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Mathematical intelligence

ROGER PENROSE

V.Vhat is mathematical intelligence? Is there anything that is essen-
tially diff.erent about the way that we reason mathematically, from
t}-le way in which we think generally? Is mathematical intell;
different from any other kind of intelligence? e
I feel certain that there is no fundamental difference between
mathematical and other kinds of thinking. It is true that many peopl
find it difficult to cope with the abstract type of thinking that ij Iz:ecﬁa:;
for mathematics, whilst finding comparatively little difficulty with the
e-quaIIy convoluted judgements that are involved in day-to-day rela-
t101:.|ships with other human beings. Some kinds of thinkin ycome
easily to certain people, whereas other kinds come more eisil to
others. But I do not think that there is any essential difference i 0
that there is more difference between mathematical thinkin andr
say, planning a holiday, than there is between the latter activi?y anc’:
Tm.derstandjng a music-hall joke. Human mathematical intelligence
is ]'ust one particular form of human intelligence and undérstangdin
.It is more extreme than most of these other forms in the ahstra.égt‘
lmpe.rsona.l, and universal nature of the concepts that are involved’
fmd 1n'the‘ rigour of its criteria for establishing truth. But mathemat:
i::}l);]:;;ll{ix:i is :In no ?fvay removed from other qualities that are
poporiant };g;e .1enfs. in our general ability for intelligent compre-
e (;f beau; Tntultlon. common-sense judgement, and the appre-
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ROGER PENROSE

What, after all, is intelligence? What is thinking? There is a preval-
ent viewpoint in current philosophising that holds that whatever it is
that in detail constitutes the physical activity underlying our thought
processes, it cannot, in effect, be other than the carrying out of some
vastly complicated calculation. The relevant actions of our brains, so
itis argued, are simply to provide our bodies with a very effective con-
trol system — a control system that could in principle be effected by a
computer, if only one knew enough of the details of those computa-
tional procedures that the brain actually carries out. One might well
imagine that, in accordance with this view, such an underlying com-
putational basis to our thinking ought to be most manifest with math-
ematical thinking, For is not mathematics a computational activity par
excellence? Indeed, itis not! It is one of my purposes here to emphas-
ise that there is a great deal of whatis essentialin mathematical think-
ing that is not of a computational character. Indeed, it turns out that
it is possible actually to demonstrate that there is something in our
mathematical understanding — in our insights as to mathematical
truth — that eludes any computational description whatever. It is the
very precision and the universal character of mathematical argument
that allows such a demonstration to be possible. But the conclusion is
in no way restricted to an intelligence that relates merely to mathem-
atical thinking. As I have argued, there is nothing essential that
separates mathematical from other types of thinking, so our demon-
stration that mathematical understanding is something that cannot
be simulated in a computational way can be thought of, also, as a

demonstration that understanding itself — one of the most essential
ingredients of genuine intelligence —is something thatlies beyond any
kind of purely computational activity.

MATHEMATICAL VISUALISATION

What are we doing when we conjure up in our minds the image of
some mathematical structure? Are we performing some internal cal-
culation, like those that lead to the impressive computer graphic dis-
plays with which we are now so familiar? Perhaps our brains aré
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Figure I A regular dodecahedron

acting out something like the computational procedures that give rise
to whatis called ‘virtual reality’, whereby an entire three-dimensional
seen'aingly consistent structure, such as a non-existent building, can
be visually presented to a human subject, through the agency of a’ pair
Of'special stereoscopic goggles. The detailed scene that each eye per-
ceives is the result of a complicated calculation performed in ‘real
time’ so that the structure appears to remain consistent no matter
ho_w thf: subject turns his head or moves his body. Are we doing some-
thing similar when, in our ‘mind’s eyes’ we conjure up some consistent
.Inental image of a three-dimensional object, whether real or entirel

Imagined? ’

Fl

I shall argue that we are actually doing something very different
from this. Let us consider an example. Figure 1is a photograph of a
regular dodecahedron. With some effort, it may be possible for us to
Totate this image to a different orientation. In fact, we may feel that
we have some conception of the object as an actual three-dimensional
Structure rather than as something that needs a particular vantage
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Figure 2 A cube

point from which to view it. Many people would find consideljable
difficulty in visualising an entire dodecahedron, but the cube depicted
in the photograph of Figure 2 is a good deal easier. It is not that .hard
to transfer the flat image on the page to a ‘solid’ three-dimensional
imagined structure. This may seem to be similar to what is m.volved
with computer graphic displays. In Figure 3, I have prov:u.ied :
sequence of computer images of a regular dodecahedron viewe

from successively slightly different vantage points, so that the

Figure 3 Computer pictures of a dodecahedron, from a
gradually moving vantage point
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Figure 4 Computer pictures of a cube, from a gradually moving
vantage point

dodecahedron appears to rotate just as it would if we slowly move
around it. In Figure 4, I have done the same thing with a cube. In
cach case, thereis, inside the computer, a stored representation of the
dodecahedron, or cube, that does not change, but the chosen vantage
point is gradually altered. Might not our own visual images be some-
thing like such stored computer representations? '

I'think itis unlikely — and to support this contention, let me indicate
some fairly clear-cut distinctions. In the first place, the computer dis-
plays are far more accurate than anything that can be at all easily
achieved by human imagination. Of course, it might well be argued
that we are simply being very inefficient and inaccurate in our
visualisations, as compared with a modern computer. Indeed, it
would not be hard to introduce inaccuracy into our computer simula-
tions, so that they fall to the level of accuracy that would be relevant
to any particular human individual. If it were just our inaccuracy that
distinguishes our own acts of visualisation from the outputs of com-
puters then my argument would certainly be a very weak one. But
visualisation carries with it strong elements of understanding, and it
is actual understanding that the computer simulations lack.

