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1
The roots of science

1.1 The quest for the forces that shape the world

WHAT laws govern our universe? How shall we know them? How
may this knowledge help us to comprehend the world and hence guide
its actions to our advantage?

Since the dawn of humanity, people have been deeply concerned by
questions like these. At first, they had tried to make sense of those
influences that do control the world by referring to the kind of understand-
ing that was available from their own lives. They had imagined that
whatever or whoever it was that controlled their surroundings would do
s0 as they would themselves strive to control things: originally they had
considered their destiny to be under the influence of beings acting very
much in accordance with their own various familiar human drives. Such
driving forces might be pride, love, ambition, anger, fear, revenge, passion,
retribution, loyalty, or artistry. Accordingly, the course of natural
eventé—such as sunshine, rain, storms, famine, illness, or pestilence—
was to be understood in terms of the whims of gods or goddesses motiv-
ated by such human urges. And the only action perceived as influencing
these events would be appeasement of the god-figures.

But gradually patterns of a different kind began to establish their reli-
ability, The precision of the Sun’s motion through the sky and its clear
relation to the alternation of day with night provided the most obvious
example; but also the Sun’s positioning in relation to the heavenly orb of
stars was seen to be closely associated with the change and relentless
regularity of the seasons, and with the attendant clear-cut influence on
the weather, and consequently on vegetation and animal behaviour. The
motion of the Moo, also, appeared to be tightly controlled, and its phases
determinéd by its geometrical relation to the Sun. At those locations on
Earth where open oceans meet land, the tides were noticed to have a
regularity closely governed by the position (and phase) of the Moon.
Eventually, even the much more complicated apparent motions of the
Planets began to yield up their secrets, revealing an immense underlying
precision and regularity. If the heavens were indeed controlled by the
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- CHAPTER 1

whims of gods, then these gods themselves seemed under the spell of exact
mathematical laws.

Likewise, the laws controlling earthly phenomena——such as the daily
and yearly changes in temperature, the ebb and flow of the oceans, and the
growth of plants—being seen to be influenced by the heavens in this
respect at least, shared the mathematical regularity that appeared to
guide the gods. But this kind of relationship between heavenly bodies
and earthly behaviour would sometimes be exaggerated or misunderstood
and would assume an inappropriate importance, leading to the occult and
mystical connotations of astrology. It took many centuries before the
rigour of scientific understanding enabled the true influences of the
heavens to be disentangled from purely suppositional and mystical ones.
Yet it had been clear from the earliest times that such influences did indeed
exist and that, accordingly, the mathematical laws of the heavens must
have relevance also here on Earth.

Seemingly independently of this, there were perceived to be other regu-
larities in the behaviour of earthly objects. One of these was the tendency
for all things in one vicinity to move in the same downward direction,
according to the influence that we now call gravity. Matter was observed
to transform, sometimes, from one form into another, such as with the
melting of ice or the dissolving of salt, but the total quantity of that matter
appeared never to change, which reflects the law that we now refer to as
conservation of mass. In addition, it was noticed that there are many
material bodies with the important property that they retain their shapes,
whence the idea of rigid spatial motion arose; and it became possible to
understand spatial relationships in terms of a precise, well-defined geom-
etry—the 3-dimensional geometry that we now call Euclidean. Moreover,
the notion of a ‘straight line’ in this geometry turned out to be the same as
that provided by rays of light (or lines of sight). There was a remarkable
precision and beauty to these ideas, which held a considerable fascination
for the ancients, just as it does for us today.

Yet, with regard to our everyday lives, the implications of this math-
ematical precision for the actions of the world often appeared unexciting
and limited, despite the fact that the mathematics itself seemed to Tepre-
sent a deep truth. Accordingly, many people in ancient times would allow
their imaginations to be carried away by their fascination with the subject
and to take them far beyond the scope of what was appropriate. In
astrology, for example, geometrical figures also often engendered mystical

and occult connotations, such as with the supposed magical powers of
pentagrams and heptagrams. And there was an entirely suppositional
attempted association between Platonic solids and the basic elementary
states of matter (see Fig. 1.1). It would not be for many centuries that the
deeper understanding that we presently have, concerning the actual
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P;Etoln jlc 53' (ti'anmgul assoclat‘lon, made by the ancient Greeks, between the fiv

a0 ids and the four ‘clements’ (fire, air, water, and earth), togeth i
e heavenly firmament represented by the dodccahedr’on +together wiih

relationships between mass i
_ , gravity, geom i
behaviour of light, could come abgutg. ey, planetary motion, and the

