft anomaly in a finite homotopy type theory; it is

the projectivity of the symmetry. If λ “ 0, then a cocycle µ encodes a twist of the boundary theory,

and it goes by various names: ‘discrete torsion’, ‘θ-angles’, etc., depending on the context.

Example 3.14. Let G be a finite group, and let σ “ σ
pn`1q
BG be the associated finite gauge theory.

Use the canonical boundary theory idX : X Ñ X. In the semiclassical picture this corresponds to

summing over all principal G-bundles with no additional fields on the ε-colored boundaries. This

is the usual quotienting operation, oft called ‘gauging’.
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Figure 25. The domain walls δ and δ1

(3.15) The Dirichlet-Neumann and Neumann-Dirichlet domain walls.

Lemma 3.16. Let σ be a topological field theory with codomain C “ AlgpC1q, and suppose ρ is the

right regular boundary theory of σ and ε is an augmentation of σ. Then the category of domain

walls from σ to ε is the trivial theory, as is the category of domain walls from ε to σ.

Roughly: Use the homomorphism εpptq : AÑ 1 to make 1 into a left A-module, where A “ σpptq,

and so construct a dual left boundary theory εL. Then the sandwich ρbσ ε
L is the trivial theory:

use the cobordism hypothesis to compute its value on a point as AbA 1 – 1. Let

(3.17)
δ : ρ ÝÑ ε

δ1 : ε ÝÑ ρ

be generating domain walls.

(3.18) The composition. Our task is to compute the composition

(3.19) δ1 ˝ δ : ρ ÝÑ ρ,

which is a self-domain wall of the boundary theory ρ. (The reverse composition δ˝δ1 is similar.) As

always, that computation is done by tracking the links as the points come together, and we obtain

the pair of chaps extracted in Figure 26 and isolated in Figure 27. In that figure we have labeled

the incoming boundary components in accordance with Lemma 3.16. For the outgoing boundary

component we are assuming σpptq “ A is an algebra in C “ AlgpC1q; the label A in the figure is the

underlying object of C1. This evaluates to an object in HomC1p1, Aq. We evaluate it in two cases.

Example 3.20 (Turaev-Viro symmetry). Suppose n “ 2 and the 3-dimensional theory σ is of

Turaev-Viro type with σpptq “ A a fusion category. Assume ρ is given by the right regular

module AA and ε is given by a fiber functor εΦ : AÑ Vect. Then the codimension 1 quotient defect

has local label the object xreg P A defined as

(3.21) xreg “
ÿ

x

εΦpxq
˚ b x,

where the sum is over a representative set of simple objects x. See Proposition 8.9 in 23 for a very

similar computation.
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Figure 26. Computation of δ1 ˝ δ

Figure 27. The pair of chaps: note the coloring of the boundary components

Example 3.22 (finite homotopy theories). Let X be a π-finite space. Then the composition is the

homotopy fiber product

(3.23)

ΩX

}} !!
˚

�� !!

˚

}} ��
˚

!!

X

��

˚

}}
X

which is then the domain wall

(3.24)

ΩX

}} !!
˚

!!

˚

}}
X

Note that the points ˚ in the second row of (3.23) are obtained as fiber products from the parts of

the diagram which lie below, and the fact that they are single points (contractible spaces) proves

Lemma 3.16 in the finite homotopy theory case.
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Figure 28. The defect δ1 ˝ δ on Z

Example 3.25 (special case). Now take X “ BG for G a finite group. Then ΩX » G, so the

composition δ1 ˝ δ sums over maps to G. Suppose M is a bordism on which we evaluate F , and

suppose Z Ă M is a cooriented codimension submanifold on which we place the defect δ1 ˝ δ. (As

usual, we do not make background fields explicit.) Form the sandwich r0, 1qˆM with t0uˆpMzZq

colored with ρ and t0u ˆ Z colored with δ1 ˝ δ. Then the theory sums over principal G-bundles

together with a trivialization on the ρ-colored boundary t0u ˆ pMzZq. For each g P G there is a

defect ηpgq (of “’t Hooft type”) which constrains the jump in the trivializations across Z to be g.

Then quantization using (3.24) shows

(3.26) δ1 ˝ δ “
ÿ

gPG

ηpgq.