To illustrate this point, consider Figure 5. Here I have added some
lines to the photograph of Figure 1 to show that a cube can be found
inside the dodecahedron, its eight vertices coinciding exactly with a
selection of eight from the twenty vertices of the dodecahedron. It is
Not hard to see that this selection of eight vertices indeed gives us an
¢Xact cube. Symmetry considerations alone will tell us this; each face
must clearly be an exact rectangle, at least, and the rectangle’s sides
™Must indeed be equal since each is a ‘diagonal’ of one of the equal
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Figure 5 Dodecahedron with additional lines to show that a
cube sits within it, sharing eight of its vertices

regular-pentagonal faces of the dodecahedron. Can the computer
simulation ‘see’ this fact? This position would be hard to maintain, I
feel, but we can at least test it by asking whether or not two of the
edges of the computer’s proposed ‘cube’ are equal. (This, in itself, 1s
far from sufficient, of course, but at least it is a start.) When I tried
this on two edges, the computer came out with two ten-digit decimal
expressions that differed in the final place. When I asked it whether
these two numbers were equal, it asserted that indeed they were.
(Apparently, the program allows for some round-off €rror.) .

This is hardly a convincing demonstration that the computer mn any
sense ‘knew’ that there is an absolutely exact cube in the regular
dodecahedron. Rather, it seems tome, it establishes the contrary con-
clusion, that all this particular computer ‘visualisation’ can dois come
up with approximations, albeit approximations with nine or tent fig-
ures of accuracy. It has no way of reaching the exact conclusion that
our own visualisations — and accompanying understanding .
capable of: that indeed our proposed cube is geometrically precse:

5 — are
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In fact, being wise after the event, a computer programmer might
replace the particular way in which the dodecahedron is stored in the
machine by another one whereby exact information about distances
and angles could be retrieved on demand. It would then be possible
for the machine to give a correctly affirmative answer to our question
about whether the suggested cube is indeed an exact one. Actually,
being wise after the event, there would be an even easier way: the
computer could be instructed simply to answer ‘yes’ to this particular
question about the cube! The trouble with this, of course, is that the
computer itself could in no way be said to possess any mathematical
understanding of the exactness of the cube. It would simply be par-
rotting the information that its programmer had provided it with,
and no-one would argue that any understanding of the exactness lay
with the computer rather than with its human programmer.

One might try to do better than this, of course, and perhaps equip
the computer with the complete system of axioms for three-
dimensional Euclidean geometry. It could then try to ascertain
whether a given statement, such as the exactness of the cube referred
to above, could be deduced from these axioms. In this way it could, in
principle at least, provide the correct answers to many geometrical
problems. Of course, it might still be questioned whether what the
computer does bears any relation to what a human mathematician
does when understanding that a geometrical statement is actually
true. That human understanding has to do with a belief in the validity
of those intuitions — based to a good extent on symmetry considera-
tions — underlying the very choice of the axioms themselves. The issue
is a somewhat delicate one for there are valid geometric axiom sys-
tems that are distinct from those of Euclid. Indeed, when I later pre-
sent powerful arguments in support of the thesis that our insights and
understandings are not things that can be reduced to computation, it
will be necessary to turn away from geometry, and to address the
issue of computation directly, where it will be our intuitions con-
cerning the natural numbers 0, 1, 2, 3,4, 5, . . ., rather than geomet-
rical forms, that will be the subject of our deliberations.

But before turning to such matters, let me give credit to what might
be called one of the early ‘success stories’ of Artificial Intelligence. In
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the early 1960s, H. L. Gelernter programmed a computer to derive
propositions in Fuclidean plane geometry from the axioms with
which it had been initially provided. When the computer came up with
its proof thatif atriangle hastwo equal sides, then the angles opposite
to those sides are also equal, Gelernter was startled. For the com-

had been unknown to him, and it was considerably sim-

puter’s proof
mputer's argument was this (see

pler than that given by Euclid. The co
e AB=AC, the triangles ABC and ACB are congruent

Figure 6): sinc
(side-side-side); therefore <ABC equals <ACB, QED! In fact this

t new. (It was given in the fourth century AD by
s undoubtedly a striking fact that a computer could

thing so elegant and unexpected.
cess arose because its *blind’

argument was no
Pappus.) Butitwa
come up with some
In this example, the computer's suc
rule-following stopped it from being distracted from the seeming
absurdity of its own argument. No doubt there are many other situ-
ations in which human mathematicians have been stmilarly dis-
tracted from seeing arguments that they should have seen. However,
this particular example is one for which the chain of reasoning is very
ditbymeansofa mindless search. When

short, andtis nothard tofin
the derivations from axioms are long and complicated, as they tend
f considerable sophistication,

to be with mathematical arguments 0
then the ‘mindless search’ method becomes hopelessly inefficient.