1.2  Mathematical truth

;lr"ll;e IE;:L I?te:ps tgwards an under':;tanding of the real influences controll-
ne Matu Etrft?;n;d.a cthsenta(tinghng of the true from the purely suppos
. cients needed to achieve so i .
o _ 1 ‘ mething else first, befi
N;:(ux::lgcllhl;i 1tr}11 :n;lfl p(;)ixtlgn tffl) do this reliably for their understand?;gogi:'
. y had to do first was to discover how to di
ac . isenta
:glltianf;c:vn}ml ;?;eilzpp.osmonal hm mathematics. A procedure was requ?rgel; }'lc.l)?
given mathematical assertion i i
true. Until that preliminary i i remoonable vy thens
' ry 1ssue could be settled in a reasonable w
z\;c;u:;:lnll)_e htt'Ele hope of seriously addressing those more difficult pi)glfll;frz:
cone re]iﬁ, n(;l;;:fz l::lat contrc;}ll the behaviour of the world and whatever
i e to mathematical truth. This realizati
to the understanding of Natur ithi assallable ot e
¢ lay within an unassai i
pe;l&a}lis the first major breakthrough in science. sallable mathematics wes
sincet ;)l;.lc%gntmaEther?;tmal Eiruths of various kinds had been surmised
gyptian and Babylonian times, it w i
. , as not
great Greek philosophers Thales of Miletus (c.625-547 g?:;ll atrl;lg
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572-497 BC) began to introduce :
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all of their detailed conclusions have been lost. Nonetheless, 50
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E:rCr)loles’—Jon at least one occasion, ?i?lthl‘)o; }?;;:i-l;:;i on the progress of
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hum?ﬂ_t was possible to make significant assertions of an t?l sallab®
Pfct>0 ;: 1so that they would hold just as true even tod;;;has atorlg e .
thoy W knowledge of the w ]
ade, no matter how our _ > pre
et ;t’le;fnéz then. The truly timeless nature of mathematics was beginning
gress . !
o it & i f7 A proof, in mathematics, 15 an
is a mathematical proof? A prooi, ' &
' - “g;:tai'sgument using only the methods of pure loglc.al {e::soeﬁiogr;
\u;;ll:i)stolc:nables one to infer the validity of a given mathematica

to be self-evident. Once suchdalt matheg:eorem
i in this way, it is referred to as a . i were

115111\22;11 f)flthe tﬁzaorems that the Pythaf_gorear.ls were con;:er;;% :;ns e
eomet¥i0a1 in nature; others were assertions simply about n .

g ;

Pythagoras!” of 8
mathematical proof
understanding—and therefore o.

are gathered at the ends of the chapter

*Notes, indicated in the text by superscript numbers,
(in this case on p. 23).
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that were concerned merely with numbers have a perfectly unambiguous
validity today, just as they did in the time of Pythagoras. What about the
geometrical theorems that the Pythagoreans had obtained using their
procedures of mathematical proof? They too have a clear validity today,
but now there is a complicating issue. It is an issue whose nature is more
obvious to us from our modern vantage point than it was at that time of
Pythagoras. The ancients knew of only one kind of geometry, namely that
which we now refer to as Euclidean geometry, but now we know of many
other types. Thus, in considering the geometrical theorems of ancient
Greek times, it becomes important to specify that the notion of geometry
being referred to is indeed Euclid’s geometry. (I shall be more explicit
about these issues in §2.4, where an important example of non-Euclidean
geometry will be given.)