This equation appears in several recent physics papers. A similar equation holds for X in general,

and in particular for X “ BqA for a finite abelian group A, only now automorphisms appear in the

quantization.

Quotient defects: quotienting on a submanifold

The following discussion is inspired by the paper 28. The basic idea is to execute the quotient

construction on a submanifold, not necessarily to take the quotient of the entire theory.

Fix a positive integer n and finite n-dimensional symmetry data pσ, ρq. Suppose ε is an aug-

mentation of σ, as in Definition 3.7. As explained in Definition 3.9, if p rF , θq is a pσ, ρq-module

structure on an n-dimensional quantum field theory F , then dimensional reduction of σ depicted

in Figure 24, which is the sandwich εbσ rF , is the quotient F
L

σ of F by the symmetry. This can be

interpreted as placing the topological defect ε on the entire theory.

There is a generalization which places the defect on a submanifold. Suppose M is a bordism

on which we evaluate F , and suppose Z Ă M is a submanifold on which we place the defect. (As

28Konstantinos Roumpedakis, Sahand Seifnashri, and Shu-Heng Shao, Higher Gauging and Non-invertible Con-
densation Defects, arXiv:2204.02407.

http://arxiv.org/abs/arXiv:2204.02407
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usual, we do not make background fields explicit.) Form the sandwich r0, 1q ˆM with t0u ˆM

colored with ρ. Let ν ĂM be an open tubular neighborhood of Z ĂM with projection π : ν Ñ Z,

and arrange that the closure ν̄ of ν is the total space of a disk bundle ν̄ Ñ Z.

Figure 29. The quotient defect εpZq

Definition 3.27. The quotient defect εpZq is the ρ-defect supported on t0uˆ ν̄ with t0uˆν colored

with ε and t0u ˆ Bν̄ colored with δ.

This defect is depicted in Figure 29.

Next we compute the local label of the quotient defect εpZq, as in Definition 2.65(1), and so

express εpZq as a defect supported on Z. Consider a somewhat larger tubular neighborhood, now

of t0u ˆ Z Ă r0, 1q ˆM . Let ` “ codimMZ. The tubular neighborhood for ` “ 1 is depicted in

Figure 30. It is a pair of chaps, two of whose incoming boundary components are δ-colored. Its value

in the topological theory σ—with boundaries and defects ρ, ε, δ—is an object in Hom
`

1, σpD1, S0
δ q
˘

.

(If C “ AlgpC1q is the codomain of σ, and σpptq “ A is an algebra object in C1, then σpD1, S0
δ q “ A

as an object of C1.)

Figure 30. The local label of εpZq in codimension 1
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Remark 3.28. The pair of chaps picture makes clear that the defect εpZq for ` “ 1 can be interpreted

as follows, assuming Z ĂM has trivialized normal bundle. Let Z1, Z2 be parallel normal translates

of Z, color the region in between t0u ˆ Z1 and t0u ˆ Z2 with ε, color the remainder of t0u ˆM

with ρ, and use the domain wall δ at t0u ˆ Z1 and δ1 at t0u ˆ Z2. Then εpZq is the composition

δ1pZ2q ˚ δpZ1q. If a quantum field theory F has a pσ, ρq-module structure, then δpZ1q is a domain

wall from F to F
L

σ and δ1pZ2q is a domain wall from F
L

σ to F ; the composition εpZq is a self

domain wall of F , precisely the one computed in (3.18).

Figure 31. The local label of εpZq in codimension 2

The tubular neighborhood of t0u ˆ Z Ă r0, 1q ˆM for codimension ` “ 2 is the 3-dimensional

bordism obtained from the pair of chaps by revolution in 3-space, as illustrated in Figure 31. For

general ` ą 1, the bordism is the p`` 1q-disk D``1 with boundary S` partitioned as

(3.29) BD``1 “ D`
ε YA

`
ρ YD

`

into disks D` and an annulus A` with the domain wall δ at the intersection of the ε and ρ-colored

regions. (In Figure 31 that domain wall is thickened from a sphere S`´1 to an annulus A`.)

Remark 3.30. These are the local defects. As always, the global defects are a section of a bundle

(local system) of local defects over the submanifold Z ĂM .