B C

Figure6 Anisosceles triangle; thean glesatBand Care equal—
as proved by Gelernter's computer program since ABC an
ACB are congruent

Mathematical intelligence

Insight and unde .
rstanding are necessary i : .
to become manageable. ary ingredients, if the search is

PROOF BY GEOMET
RICAL INSI ,
FAREY FRACTIONS GHT 1

Choo i
downsi: a rzasonahle-smed natural number n (say n=9) and writ
,in 1 i .
down. § order of size, all the fractions from 0 to 1, expressed in lt:hl’e
' . eir
erms, whose denominators do not exceed n (here with n=9)

1 ] ]

Such an i
o ta.rra,y is referred to as a sequence of Farey fractions. Let
outoner ooucs. T
porms o o1 dife;narkab;e property that such a sequence possesses. If
erence between any pair of i '
e y pair of consecutive fractions in
en we find that the numerator is always 1. For example

2/5—3/8 = (16—15)/(5x8) = 1/40
4/7-5/9 = (36--35)/(7x9) = 1/63

How d i
ow do we know that this must always be the case? We must find

ad—'bczl

(since a/b—c/d={(ad~

a'rgumm/lbt. If:fus(;: Z.Jc)/bd). To do. this, we can use a geometrical
Do s Whagme each fraction a/b to be plotted as the point
oo BT k,’e . ftre ;ve also lfake the points representing success-
o s to b imTu: by stral.ght-line segments. Figure 7 gives an
oare anpd 3 “rnlu a;::on of all this, for n=9, but the figure is rather
cntation of s of the much clearer 1f we use the inaccurate repres-
ctiking fos e sequence-that is illustrated in Figure 8. (Itis a
e abu mathematical diagrams, and the attendant
here o than e stract cc.)ncepts ~which is indeed what is going on

Inaccurate image, if it is inaccurate in an appropriate
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Figure 7 Farey fractions illustrated geometrically

Figure 8 The area of the shaded triangle is } unit

an accurate one!) We wish to show that ad—&e=1. It is a well-known
formula of coordinate geometry that the area A of the triangle
whose vertices are (0,0), (a¢,5) and {(c,d) is given by

A = {ad — be)2

s0 what we must establish is that this area is precisely 1/2 (Figure 9).
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Figure 9 Triangles whose vertices are on lattice points and
which contain ne other lattice points, either internally or on an
edge, are each of area = } unit

In fact, it is a theorem (essentially a special case of one due to
Minkowski) that if a triangle’s vertices all lie at integer lattice points
{the points (x,y) where x and y are integers) and if it has the property
that it contains no other lattice point either in its interior or on its
edges, then it must have an area equal to 1/2. Thus, what we need to
show is that our triangle indeed has this property. This is actually not
hard to see from the fact that the two fractions a/5 and ¢/d are both
in their lowest terms (so that there are no further lattice points on the
sides of the triangle out from the origin (0,0)), and from the fact that
all fractions with denominators no greater than n have been
included — a fact that would be contradicted if our triangle con-
structed from two successive fractions a/b and ¢/d contained any
other lattice point. !

It remains to establish the aforementioned theorem. One way of
doing this (Figure 10) is to consider a sequence of transformations
whereby the triangle is successively moved without changing its area
until it becomes just half of alattice square. Each transformation con-
sists of taking one of the vertices and moving it parallel to the opposite
side, until it reaches another lattice point that lies closer to the other
two vertices than before. I shall not bother with the full details of this
here, but I hope that the rough idea is clear.
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?/?/1

Figure 10 The fact that the area is § unit can be_proved by suc-
cessively displacing a vertex to another lattice point c‘loset: tothe
opposite side, in a direction parallel to that side, until a diagon-
ally bisected square is obtained

PROOF BY GEOMETRICAL INSIGHT 2:
HEXAGONAL NUMBERS

My next example involves what are called hexagonal numbers
1,7,19,37,61,91, 127, ...

namely the numbers that can be arranged as regular hexagonal

arrays (excluding the vacuous array):

»
L J ¥ ¢ @ ] e & O ’ o ® & o

e o o @ e o ® 8 @

e & o ¢
These numbers are obtained, starting from 1, by adding successive
multiples of 6
6,12, 18, 24, 30,36, ...

as we see from the fact that each hexagonal number can be obtained
from the one before it by adding a hexagonal ring around its border:
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o o o o
c ® e o 0
o ® @ @ e 0O
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O @ e o o

o 0 0 o

b

For the number of spots in this ring is a multiple of 6, the multiplier
increasing by 1 each time, as the hexagon gets larger.

Now let us add together the hexagonal numbers successively, up to
a certain point, starting with 1. What do we find?

1=1,14+7=8, 1+7+19=27, 14+7+19+37=64, 1+7+19+37+61=125

The numbers 1, 8, 27, 64, 125 are all cubes. A cube is a number multi-
plied by itself three times

1=1*=1X1x1, 8=2*=2x2x2, 27=3*=3x3x3, 64=43=4x4x4,
125=5=5x5x%5, ...

: Is this a general property of hexagonal numbers? Let’s try the next
3 case. We indeed find

1+7+19+37+61+91 = 216 = 6X6x6 = 6°

. I am going to try to convince you that this is always true. First of all,
‘; a cube is called a cube because it is a number that can be represented
as a cubic array of spots

Figure 11 A cubical array of spheres
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I want you to try to think of such an array as built up successively,
starting at one corner and then adding a succession of three-faced
arrangements each consisting of back wall, side wall and ceiling, as
depicted thus:

Figure 12 The cubic array is separated into a succession of
layers consisting of side wall, back wall and ceiling, each of
which is viewed from a long distance off

Now view this three-faced arrangement from a long way out, along
the direction of the corner common to all three faces. What dowesee?