Euclidean geometry is a specific mathematical structure, with its own
specific axioms (including some less assured assertions referred to as postu-
lates), which provided an excellent approximation to a particular aspect of
the physical world. That was the aspect of reality, well familiar to the ancient
Greeks, which referred to the laws governing th

€ geometry of rigid objects
and their relations to other rigid objects, as they are moved around in 3-

dimensional space. Certain of these properties were so familiar and self-
consistent that they tended to become regarded as ‘self-evident’ mathemat-
ical truths and were taken as axioms (or postulates). As we shall be seeing in
Chapters 17-19 and §§27.8,1 1, Einstein’s general relativity—and even the
Minkowskian spacetime of special relativity —provide geometries for
the physical universe that are different from, and yet more accurate than,
the geometry of Euclid, despite the fact that the Euclidean geometry of the
ancients was already extraordinarily accurate. Thus, we must be careful,
when considering geometrical assertions, whether to trust the ‘axioms’ as
being, in any sense, actually trye.

But what does ‘true’ mean, in this context? The difficulty was well
appreciated by the great ancient Greek philosopher Plato, who lived in
Athens from ¢.429 to 347 Bc, about a century and a half after Pythagoras.
Plato made it clear that the mathematical propositions—the things that
could be regarded as unassailably true—referred not to actual physical
objects (like the approximate squares, triangles, circles, spheres, and cubes
that might be constructed from marks in the sand, or from wood or stone)
but to certain idealized entities. He envisaged that these ideal entities
inhabited a different world, distinct from the physical world. Today, we
might refer to this world as the Platonic world of mathematical forms.
Physical structures, such as squares, circles, or triangles cut from papyrus,
or marked on a flat surface, or perhaps cubes, tetrahedra, or spheres
carved from marble, might conform to these ideals very closely, but only
approximately. The actual mathematical squares, cubes, circles, spheres,
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triangles, etc., would not be part of the‘ physical wfc‘nf"ld, but would be
inhabitants of Plato’s idealized mathematical world of forms.