Example 3.31 (finite homotopy theory). Let σ “ σ
pn`1q
X be the finite homotopy theory built

from a π-finite space X. Then we can use the semiclassical calculus for π-finite spaces to compute

semiclassical spaces of defects. Suppose ρ is specified by a basepoint ˚ Ñ X and ε is specified by

the identity map X
id
ÝÝÑ X. Then δ is specified by the homotopy fiber product

(3.32)

˚

��   
˚

��

X

id��
X

which is a point. This is the manifestation of the uniqueness of δ (Lemma 3.16), as already remarked

after (3.24).
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The semiclassical space of local ρ-defects of codimension ` is

(3.33) Map
`

pD`, S`´1q, pX, ˚q
˘

“ Ω`X.

Set

(3.34) N ` “
`

D``1, D` YA` YD`
˘

,

with boundary as in (3.29); see Figure 31. The semiclassical local label of the defect εpZq is

(3.35) MappN `,Xq ÝÑ Ω`X,

the map induced by restriction to Ω`X.

Lemma 3.36. There is a homotopy equivalence MappN `,Xq » Ω`X under which (3.35) is the

identity map.

Proof. Use the technique in Example 0.8 of 29. First, deformation retract A` to S`´1, and so define

(3.37) N
`
“

`

D``1, D` Y S`´1 YD`
˘

.

Choose a basepoint for N
`

on S`´1. Form the correspondence of pointed spaces

(3.38)

N
`
YD`

yy %%
N
`L
S`´1 D`

L

S`´1

in which D` is attached to S`´1 Ă N
`
, the left map collapses this new D`, and the right map

collapses D``1. Since D`, D``1 are contractible, each of these arrows is a homotopy equivalence.

Now take the pointed mapping spaces into X. �

The quantization of id : Ω`X Ñ Ω`X is typically a noninvertible object. For example, if the

quantization is a vector space, then the vector space is30 Funpπ0Ω`Xq “ Funpπ`Xq; the local label is

the constant function 1. If the quantization is a linear category, then it is the category VectpΩ`Xq

of flat vector bundles over Ω`X, i.e., vector bundles on the fundamental groupoid πď1Ω`X; the local

label is the trivial bundle with fiber C.

Globally, we quantize

(3.39) id : MappZν ,Xq ÝÑ MappZν ,Xq,

29Allen Hatcher, Algebraic topology. available at https://pi.math.cornell.edu/~hatcher/AT/ATpage.html.
30The homotopy group π`X “ π`pX, ˚q uses the basepoint ˚ P X.

https://pi.math.cornell.edu/~hatcher/AT/ATpage.html
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where Zν is the Thom space of the normal bundle. As an example, suppose ` “ 1 and assume

that the normal bundle ν Ñ Z has been trivialized. (This amounts to a coorientation of the

codimension 1 submanifold Z ĂM—a direction for the domain wall.) Then

(3.40) MappZν ,Xq » MappZ,ΩXq.

For example, if A is a finite abelian group and X “ B2A—so σ encodes a BA-symmetry—then

MappZν , B2Aq » MappZ,BAq is the “space” of principal A-bundles P Ñ Z. One should, rather,

treat it as a groupoid, the groupoid BunApZq of principal A-bundles over Z and isomorphisms

between them. A point ˚ Ñ BunApZq is a principal A-bundle P Ñ Z, and this map quantizes to

a defect ηpP q on Z. The quantization of id : BunApZq Ñ BunApZq is a sum of the quantizations

of ˚
L

AutP Ñ BunApZq over isomorphism classes of principal A-bundles P Ñ Z. Informally, we

might write this as a sum of

(3.41)
1

AutP
ηpP q “

1

H0pZ;Aq
ηpP q.

This sort of expression appears in 31, for example; compare Example 3.25.

The ρ-defect ηpP q has a geometric semiclassical interpretation. Without the defect one is sum-

ming over A-gerbes on r0, 1qˆM which are trivialized on t0uˆM . The defect ηpP q on t0uˆZ tells

to only trivialize the A-gerbe on
`

t0uˆM
˘

z
`

t0uˆZ
˘

and to demand—relative to the coorientation

of Z—that the trivialization jump by the A-bundle P Ñ Z.