A hexagon:

Figure 13 Each layers appear as a hexagonal arrangement
— a hexagonal number
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The spots that constitute these hexagons, successively increasing in
size, when taken together, correspond to the spots that constitute the
entire cube. This establishes the fact that adding together successive
hexagonal numbers, starting with 1, will always give a perfect cube.

PROOF BY GEOMETRICAL INSIGHT 3:
RULES OF ARITHMETIC

This last example again shows the power of mathematical
{geometrical) visualisation. Let us try something else; this time a good
de¢al more elementary. How do we know that, for two natural num-
bers a and b, we always have

atb=b+a?

For this, all we need to do is visualise a collection of things (imagined
to be ‘@’ in number) to which we add another collection of things
(imagined to be ‘6’ in number). The total number of things altogether
is clearly the same whichever order we add them in, so the required
result follows.

This example is very trivial, and itis perhaps not quite ‘geometrical’
in the ordinary sense, but I think thatit represents a genuine mathem-
atical insight from an act of imagination. One might try to argue that
this insight is really just an aspect of our ‘experience’ of the persist-
ence of objects in the world. For example, apples and oranges do not
just disappear when placed in a box, nor do they magically appear
within the box. But there is more to it than this. None of us has ever
directly experienced precisely 88990012345 objects or 60606999931
objects, yet we would have no doubt that indeed

88990012345 + 60606999931 = 60606999931 + 88990012345.

Our experiences with apples and oranges merely act as a guide
towards our mathematical insights. Those insights are genuine
abstractions that are valid methods of reasoning about abstract
mathematical objects. (As always, in mathematics, one must be
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Figure I4 A rectangular array of a columns of b objects gives

the same total number as would & columns of 2 objects — by rota-
tion of the figure
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extremely careful, however. There are kinds of infinite numbers for
which the rule a+6=>5+a fails — but that’s another story!)
Let’s try another rule of clementary arithmetic:

axb=5bxa

This tells us that if we are to imagine taking ‘@’ collections of objects,
where each collection contains ‘%" objects, then the total number
would be unaltered if we did the same thing but with ‘e’ and ‘4’ inter-
changed. Stated this way, it is not really obvious; but if we imagine
our collections to be arranged as a succession of ‘a’ columns, where
each column contains ‘b’ objects, then the symmetry becomes obvious
{Figure 14). We can imagine rotating the resulting rectangular array
through a right angle to achieve this. Even easier than this (if we have
mental difficulty in visualising the rotation) is simply to read our array
off the other way around rather than mentally rotating it, that is as
row-by-row rather than column-by-column. This works just as well
for, say,

97666000011 x 777708999 = 777708999 x 97666000011

as for 5X7=7x5, even though we cannot precisely visualise collec-
tions of things that represent these actual individual numbers.
How about the associative law

laxb)Xxc=ax(®xe
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Figure 15 A three-dimensional rectangular array shows that
@axd) Xe=ax(pxe

We can see this one by imagining a three-dimensional rectangular
array which we read off in two different ways: see Figure 15. Again
this works just as well for, say

(87666000011 x777708999) x 83383302222
= 97666000011 x(777708999x83383302222)

as for (5xX7)x9=5x(7x9), even though these large numbers cannot
be individually visualised precisely.

An important thing to note about these ‘visualisations’ is that they
are not really pictures of actual things in space, but of something
much more abstract. It really does not maiter whether ‘actual’ space
has the necessary accurately Euclidean structure, or that it extends
outwards far enough so the particular numbers that we wish to rep-
resent can be realised in terms of actual objects within that space. (For
example, if we wished to represent the number 10" which is &
perfectly good number, still subject to the same algebraiclaws as the
numbers that we can directly visualise, then we could not do so within
the ‘observable universe’ with actual physical objects.) Nevertheless,
our simple visualisations are indeed sufficient to provide the neces-
sary insights that can convince us that the algebraic properties that
we have been considering are actually true of all natural numbers, no
matter how large they may be.
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Now, let us consider the relation
{axb)xXeyxd = ax(bX(cxd))

Can we be sure that this one is universally true? Now we use a diffez-
ent method. It is not much good to use a four-dimensional array,
which is what would be needed if we were to try to visualise the rela-
tion directly. We have no direct experience of four spatial dimenstons,
so our geometrical intuitions are not of much immediate use in this
case. Instead, we can turn to algebra and deduce this last relation
from what we have established previously. First

((axBxe)xd = (axb)yx(cxd)

by thé earlier relation (but with @ X b, ¢, d, in place of a, b, ¢,
respectively); then

(axdyx(exd) = ax(bx{cxXd)

again by this earlier relation (but now just with cXdin place of ¢). The
result follows by combining these two.

Algebra provides a very useful means of replacing our direct
insights by calculational procedures. We do not now have to think of
what our expressions actually ‘mean’. We can now just calculate! In
fact this is somewhat overstating the case I want to make. The effect-
ive use of algebra often requires a good deal of understanding, sub-
tlety, and even artistry. But in many ways, it is the power of a good
calculus (like ordinary algebra or, indeed, ordinary arithmetical
notation) that, to s considerable degree, it enables understanding to
be temporarily suspended and replaced by blind calculation. It is in
this facility for blind calculation, rather than understanding, that
computers can far exceed the capabilities of even the most effective

of human experts.
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CAN UNDERSTANDING ALSO BE
REDUCED TO BLIND CALCULATION?