1.3 Is Plato’s mathematical world ‘real’?

o . be a
i i i time, and it has turned out to
s an extraordinary idea for its e, .
T:rls Wfl)werful one. But does the Platonic mathe.:maucgl wor1.<11 actlﬁilrlsy
zxigt pin any meaningful sense? Many people., mcludmgdphtl os:rgl O}
mi h’t regard such a ‘world’ as a complete ﬁct1lon—-—a produc _mdee 3{ o
ou% unrestrained imaginations. Yet the Platonic v1e.w1_30mt_ 'Lstlklll od an
immensely valuable one. It tells us to be careful to distinguis eg coise
mathematical entities from the approxin%atlons.that we geﬁ ?}I;OILI;ue :in
the world of physical things. Moreover, it prodvades us .w1t scfentistfwiu
i i ever simnce.
ing to which modern science has proceede .
;iiotl:gll'l\i'gard models of the world—or, rather, of certain ljtspec:ttsio(:‘lf 331::1
be tested against previous observa
world—and these models may _ : bservation an
i d experiment. The m:
nst the results of carefully des1gne . mod ¢
Zggned to be appropriate if they survive such rigorous ex%rl?m‘a:.ntl;;lr;r; )
iti i istent structures. The 1
if. in addition, they are internally consis : ; _ q
1f::)ilnnt Filbo,ut these models, for our present discussion, 18 that'E thec\;/f ?11;2
gasicﬁlﬁ/ purely abstract mathematical m'odels. _The very qui; 1ct)1:e f the
internal consistency of a scientific model, in pa.rtlcular, 1_s.0nv£:d aandoé e
that the model be precisely specified. The requl.red precision T}m ds that
the model be a mathematical one, for otherwise one cannot be su
uestions have well-defined answers. n ’ _
theli'etge model itself is to be assigned any lém? of tﬁx1staet1i1§§1,f1(:)};;rllsﬂgi
i ithi ic world of mathem .
istence is located within the Platonllc wor )
Zzli?e] one might take a contrary v1ewpq1nt: na‘mely that tl;le rx)ll::)df; kl:
itself tZ) have existence only within our various nizmis,trat.ltlhe; ;S 20mething
i bsolute and ‘real’. Yet, ther ;
Plato’s world to be in any sense ab : e e &
i i i rding mathematical struc _ :
important to be gained in regardin, : e o oot
i i dividual minds are notoriously 1mpreci
reality of their own. For our ndivid A i,
i i i in their judgements. The prec )
unreliable, and inconsistent in t ents o, e
i ired by our scientific theories
and consistency that are required b Jemand som®-
i individual (untrustworthy) minds. in
thing beyond any one of our in I
i bustness than can be lo
ematics, we find a far greater robu i cated n o
icul i i t to something outside .
articular mind. Does this not pomnt 1o som de ¢
{)vith a reality that lies beyond what each 1r;d1v1d1iljal cai ;c?ﬁ::et'he .
i i the alternative vi
Nevertheless, one might still take _ e e of
i i dent existence, and consis
ematical world has no indepen nt ; mersly o
in i i tilled from our various
in ideas which have been dis <
(\fﬁgh have been found to be totally trustworthy and are agreed by a
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Yet even this viewpoint seems to leave us far short of what is required. Do
we mean ‘agreed by all’, for example, or ‘agreed by those who are in their
right minds’, or ‘agreed by all those who have a Ph.D. in mathematics’
(not much use in Plato’s day) and who have a right to venture an ‘authori-
tative’ opinion? There seems to be a danger of circularity here: for to Judge
whether or not someone is ‘in his or her right mind’ requires some external
standard. So also does the meaning of ‘authoritative’, unless some stand-
ard of an unscientific nature such as ‘majority opinion’ were to be adopted
(and it should be made clear that majority opinion, no matter how
important it may be for democratic government, should in no way be
used as the criterion for scientific acceptability). Mathematics itself indeed
seems to have a robustness that goes far beyond what any individual
mathematician is capable of perceiving. Those who work in this subject,
whether they are actively engaged in mathematical research or just using
results that have been obtained by others, usually feel that they are merely
explorers in a world that lies far beyond themseclves—a world which
possesses an objectivity that transcends mere opinion, be that opinion
their own or the surmise of others, no matter how expert those others
might be,
It may be helpful if I put the case for the actual existence of the Platonic
world in a different form. What I mean by this ‘existence’ is really just the
objectivity of mathematical truth. Platonic existence, as I see it, refers to
the existence of an objective external standard that is not dependent upon
our individual opinions nor upon our particular cuiture, Such ‘existence’
could also refer to things other than mathematics, such as to morality or
aesthetics (cf. §1.5), but I am here concerned just with mathematical
objectivity, which seems to be a much clearer issue.
Let me illustrate this issue by considering one famous example of a
mathematical truth, and relate it to the question of ‘objectivity’, In 1637,
Pierre de Fermat made his famous assertion now known as ‘Fermat’s Last
Theorem’ (that no positive nth power® of an integer, ie. of a whole
number, can be the sum of two other positive nth powers if n is an integer
greater than 2), which he wrote down in the margin of his copy of the
Arithmetica, a book written by the 3rd-century Greek mathematician
Diophantos. In this margin, Fermat also noted: ‘I have discovered a
truly marvellous proof of this, which this margin is too narrow to contain.’
Fermat’s mathematical assertion remained unconfirmed for over 350
years, despite concerted efforts by numerous outstanding mathematicians.
A proof was finally published in 1995 by Andrew Wiles (depending on the
carlier work of various other mathematicians), and this proof has now
been accepted as a valid argument by the mathematical community.,
Now, do we take the view that Fermat’s assertion was always true, long
before Fermat actually made it, or is its validity a purely cultural matter,
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61.3 CHAPTER 1

dependent upon whatever might be the subjective standards of the com-
munity of human mathematicians? Let us try to suppose that the validity
of the Fermat assertion is in fact a subjective matter. Then it would not be
an absurdity for some other mathematician X to have come up with an
actual and specific counter-example to the Fermat assertion, so long as X
had done this before the date of 19954 In such a circumstance, the
mathematical community would have to accept the correctness of X’s
counter-example. From then on, any effort on the part of Wiles to prove
the Fermat assertion would have to be fruitless, for the reason that X had
got his argument in first and, as a result, the Fermat assertion would now
be false! Moreover, we could ask the further question as to whether,
consequent upon the correctness of X’s forthcoming counter-example,
Fermat himself would necessarily have been mistaken in believing in the
soundness of his ‘truly marvellous proof’, at the time that he wrote his
marginal note. On the subjective view of mathematical truth, it could
possibly have been the case that Fermat had a valid proof (which would
have been accepted as such by his peers at the time, had he revealed it) and
that it was Fermat’s secretiveness that allowed the possibility of X later
obtaining a counter-example! I think that virtually all mathematicians,
irrespective of their professed attitudes to ‘Platonism’, would regard such
possibilities as patently absurd.