Remark 3.42. If the π-finite space X is equipped with a cocycle λ which represents a cohomology

class rλs P hnpXq for some cohomology theory h, then a codimension ` quotient defect has semi-

classical label space Ω`X with transgressed cocycle and its cohomology class rτ `λs P hn´`pΩ`Xq.

A nonzero cohomology class obstructs the quotient. However, as observed in 28 it is possible that

rλs ‰ 0 but rτ `λs “ 0 for some `, which means that the quotient by σ does not exist but quotient

defects of sufficiently high codimension do exist.

Projectivity

We begin with some ruminations on projective symmetry in quantum theory, in part to make

contact with Clay’s lecture series. A review of (1.60) at this point is warranted.

(3.43) Linear and projective geometry. Let V be a linear space, say finite dimensional and com-

plex. The automorphism group AutV consists of invertible linear maps T : V Ñ V ; after a choice of

basis it is isomorphic to the group of invertible square complex matrices of size equal to dimV . The

projective space PV is the space of lines (1-dimensional subspaces) of V . A linear automorphism

31Yichul Choi, Clay Cordova, Po-Shen Hsin, Ho Tat Lam, and Shu-Heng Shao, Non-Invertible Duality Defects in
3+1 Dimensions, arXiv:2111.01139.

http://arxiv.org/abs/arXiv:2111.01139
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T P AutV induces an automorphism T of PV ; the linear map T takes lines to lines. A homothety

(scalar multiplication) of V induces the identity map of PV . So there is a group extension

(3.44) 1 ÝÑ Cˆ ÝÑ AutV ÝÑ AutPV ÝÑ 1

which is the definition of AutPV . This extension is central ; the kernel Cˆ lies in the center of AutV

(and in fact equals the center). Each projective transformation in AutPV has a Cˆ-torsor of linear

lifts.

The projective action of a group G on PV is a group homomorphism GÑ AutPV . One can use

it to pull back the central extension (3.44) to a central extension

(3.45) 1 ÝÑ Cˆ ÝÑ Gτ ÝÑ G ÝÑ 1

of G. The group Gτ acts linearly on V through a group homomorphism Gτ Ñ AutV and, as our

starting point, the group G acts projectively on PV . The central extension (3.45) is a measure

of the projectivity of this projective action. If G is a discrete group, say a finite group, then the

equivalence class of the central extension is an element of the cohomology group H2pG;Cˆq. If this

class is zero, then there exist splittings of (3.45). Furthermore, the splittings form a torsor over

the group of characters of G, i.e., over the cohomology group H1pG;Cˆq: given a splitting s any

other splitting is the product of s with a character χ : GÑ Cˆ. In summary:

(3.46)
existence: H2pG;Cˆq

uniqueness: H1pG;Cˆq

(3.47) Quantum theory is projective, not linear. The space of pure states of a quantum system is

a projective space P, at first with no topology. Instead there is a function

(3.48) P ˆ P ÝÑ r0, 1s

which maps an ordered pair of states to the probability of transitioning from one state to the other.32

Symmetries of the quantum system are automorphisms of P which preserve the function (3.48).

A fundamental theory due to Wigner (and von Neumann) states that for P “ PH any symmetry

of the quantum system lifts either to a unitary automorphism of H or an antiunitary automorphism

of H. (See 33 for geometric proofs.) In fact, up to a simple transformation (3.48) is the distance

32If we write P “ PH for a Hilbert space H, and ψ1, ψ2 P H are nonzero vectors, then the value of (3.48) on the
pair of lines generated is

(3.49)
|xψ1, ψ2y|

2

}ψ1}2 }ψ2}2
.

33Daniel S. Freed, On Wigner’s theorem, Proceedings of the Freedman Fest (Vyacheslav Krushkal Rob Kirby
and Zhenghan Wang, eds.), Geometry & Topology Monographs, vol. 18, Mathematical Sciences Publishers, 2012,
pp. 83–89. arXiv:1211.2133.

http://arxiv.org/abs/arXiv:1211.2133
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function for the Fubini-Study metric on PH, and so Wigner’s theorem becomes a theorem about

its isometries. In any case, it follows that the projectivity of a group G of symmetries of quantum

theory is measured by a Z{2Z-graded central extension of G, where the Z{2Z-grading keeps track

of the unitary vs. antiunitary dichotomy. (See 34 for a fuller discussion of symmetry in quantum

mechanics.)