What about the human faculty of understanding? Can we be sure that
itis not itself some kind of calculational activity? Presumably anyone
who believes that genuine Artificial Intelligence is possible must also
belicve that the quality of understanding can be artificially simu-
lated —for understanding is surely an essential part of genuine intelli-
gence. The present meaning of the term Artificial Intelligence (or
‘AT’)is thatitis something according to which the artificial simulation
is indeed performed calculationally, by which I mean by the use of
electronic computers. Although it is possible to imagine that, in the
future, some means of ‘artificial simulation’ which is different from
anything that can be achieved calculationally might be introduced, I
shall stick to the standard ‘calculational’ meaning of the term here.
Accordingly, those who believe that genuine Al is possible must
believe that the quality of understanding can indeed be simulated
calculationally.

Before giving my main reason for disbelieving this possibility, T
should be alittle clearer about what Imean by the term ‘calculational’.
In effect, as T indicated earlier, I mean anything that can be per-
formed by a modern general-purpose computer. This is perhaps not
very precise as a mathematical definition. What I really mean, tech-
nically, is anything that can be performed by a Turing machine. How-
ever, [ appreciate that many readers will not know preciscly what the
term “Turing machine’ means, so it is easier just to refer to a modern
general-purpose computer, where we require this ‘computer’ to be a
mathematically idealised concept. The idealisations that we require
are that the computer never makes mistakes, that it can continue
indefinitely without ever wearing out, and that it has an unlimited
storage capacity. If you think of this last idealisation as being a little
unreasonable, just imagine that it is always possible to add more stor-
age capacity (that is ‘memory’) to the computer whenever it runs out.

An important point to make here is that actions of things like
‘parallel computers’ and (artificial) ‘neural networks’ (or ‘connection
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machines’), that we hear quite a lot about these days, are all included
in what I mean by ‘calculations’. For some types of problem, a com-
puter designed according to what is called a ‘parallel architecture’
may be much more efficient or much faster than an ordinary serial
computer, but there is no difference between the two in principle.
Likewise, systems like neural networks — referred to as ‘bottom-up’
systems — which improve upon their performance by a ‘learning’ pro-
cess aimed at optimising the quality of their output, are also calcula-
tional. A bottom-up action contrasts with the standard ‘top-down’
calculational procedures in that the latter operate according to an
algerithm that is known to work correctly for the class of problem
thatitis concerned with, whereas with bottom-up action no such algo-
rithm is given beforehand and, instead, a means is initially provided
whereby the system is to improve its performance as it gains experi-
ence. This is still a calculational procedure (and therefore still an
‘algorithm’), however, because the very means whereby the system is
to improve its performance is itself given by a set of calculational
rules. From the point of view of the present discussion, the essential
difference between a hottom-up and a top-down system is that the
former is only an approximate means of obtaining the required
answers even though it may sometimes be a very effective one.

A simple test for deciding whether a system is calculational is to
ask: can it be run on an ordinary computer? If it can be then the
system is indeed a calculational one. In fact, as far as I am aware,
most of the (artificial) neural network systems that have been con-
structed to date are actually, as they stand, simulations run on ordin-
ary computers — so that there is no question but that they must be
calculational! (Perhaps it is intended eventually to construct some
special electronic hardware, on which the neural network system
would be run much more efficiently, but that makes no difference to
the fact that such systems are always caleulational in nature.)

I now wish to present an argument that effectively demonstrates
that mathematical understanding is not a calculational activity. The
argument is based on a form of the famous theorem of Kurt Gédel,
that he proved in 1930, but where I also call upon some later ideas
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introduced mainly by Alan Turing in about 1935. I shall not need any
of the technical details of Gbdel's argument, and although the argu-
ment may be found to be somewhat confusing, it does not use any
difficult mathematics.

The type of calculation that we shall be concerned with will be an
operation that can be performed on a natural number. The action of
some calculation C on a natural number 7 is written C(r). We may
think of C as being given by a computer program, where after feeding
the program into our computer, we then supply the computer with the
number #, which the computer operates on to produce the answer.
(Technically, C may be thought of as a Turing machine, and C(n) is
the action of that Turing machine on the natural number n.) I shall
not be very concerned here with the actual result of the calculation,
but mainly whether or not it ever eventually stops.

Let us consider some examples. One possible calculation would be
to form the square r? of the natural number n. This particular calcula-
tion encounters no problem about eventually stopping, since the
square of any given natural number can certainly be formed in a finite
time. (Recall that there is to be no limit on the computer's storage
space.) More subtle is the following example of a calculation, which
depends on the given natural number 7.

Findthe smallest natural numberthat is notthe sum
of n squares.