Of course, it might still be the case that Wiles’s argument m fact
contains an error and that the Fermat assertion is indeed false. Or there
could be a fundamental error in Wiles’s argument but the Fermat assertion
is true nevertheless. Or it might be that Wiles’s argument is correct in its
essentials while containing ‘non-rigorous steps’ that would not be up to the
standard of some future rules of mathematical acceptability. But these
issues do not address the point that T am getting at here. The issue is the
objectivity of the Fermat assertion itself, not whether anyone’s particular
demonstration of it (or of its negation) might happen to be convincing to
the mathematical community of any particular time.

Tt should perhaps be mentioned that, from the point of view of math-
ematical logic, the Fermat assertion is actually a mathematical statement
of a particularly simple kind,> whose objectivity is especially apparent.
Only a tiny minority® of mathematicians would regard the truth of such
assertions as being in any way ‘subjective’-—although there might be some
subjectivity about the types of argument that would be regarded as being
convincing. However, there are other kinds of mathematical assertion

whose truth could plausibly be regarded as being a ‘matter of opinion’.
Perhaps the best known of such assertions is the axiom of choice. It is not
important for us, now, to kxnow what the axiom of choice is. (I shall
describe it in §16.3.) 1t is cited here only as an example. Most mathemat-
icians would probably regard the axiom of choice as ‘obviously true’, while
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g\trl;;rs‘,b ;n?glsreeg(arcii itI as a somewhat questionable assertion which might
and I am myself inclined, to some ext i
second viewpoint). Still others w ’ ' o rortion whoss
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its negation does, in the sense th: interprett Platonic
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(although it could contain asserti oh and-smeh Tolows
ssertions of the form ‘such-and
from the axiom of choice’ or * i oo socotdine
or ‘the axiom of choice is a theo i
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¢ that are objectively true. Indeed, 1 would ical
objectivity as really what mathe i i e ma ematal
matical Platonism is all about. T
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Fig. 1.2 (a) The Mandelbrot set. (b), (€), and_ (d)_Some details,.i;lhllstbrat:::sg El?::;
ups. of those regions correspondingly marked in Fig. 1.2a, mazg&;' zee 1271 Otea N
linear factors 11.6, 168.9, and 1042 (and caps 300, 300, 200, 200; .

dinarily elaborate structure,
Mandelbrot set. The set has an extraoraina. .
%i:tllf is not of any human design. Remarkably, this structure 1s defined by

a mathematical rule of particular simplicity. We shall come to this expli-

citly in §4.5, but it would distract us from our present purposes if T were to
try to provide this rule in detail now.

p d 1'
1 t » 11

brot himself when he first caught sight of the incr

the fine details of the set, had any real preconception of the set’s extraor-

dinary richness. The Mandeibrot set was certainly no invention of any

human mind. The set is just objectively there in the mztl;zmzltici 1§;eelrfl. tka ;:
ing i i to the Mandelbrot set,

meaning to assign an actual existence .

1t;l:zis‘ste1:u:e is iot within our minds, for no one can fully comprehend the set's
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endless variety and unlimited complication. Nor can its existence lie within
the multitude of computer printouts that begin to capture some of its
incredible sophistication and detail, for at best those printouts capture
but a shadow of an approximation to the set itself. Yet it has a robustness
that is beyond any doubt; for the same structure is revealed—in all its
perceivable details, to greater and greater fineness the more closely it is
examined—independently of the mathematician or computer that examines
it. Its existence can only be within the Platonic world of mathematical
forms.