(3.50) Projectivity in quantum field theory: anomalies. Here the metaphor (2.2) comes in handy.

A field theory F : BordnpFq Ñ C is a linear representation of BordnpFq, and since quantum theory

is projective we expect this representation to be projective, and furthermore its projectivity should

be measured by some kind of “cocycle” on BordnpFq. Indeed, the right kind of cocycle in this

context is an invertible field theory. In this context the projectivity is called an anomaly (theory);35

it is an invertible field theory over F of dimension n ` 1. Observe that in the case of a finite

group G acting on a quantum mechanical system (n “ 1), this matches the cocycle of a group

extension (3.45), which has degree 2.

Anomalies are not a sickness of a theory; to the contrary, they are useful tools for investigating

its behavior. They are potentially a sickness when we want to “integrate out” some fields, i.e., turn

some background fields into fluctuating fields. In that case we have a fiber bundle of fields, such as

(3.51)

F

π
��

“ tRiemannian metric, orientation, H-connectionu

F “ tRiemannian metric, orientationu

Suppose we have a theory over F which has an anomaly α: an invertible pn`1q-dimensional theory

over F . Then to integrate over the fibers of π—to push forward under π—we need to provide descent

data for α. In other words, we need to provide an pn`1q-dimensional field theory ᾱ over F and an

isomorphism α
–
ÝÝÑ π˚ᾱ. This is the formal part—we must do the analysis required to integrate over

an infinite dimensional space—but if so we obtain a pushforward theory over F with anomaly ᾱ.

This descent problem has existence and uniqueness aspects, analogous to (3.46), only now with

invertible field theories.

Remark 3.52. Changing descent data by tensoring with an n-dimensional invertible theory is some-

times called “changing the scheme”, and pushforwards which differ in this way share many physical

properties.

(3.53) ’t Hooft anomalies in finite homotopy theories. In the lectures I introduced “cocycles” on

a π-finite space X at this point, but in these notes they appear in (2.23), which I recommend you

review at this point. In terms of the discussion above, the cocycle defines an invertible field theory

34Daniel S. Freed and Gregory W. Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013), no. 8,
1927–2023, arXiv:1208.5055. I apologize for the self-referential tendencies I learned from Gilderoy Lockhart. The
paper on which these summer school notes are based will not be so disgustingly provincial.

35Note that the anomaly is a theory over the background fields F , which may or may not have to do directly with
symmetry.

http://dx.doi.org/10.1007/s00023-013-0236-x
http://arxiv.org/abs/arXiv:1208.5055
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in which the map to X remains a background field. Once we sum—the finite path integral—over

these maps, with the cocycle as a weight, then we obtain a typically noninvertible theory σ. When

equipped with a semiclassical regular boundary theory ρ, the quantization of data in (2.51), then

pσ, ρq represents a symmetry with an ’t Hooft anomaly represented by the cocycle.

(3.54) Twisted boundary theories. At this point recall Definition 2.52. Note that if X is a π-finite

space, and we take the zero cocycle, then a (right or left) semiclassical boundary theory is a map

Y Ñ X of π-finite spaces together with a cocycle µ on Y. If we are working with an m “ pn ` 1q-

dimensional theory, then µ has degree m. The cocycle µ is used to weight/twist the quantization

of the boundary.

Example: BA-symmetry in 4 dimensions and line defects

The following discussion is inspired by 36.

(3.55) Symmetry data. Let A be a finite abelian group, set X “ B2A, and fix a basepoint ˚ Ñ B2A.

This defines the semiclassical data of a BA-symmetry, what is often referred to as a “1-form A-

symmetry”. We set λ “ 0: there is no ’t Hooft anomaly. For definiteness set n “ 4, so we use

the 5-dimensional finite homotopy theory σ “ σ
p5q
B2A

. The basepoint gives a regular right boundary

theory, and we study the pair pσ, ρq as abstract 4-dimensional symmetry data.