Our caleulation would proceed, trying the natural numbers in turn:
0,1,23,4,5,...; untlit finds one that is not the sum of n squares.
To get the idea, let us first see how this works for n=2. We start with
0, and find that 0 is indeed the sum of two squares, namely 0=0%+02,
Wemust move on to 1, and find that although 02402 doesn’t work, we
do find that indeed 1=02+12. Thus, we must move on to 2, finding
that although 0°+0?, or 0>+ 12, or 02+ 2% do not work, we indeed have
2=1%+1% Moving on to 3, we find that none of 02402, 0%+1?, 0?+22,
0243% 12+1% 12427, 14 3%, 22+22, 22+ 32, or 3+ 32, will work (cutting
the calculation off when the number to be squared reaches the
number to be summed to — though we could be more efficient, cuting
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things off earlier). Thus we find 3 as the smallest number that is not
the sum of two squares. We could now try this all over again with n=
3, finding, in this case, that the number 7 is the smallest that is not the
sum of three squares. We can also go back and test the case n=1,
finding that 2 is the smallest number not the sum of one square (and
examining the logic involved in the case n=0, we find that 1 is the
smallest number not the sum of zero squares).
Now let us consider n=4. Our calculation proceeds, finding

0=0%+0%+0%+0%, 1=02+07+07+1%, 2=02+02+1%+13, ...
6=07+12+1%+22, 7=12+12+1%+2%, 8=0°+0%2+2%+27%, .
23=12+2243%2+3% 24=0%+22+2%2+42, ..,
71=22+32+3%+7%,

and so on.

It seems never to stop at all! In fact it never does stop. According to
a farmous theorem first proved in the eighteenth century by the great
French mathematician Joseph L. Lagrange, every number is, indeed,
the sum of four squares. It is not such an easy theorem. Even Lag-
range’s contemporary, the great Swiss mathematician Leonhard
Euler, a man of astounding mathematical insight, originality and pro-
ductiveness, had tried but failed to find a proof, so I am certainly not
going to trouble the reader with the details of Lagrange’s argument
here.

Instead, let us try a calculation that is very much easier to see never
to stop.

Find the smallest odd number that is the sum of n
even numbers.

The poor computer that is set mindlessly upon this task will certainly
never complete its work, no matter what n is — because even numbers
always add to even numbers.

I have given some examples of calculations, some of which will
eventually terminate to produce an answer and some of which con-
tinue for ever. How are we to decide which of these two possibilities
will occur in any particular case? When a calculation does not ever
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stop, by what means can we ascertain this fact? We have seen that
this may be hard, as was the case with Lagrange’s theorem, but some-
timesitis easy, asin the last example. Are mathematicians themselves
using some calculational procedure in order to ascertain that non-
stopping calculations actually do not stop?

Let us imagine that they do use such a procedure, and, moreover,
they are aware of the nature of this procedure and of the fact that
the procedure that they use is sound — that is to say, that it does not
erroneously come to the conclusion that a calculation does not stop
when in fact it does. It will not be necessary to assume that this pro-
cedure can, in every case, ascertain that a non-stopping calculation
does not in fact stop.

Letus call our putative procedure A. Then when A is presented with
a calculation C and with the number » on which C acts, it will be set
into action. If the calculation A itself successfully comes to a halt, then
itwill have decided that C(n) does notin fact terminate. (Note that Ais
not a procedure for deciding that calculations do terminate. We might
have some other procedure B for that kind of decision. If we want to
incorporate B into A, we can do so by employing the device of putting
A into a 'loop’ whenever B successfully comes to its conclusion, thus
making sure that the ‘A’ used in the argument will actually not termin-
ate when the calculation does. This is just a technical point. [ mention
it only because sometimes people are disturbed if A ignores argu-
ments that show that a calculation will stop.)

In order to be a little clearer about how a calculation (A) can act on
another calculation (C), let us specify the various calculations C by
giving each one a separate number. Thus the different calculations
will be '

CnCi GG, GG, -

where we can think of this ordering as being provided by the numer-
ical ordering of the computer programs that specify these calculations
in turn. Technically, C, cquld be the ‘P* Turing machine’ in some
standard system of numbering. We can now think of A as a calcula-
tion acting on the two numbers r and n, and conclude
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If Afr,n) stops, then C,(n) does not stop

The calculation A is still not quite of the form of the other calcula-
tions that we have been considering since it acts on twoe natural num-
bers, not one. Let us remedy this by considering only the cases for
which r=n. (This perhaps seems an odd thing to do, butitis the crucial
step m Godel's and Turing’s argument, itself taken from the famous
‘diagonal slash’ of the highly original nineteenth-century mathemat-
ician Georg Cantor.) We obtain

If A(n,n) stops, then C,(n) does not stop

Now, A(n,n) is of the form of the calculations that we have been con-
sidering, so it must be one of them, say the k™ one, and we have

Aln,n) = Cyln)

and therefore, putting this in the displayed statement above
If Cufn) stops, then C,(n) does not stop

Taking the particular case n=F%, we obtain

If C,(k) stops, then Ci(k) does not stop

From this we deduce that Ci(£) certainly will not stop (because if it
did, then it doesn't!).

The remarkable thing, here, is that although we have ourselves just
seen that C;(k) does not stop, the calculation A is incapable of ascer-
taining this fact. For A{k.k) is the same as C,(k), so if the latter does
not stop, the former cannot stop either. Thus, A cannot successfully
come to the conclusion that C.(k) does not stop! Since we have actually
just established that C,(%) does not stop, it follows that the mathemat-
ical procedures that we use in order to establish that calculations do
not stop are not accessible to the calculational procedure A. We note
this would apply whatever A is, provided that we know what A is, and
we know A to be sound. The inescapable conclusion seems to be:

130

Mathematical intelligence

Mathematicians are not using a knowably sound
calculational procedure in order to ascertain
mathematical truth

We deduce that mathematical understanding — the means whereby
mathematicians arrive at their conclusions with respect to mathemat-
ical truth ~ cannot be reduced to blind calculation!