I am aware that there will still be many readers who find difficulty with
assigning any kind of actual existence to mathematical structures. Let me
make the request of such readers that they merely broaden their notion of
what the term ‘existence’ can mean to them. The mathematical forms of
Plato’s world clearly do not have the same kind of existence as do ordinary
physical objects such as tables and chairs. They do not have spatial
locations; nor do they exist in time. Objective mathematical notions
must be thought of as timeless entities and are not to be regarded as
being conjured into existence at the moment that they are first humanly
perceived. The particular swirls of the Mandelbrot set that are depicted
in Fig. 1.2¢c or 1.2d did not attain their existence at the moment that they
were first seen on a computer screen or printout. Nor did they come about
when the general idea behind the Mandelbrot set was first humanly put
forth—not actually first by Mandelbrot, as it happened, but by R. Brooks
and J. P. Matelski, in 1981, or perhaps earlier. For certainly neither
Brooks nor Matelski, nor initially even Mandelbrot himseif, had any
real conception of the elaborate detailed designs that we see in Fig. 1.2¢
and 1.2d. Those designs were already ‘in existence’ since the beginning of
time, in the potential timeless sense that they would necessarily be revealed
precisely in the form that we perceive them today, no matter at what time

or in what location some perceiving being might have chosen to.examine
them.

1.4 Three worlds and three deep mysteries

Thus, mathematical existence is different not only from physical existence
but also from an existence that is assigned by our mental perceptions. Yet
there is a deep and mysterious connection with each of those other two
forms of existence: the physical and the mental. In Fig. 1.3, T have
schematically indicated all of these three forms of existence—the physical,
the mental, and the Platonic mathematical—as entities belonging to three
separate ‘worlds’, drawn schematically as spheres. The mysterious connec-
tions between the worlds are also indicated, where in drawing the diagram
r——-/—'_"_
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Platonic
mathematical
world

Fig. 1.3 Three ‘worid_s’—
the Platonic mathematical,
the physical, and the
’ mental—and the three
teries in the |
Physicat  profound mys
w};rld connections between them.

1 have imposed upon the reader some of my beliefs, or prejudices, con-
ing these mysteries. . .
Cﬁlif:llflliy be notid with regard to the first of these mystﬁnesl—relatﬁni 1;1}11;
i i he physical world—that I am allo
Platonic mathematical world to t . : alowing
1d of mathematics need have re
that only a small part of the wor ; t relovance to
i i 1d. It is certainly the case tha
the workings of the physical wor he  that the vast
tivities of pure mathematicians y
e o thﬁ_ h i ith any other science (cf. §34.9),
ious connection with physics, nor with any i )
gl?::;ﬁgh we may be frequently surprised by unexpected ﬁmpgrte:lrllénatgﬁlt;
i ikewise, i i the second mystery, whereby i
cations. Likewise, in relation to . ; enta L
i iati i tain physical structures (i peci
comes about in association with cer et oty
brains), I am not insisting tha y
cally, healthy, wakeful human 1a : S
i induce mentality. While the brain
of physical structures need in il the o cat mey
i iti t requiring the same
indeed evoke mental qualities, I am no : \ r a xock.
i ' d it as self-evident that only
Finally, for the third mystery, I regar i ; asmal
i ivi d be concerned with absolute ma
fraction of our mental activity nec : projute mathemat
i i d with the multifarious irrita ,
ical truth! (More likely we are concerne . e ves Thems
i itements, and the like, that fill our daily ) Thes
pleasures, worTies, exc ents, e e
llness of the base of the co
three facts are represented in the sma 1 . . on 0
i taken in a clockwise sense in
each world with the next, the worlds being : _ isoin e
it 1§ 1 f each entire world wi
iagram. However, it is in the encompassing of each :
fLlllzgscopf: of its connection with the world preceding it that I am revealing
ejudices. . ‘ ' .
m):rlflflé] according to Fig. 1.3, the entire physical world is d.ep1c_;tc;1 ta;s:
being g:)verned according to mathematical laws. We shall_be seeing mfihjs
chapters that there is powerful (but incomplete) evu.ience in support .(])] s
contention. On this view, everything in the physical universe is 1
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governed in completely precise detail by mathematical principles—
perhaps by equations, such as those we shall be learning about in chapters
to follow, or perhaps by some future mathematical notions fundamen-
tally different from those which we would today label by the term ‘equa-
tions’. If this is right, then even our own physical actions would be entirely
subject to such ultimate mathematical control, where ‘control’ might still
allow for some random behaviour governed by strict probabilistic
principles.