(3.56) The left pσ, ρq-module: 4-dimensional gauge theory. Let H be a Lie group, and suppose

A Ă H is a subgroup its center. Set H “ H{A. From the exact sequence

(3.57) A ÝÑ H ÝÑ H

of Lie groups we obtain a sequence of fiberings

(3.58) BA ÝÑ BH ÝÑ BH ÝÑ B2A

In fact, we can promote (3.58) to a fibering of classifying spaces37 of connections:

(3.59) B∇H ÝÑ B∇H ÝÑ B2A

The fibering of B∇H over B2A is the structure of the action of BA on it. (Given a principal H-

bundle with connection and a principal A-bundle, use the homomorphism AˆH Ñ H to construct

a new principal H-bundle with connection.) If H is a finite group, and therefore H too is a finite

group, then the map B∇H “ BH Ñ B2A would be a semiclassical left boundary theory. In general,

of course, there is no finiteness nor is H-gauge theory a topological field theory. Nonetheless, we

set rF to be 4-dimensional H-gauge theory, and so obtain the pσ, ρq-module exhibited in Figure 32.

36 Ofer Aharony, Nathan Seiberg, and Yuji Tachikawa, Reading between the lines of four-dimensional gauge
theories, JHEP 08 (2013), 115, arXiv:1305.0318 [hep-th].

37These are simplicial sheaves on Man; see 11.

http://dx.doi.org/10.1007/JHEP08(2013)115
http://arxiv.org/abs/1305.0318
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Figure 32. The BA-action on H-gauge theory

Remark 3.60. We have used the phrase “H-gauge theory” without specifying which one. All we

need here that it is a 4-dimensional gauge theory with BA-symmetry. Other details do not enter

this discussion.

(3.61) Topological right pσ, ρq-modules. For any subgroup A1 Ă A there is a map of π-finite spaces

(3.62) B2A1 ÝÑ B2A

We use this as semiclassical right boundary data, but we allow a twisting as in (3.54), i.e., a

degree 4 cocycle µ on B2A1. In this case we use ordinary cohomology (so assume an orientation is

among the background fields), and then the class of µ lives in the cohomology group H4pB2A1;Cˆq.
A theorem of Eilenberg-MacLane computes

(3.63) H4pB2A1;Cˆq – tquadratic functions q : A1 ÝÑ Cˆu

Thus pairs pA1, qq determine a right topological boundary theory RA1,q. The quotient, depicted in

Figure 33, is a twisted form of H{A1-gauge theory.

Remark 3.64. Under the isomorphism (3.63), the quadratic form q gives rise to the Pontrjagin

square cohomology operation

(3.65) Pq : H2pX;A1q ÝÑ H4pX;Cˆq

on any space X.

(3.66) Local line defects: interior label. We study local line defects in the twisted H{A1-gauge

theory using the sandwich picture in Figure 34. So we have the surface r0, 1s ˆ C built over a

curve C (in some manifold M), with topological RA1,q-boundary at t0uˆC and with nontopological
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Figure 33. A quotient of H-gauge theory

Figure 34. Line defects in twisted H{A1-gauge theory

rF -boundary at t1u ˆ C. See Figure 12 for an analogous figure in quantum mechanics for point

defects. We find the relevant labels by working down in dimension of strata, starting at the top.

The link of an interior point is S2, and the quantization σpS2q is, say, a linear 2-category—on

step beyond our illustration in Example 2.27 (which I suggest you review). Observe that for the

mapping space MappS2, B2Aq we have

(3.67)

π0

`

MappS2, B2Aq
˘

“ H2pS2;Aq – A

π1

`

MappS2, B2Aq
˘

“ H1pS2;Aq “ 0

π2

`

MappS2, B2Aq
˘

“ H0pS2;Aq – A

The quantization consists of flat bundles (local systems) of linear categories over the 2-groupoid

with these homotopy groups, depicted in Figure 35. In other words, for each

(3.68) m P H2pS2;Aq – A
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there is a linear category Lm. Furthermore, π2 based at m acts on Lm as automorphisms of the

identity functor. Under suitable assumptions, then, we can decompose according to the characters

(3.69) e P H0pS2;Aq_ – A_

to obtain

(3.70) Lm “
à

e

Lm,e ¨ e

In summary, then, an object of σpS2q is a collection of linear categories Lm,e labeled by m P A

and e P A_.