DISCUSSION OF THE IMPLICATIONS OF THE
GODEL ARGUMENT

I should address some of the possible loopholes and objections that
various people have made to arguments of the type that I have just
given.

A common reaction to the Gédel argument is simply not to take
it seriously, for "how could an argument of that kind possibly have
anything to say about the mind?’ But although this may be a natural
reaction, it is no answer to the argument. If one believes that the con-
clusion is wrong, then one must find a flaw in the argument.

A worry that people often have is that T have given the argument
in terms of a single A, whereas there might be a whole host of calcula-
tional procedures that mathematicians use. However, thisisnot a real
objection. There is no difficulty about combining together many dif-
ferent such procedures (even an infinite number of them) into a single
‘A’, provided that itis a calculational matter to decide which proced-
ure to use. It is only for convenience that I have phrased things as I
have, and there is no loss of generality involved.

One common objection is to point out that the Gédel(-Turing) argu-
ment s itself something that one could envisage putting on a com-
puter. There is nothing non-computable about generating all the
steps of the argument as I have given them and, if we wish, we could
include some version of the Gédel argument into our rules for decid-
ing that calculations will not stop. But if we simply adjoin this new
argument to the ‘A’ that we had before, we are really cheating,
because that ‘A’ was already supposed to represent the totality of the
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means that are available to mathematicians for ascertaining that cal-
culations do not stop. If we accept the Godel argument as a new
means for ascertaining that certain calculations do not stop, then our

previous ‘A’ did not represent that totality. Instead, we should be -

using some new ‘A’, say A*, that includes this version of the Godel
argument. Butif A* is supposed to represent that totality then we can
apply our argument instead to A*, and again we obtain a contradic-
tion. The point is that we cannot put the entire idea of the Gdel argu-
ment into caleulational form even though we can incorporate certain
instances of it into a calculation.

There is a closely related objection that people sometimes try to
make against the version of the Godel argument that I have given.
The claim is sometimes made that the argument applies only to the
one particular A that has been singled out, and that it is not a general
objection against all As. This is a misconception about how the argu-
ment is being used, however. The argument has the form, familiar to
mathematicians, of a reductio ad absurdum, whereby a hypothesis is
put forward (here that there is some knowably sound calculational
procedure that we use — and that we are calling it A) from which a
contradiction is obtained, thereby showing that the hypothesis was
false. The argument indeed rules out all such As, not just a particular
one.

The Godel argument is more often phrased in terms of some axiom
system F, and in terms of the provability of mathematical results from
F. Godel's most familiar theorem shows that provided F is (and is
believed to be) consistent — so it cannot be used to prove that a state-
ment is true and false at the same time ~ then there are mathematical
propositions that are (and are seen to be) true but which cannot be
derived from F. The argument is often made that we cannot actually
see that these propositions are true unless we can show that the
axioms are consistent. I have not phrased my own argument in this
way, but have referred to the soundness of the procedure A. If we
trust A not to make mistakes, then we see, by the Gédel argument
that A cannot represent the totality of our mathematical insights,
whatever A might be. Likewise, if we trust F — and this implies that
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we believe F to be consistent, for otherwise we could use it to prove a
nonsense like 1=2 —then we see that F does not represent the totality
of our mathematical insights. If we do not trust F (or A) then it cer-
tainly cannot represent our insights!

Another objection I have seen made is that we cannot be sure that
the numbers that we are talking about are actually the natursl num-
bers0,1,2,3,4,5,. . ., but they might be some funny kind of ‘surreal’
numbers, where some of the things that would be true for the natural
numbers turn out to be false for the surreal numbers. Although I
cannot really take this argument seriously — because the numbers that
we are talking about are the natural numbers, and not anything else —
this objection contains, in a sense, the ‘nub’ of the mystery. How do
we know that it is the natural numbers that we are indeed talking
about? We cannot, merely by specifying a finite system of axioms or
rules, completely distinguish the natural numbers from all the various
kinds of ‘surreal’ numbers. Yet every child knows what the things 0,
1,2, 3,4, 5, ... mean, despite this fact. Sommehow we have a direct
intuition which tells us what the ‘natural number’ concept is, given
only very inadequate hints in terms of ‘two bananas, five oranges,
zero socks’ and so on.

Let us then accept the apparently inescapable implication of the
Godel(-Turing) argument: mathematicians do not simply ascertain
mathematical truth by means of knowably sound caleulational pro-
cedures. There remain the possibilities that they might use unknow-
able or unsound calculational procedures ~ or, as is my own belief,
that they simply do not just use calculational procedures when they
ascertain truth. With regard to the calculational possibilities, I should
point out that mathematicians certainly don't think that they are
using unknowable or unsound procedures in order to ascertain math-
ematical truth! They are of the opinion that they are perfectly aware
of what they are doing when they use whatever methods they use and,
moreover, that these methods are perfectly sound. It is undoubtedly
true that mathematicians make mistakes from time to time, but these
mistakes are recognisable as such. Another mathematician might
point out the mistake, or the very mathematician who made the mis-

133




ROGER PENROSE

take might notice it later. It is not that there are inbuilt errors that
mathematicians are completely incapable of seeing as errors. Con-
sciously, the methods that mathematicians use are neither unknow-
able nor unsound. If they are indeed using a horrendously complic-
ated unknowable calculational procedure X, or an unsound
calculational procedure Y, then these things would have to be com-
pletely unconscious.