Many people feel uncomfortable with contentions of this kind, and I
must confess to having some unease with jt myself. Nonetheless, my
personal prejudices are indeed to favour a viewpoint of this general nature,
since it is hard to see how any line can be drawn to separate physical
actions under mathematical control from those which might lie beyond it.
In my own view, the unease that many readers may share with me on this
issue partly arises from a very limited notion of what ‘mathematical
control’ might entail. Part of the purpose of this book is to touch upon,
and to reveal to the reader, some of the extraordinary richness, power, and
beauty that can spring forth once the right mathematical notions are hit
upon.

In the Mandelbrot set alone, as illustrated in Fig. 1.2, we can begin to
catch a glimpse of the scope and beauty inherent in such things. But even
these structures inhabit a very limited corner of mathematics as a whole,
where behaviour is governed by strict computational control. Beyond this
comer is an incredible potentia) richness. How do I really feel about the
possibility that all my actions, and those of my friends, are ultimately
governed by mathematical principles of this kind? I can live with that. I
would, indeed, prefer to have these actions controlled by something resid-
ing in some such aspect of Plato’s fabulous mathematical world than to
have them be subject to the kind of simplistic base motives, such as
Pleasure-seeking, personal greed, or aggressive violence, that many
would argue to be the implications of a strictly scientific standpoint,

Yet, I can well imagine that a good many readers will still have difficulty
in accepting that all actions in the universe could be entirely subject to
mathematical laws. Likewise, many might object to two other prejudices
of ming that are implicit in Fig. 1.3. They might feel, for example, that I
am taking too hard-boiled a scientific attitude by drawing my diagram in a
way that implies that all of mentality has its roots in physicality. This is
indeed a prejudice, for while it is true that we have no reasonable scientific
evidence for the existence of ‘minds’ that do not have a physical basis, we
cannot be completely sure. Moreover, many of a religious persuasion
would argue strongly for the possibility of physically independent minds
and might appeal to what they regard as powerful evidence of a different
kind from that which is revealed by ordinary science.
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A further prejudice of mine is reflected in tl_w fact that in Fig. 1.31 havle
represented the entire Platonic world to be w1th‘1n thfa compass of mental-
ity. This is intended to indicate that—at least in principle-—there are no
mathematical truths that are beyond the scope of reason. Of course, t.h.ere
are mathematical statements (even straightforward arithmetical addmori
sums) that are so vastly complicated that no one could have the menta
fortitude to carry out the necessary reasonmng. However, such thm%;
would be potentially within the scope of (human) r_nentahty and wou
be consistent with the meaning of Fig. 1.3 as I ha:ve intended to represent
it. One must, nevertheless, consider that there .mlght be other mathemat-
ical statements that lie outside even the potcl_ntlal compass of reason, and
these would violate the intention behind E‘lg. 1.3._ (This n}attfr will be
considered at greater length in §16.6, where its relation to Godel’s farrllous
incompleteness theorem will be discussed.)® N

In Fig. 1.4, as a concession to those who do not share? all my personh
prejudices on these matters, 1 have redrawn the conncctlzons b.etvw?en f ?
three worlds in order to allow for all three of these posmb-le violations o
my prejudices. Accordingly, the possibility of .physmal action beyo_nd the
scope of mathematical control is now taken into .account_. The diagram
also allows for the belief that there might be rr}entahty that is not rooteq in
physical structures. Finally, it permits the existence of true matl_lerpatlcal
assertions whose truth is in principle inaccess1blc_3 to reason and msllght.

This extended picture presents further potential mysteries t'hat lie ev;n
beyond those which I have allowed for ol my own preferrt::d picture of_ t g
world, as depicted in Fig. 1.3. In my opinion, the more tightly organize
scientific viewpoint of Fig. 1.3 has mysteries enough. These. mysteries are
not removed by passing to the more relaxed scheme of Fig. 1.4. For it