Figure 35. The 2-category Cat
`

pB2AqS
2˘

(3.71) Local line defects: collating the labels. It remains to determine the labels on the boundary

strata of r0, 1s ˆ C, depicted with the links in Figure 34. A label on the RA1,q-colored boundary

is an object L0 in this category—part of the topological field theory pσ, ρq—and a label of the
rF -colored boundary is another object L1. The image under θ of this configuration is the sum

over m, e of Hom
`

pL0qm,e, pL1qm,e
˘

, which is the category of defects in the twisted H{A1-gauge

theory. What we will now compute is that L0 is supported at a subset of pairs pm, eq determined

by the subgroup A1 Ă A and the quadratic function q : A1 Ñ Cˆ. This is the information gained

from the symmetry.

(3.72) Higher Gauss law. This paragraph can be made precise in the context of semiadditive

categories.

We begin with the lower Gauss law. Suppose G is a finite 1-groupoid, and LÑ G is a complex line

bundle over G. We want to compute the global sections (which is a limit; the colimit is equivalent).

At a point m P G the group π1pG,mq acts by a character on the fiber Lm. The value of a global

section at m must be a fixed point of this action, so it lies in the invariant subspace of Lm, that is,

the section vanishes unless the character vanishes.
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Now suppose KÑ G is a bundle of invertible complex linear categories over a 2-groupoid G, the

higher analog of a complex line bundle. (Equivalently, we could consider a Cˆ-gerbe.) Then at

each m P G there are two layers to consider, and we need fixed point data for both. If f P π1pG,mq

and x P Km, then the first piece of fixed point data is an isomorphism

(3.73) ηf pxq : x ÝÑ fpxq

Then if a : f Ñ g is a 2-morphism in G at m, we need too an isomorphism λapxq in

(3.74)

fpxq

λapxq

��

x

ηf pxq
99

ηgpxq %%
gpxq

that makes the diagram commute. Now specialize to f “ g “ idx. Then (3.74) becomes

(3.75)

x

λapxq

��

x

η
99

η %%
x

for some automorphism η. This commutes only if λapxq “ id. Hence, if π1G “ 0 then the global

sections are only nonzero on the components on which π2G acts trivially.

Figure 36. The link in Figure 34 at the RA1,q-colored boundary

(3.76) Local line defects: the missing link. First, associated to the quadratic function q : A1 Ñ Cˆ

is a bihomomorphism

(3.77) b : A1 ˆA1 ÝÑ Cˆ

It induces a Pontrjagin-Poincare duality

(3.78) H2pS2;A1q ˆH0pS2;A1q ÝÑ Cˆ
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and so an isomorphism

(3.79) e1 : H2pS2;A1q ÝÑ H0pS2;A1q_

Now let us quantize the link depicted in Figure 36, which is a 3-disk D3 with boundary colored

by RA1,q, and let us label the center point pm, eq, which means the tensor unit category Vect

sitting over m with π2 acting via the character e; see (3.70). (Thus Lm,e “ Vect and the other

linear categories are zero.) There is a semiclassical description of this defect pm, eq in terms of

Definition 2.76: the space Y “ B2A is equipped with a 2-cocycle that represents the class in

H2pB2A;Cˆq – A_ given by the character e; the map to MappS2, B2Aq is the identity onto the

component indexed by m. At the RA1,q-colored boundary, in semiclassical terms the boundary

theory is given as the map

(3.80)
`

MappS2, B2A1q, τ2pµqq
˘

ÝÑ MappS2, B2Aq,

where τ2µq is the transgression of a cocycle which represents the class of the quadratic function

in (3.63). Altogether we have a diagram

(3.81)

`

MappS2, B2A1q, τ2pµqq
˘

''

MappD3, B2Aq

zz $$

pB2A, eq

m}}
MappS2, B2Aq MappS2, B2Aq

Interpret in terms of the bordism obtained by cutting out a ball around the yellow defect; in the

bottom row the first entry is the orange boundary and the second the link of the yellow defect.

From this conclude that the quantization is supported on pairs pm, eq which satisfy

(3.82)
m P A1

e “ e1pmq´1

This selection rule is the one in 36.

Exercise 3.83. Check this last statement in some examples from 36.
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