Is it plausible that they are actually using such an X or Y without
knowing it? One point should be emphasised here, and that is the
apparently universal nature of the criteria that mathematicians use to
establish the truth of their results. Suppose that each mathematician
used a different X or Y, personal to that particular mathematician,
then they would not be able to convince one another of their argu-
ments. We require a universal X or Y that would have to be built into
their brains in a way that would be common to all. How could such an
X or Y have arisen? It would have to have been by means of the
powerful processes of natural selection that Darwin himself revealed
to us. But anyone who has glanced at any respectable modern math-
ematics research journal will realise how far-removed from the activ-
ities of the outside world are the deliberations of mathematicians. If
it were the horrendously complicated unknowable X, or the complic-
atedly erroneous Y, that somehow gotimplanted in our brains, via our
genes, it is very hard to see how this could have been by the process
of natural selection, a process geared to promote the survival of our
primitive remote ancestors. Much more likely is that there is no such
X or Y but, instead, it is a non-calculational quality — the ability to
understand — that natural selection has favoured. This quality is in no
way specific to mathematics, but would have been immensely valu-
able to our ancestors in many different ways, providing a powerful
selective advantage. Only incidentally does it turn out that this same
quality is what is needed for mathematics.
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WHAT UNDERLIES NON-COMPUTATIONAL
BRAIN ACTION?

If we accept that we do something beyond computation when we
understand, how can this be reconciled with the view that our brains
are just physical objects governed by precise physical laws? One way
out might be to adopt a mystical viewpoint according to which the
behaviour of the mind could not be accounted for simply in terms of
the physical brain. Apparently Godel himself felt driven to this kind
of solution.

For myself, I reject mysticism in favour of a scientific explanation.
There are various possibilities to consider. For example. perhaps we
use a calculational procedure that is continually improving itself. If
$0, then, we must ask, how is this improvement coming about. If the
improvement is itself governed by some preassigned mechanism,
then, as was the case with a neural network, it is still calculational.
Might the improvements come about via some continual interaction
with the environment? But if this is to give us something beyond calcu-
lation, it would imply that there is an essential feature of our environ-
ment that cannot even be simulated computationally. Of course, it
may not be feasible to simulate the particular environment of a spe-
cificindividual, but to suggest thatitis in principle impossible to simu-
late any appropriate plausible environment is to suggest that there is
something essential in the physical action of the world that lies
beyond calculation. Once that possibility is accepted, then the pos-
sibility that our very brains might act according to some non-
calculational action must also be allowed.

What about random ingredients? Would they count as ‘non-
caleulational'? In the sense that a strict Turing machine does not allow
for such ingredients, their inclusion would, indeed, take us out of cal-
culational activity. However, in practice, purely random ingredients
would add nothing useful to pure calculation. In fact, there are many
calculational procedures that call for the inclusion of random ingredi-
ents, but these are usually implemented in practice by incorporating
what are called ‘pseudo-random numbers’, these being numbers that
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are generated by some suitably complicated process that gives them
the appearance of randomness even though they are not strictly
random. For practical purposes randomness gives us nothing useful
that cannot be achieved purely calculationally. (Closely related is the
behaviour of what are called ‘chaotic systems’ which have the appear-
ance of randomness even though they are entirely calculational.)

Finally, there is the possibility that, in appropriate circumstances,
the actual behaviour of physical systems might be essentially non-
calculational, a conscious brain being one example. My personal
belief is that this is indeed the case, but there are several speculative
elements that are involved in such a belief. First, one must ask where
in physics non-calculational action might be found. I believe that such
action must bein an area where present-day physics is in need of rad-
ical improvement —whatis referred to as ‘the measurement problem’
in quantum theory. Roughly speaking, such an improved theory
would supply a more satisfactory link between the micro-level of
atoms and molecules (the ‘quantum level’) and the macro-level of dis-
cernable phenomena (the ‘classical level’). I believe that brain action
will never be properly understood without such a theory. At least
something of this nature will be needed in order to explain the
non-calculational aspects of mathematical and other kinds of
understanding.
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Intelligence in Traditional Music

SIMHA AROM

Tradition might be seen as the process of transmission, within a com-
munity that identifies itself as such, of a specific knowledge and of
relatively stable forms of behaviour. These define ‘symbolic commu-
nities’ which, as the French anthropologist Jean Molino puts it, are
‘groups of individuals sharing some relatively stable features of lan-
guage and culture, i.e., relatively stable features of their symbolic
organisation systems’.

Traditional musicis a symbolic production which, like language for
a given community, is transmitted from mouth to ear, from genera-
tlon to generation, and represents a major constituent of the group’s
cultural identity. Almost all traditional musics share this character:
they are transmitted orally. Memory thus plays an essential role. Even
in societies which have systems of notation, such as China, India,
Tibet, and others, writing only fulfils a mnemotechnic role, as a
memory support. It never assumes a prescriptive function. Since
orally transmitted musics are not fixed once and for all in writing,
there obviously is large scope for improvisation and variations.

Traditional music can either be art music (the French call it musique
savante), or popular music. As art music, it may be the subject of
abstract speculation, of deductions based on acoustic rules, of a con-

stituted body of codes — sometimes written. In such cases, one can
properly speak of a theory, since it is presented in explicit form. Such
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