Platonic
mathematical

Fig. 1.4 A redrawing of
Fig. 1.3 in which violations
of three of the prejudices of
the author are allowed for.
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remains a deep puzzle why mathematical laws should apply to the world
with such phenomenal precision. (We shall be glimpsing something of the
extraordinary accuracy of the basic physical theories in §19.8, §26.7,
and §27.13.) Moreover, it is not just the precision but also the subtle
sophistication and mathematical beauty of these successful theories that
is profoundly mysterious. There is also an undoubted deep mystery in how
it can come to pass that appropriately organized physical material—and
here I refer specifically to living human (or animal) brains-—can somehow
conjure up the mental quality of conscious awareness. Finally, there is also
a mystery about how it is that we perceive mathematical truth. It is not just
that our brains are programmed to ‘calculate’ in reliable ways. There is
something much more profound than that in the insights that even the
humblest among us possess when we appreciate, for example, the actual
meanings of the terms ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’, etc.®

Some of the issues that arise in connection with this third mystery will be
our concern in the next chapter (and more explicitly in §§16.5,6) in relation
to the notion of mathematical proof. But the main thrust of this book has
to do with the first of these mysteries: the remarkable relationship between
mathematics and the actual behaviour of the physical world. No proper
appreciation of the extraordinary power of modern science can be
achieved without at least some acquaintance with these mathematical
ideas. No doubt, many readers may find themselves daunted by the
prospect of having to come to terms with such mathematics in order to
arrive at this appreciation. Yet, I have the optimistic belief that they may
not find all these things to be so bad as they fear. Moreover, I hope that 1
may persuade many readers that, despite what she or he may have previ-
ously perceived, mathematics can be fun!

I shall not be especially concerned here with the second of the mysteries
depicted in Figs. 1.3 and 1.4, namely the issue of how it is that mentality —
most particularly conscious awareness—can come about in association with
appropriate physical structures (although I shall touch upon this deep
question in §34.7). There will be enough to keep us busy in exploring the
physical universe and its associated mathematical laws. In addition, the
issues concerning mentality are profoundly contentious, and it would dis-
tract from the purpose of this book if we were to get embroiled in them.
Perhaps one comment will not be amiss here, however. This is that, in my
own opinion, there is little chance that any deep understanding of the nature
of the mind can come about without our first learning much more about the
very basis of physical reality. As will become clear from the discussions that
will be presented in later chapters, I believe that major revolutions are
required in our physical understanding. Until these revolutions have come
to pass, it is, in my view, greatly optimistic to expect that much real progress
can be made in understanding the actual nature of mental processes.'°
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1.5 The Good, the True, and the Beautiful

In relation to this, thereis a further set of issues raised by Figs. 1.3 and 1.4.
I have taken Plato’s notion of a ‘world of ideal forms’ only in the limited
sense of mathematical forms. Mathematics is crucially concerned with the
particular ideal of Truth. Plato himself would have insisted that there are
two other fundamental absolute ideals, namely that of the Beautiful and of
the Good. 1 am not at all averse to admitting to the existence of such ideals,
and to allowing the Platonic world to be extended so as to contain
absolutes of this nature.

Indeed, we shall later be encountering some of the remarkable interrela-
tions between truth and beauty that both illuminate and confuse the issues
of the discovery and acceptance of physical theories (see §§34.2,5,9 par-
ticularly; see also Fig. 34.1). Moreover, quite apart from the undoubted
{though often ambiguous) role of beauty for the mathematics underlying
the workings of the physical world, aesthetic criteria are fundamental to
the development of mathematical ideas for their own sake, providing
both the drive towards discovery and a powerful guide to truth. T would
even surmise that an important element in the mathematician’s common
conviction that an external Platonic world actualty has an existence inde-
pendent of ourselves comes from the extraordinary unexpected hidden
beauty that the ideas themselves so frequently reveal.

Of less obvious relevance here—but of clear importance in the broader
context—is the question of an absolute ideal of morality: what is good and
what is bad, and how do our minds perceive these values? Morality has a
profound connection with the mental world, since it is sO intimately related
to the values assigned by conscious beings and, more importantly, to the
very presence of consciousness itself, Tt is hard to see what morality might
mean in the absence of sentient beings. As science and technology progress,
an understanding of the physical circumstances under which mentality is
manifested becomes more and more relevant. 1 believe that it is more
important than ever, in today’s technological culture, that scientific ques-

tions should not be divorced from their mora! implications, But these issues
would take us too far afield from the immediate scope of this book. We need
to address the question of separating true from false before we can ad-
equately attempt to apply such understanding to separate good from bad.

There is, finally, a further mystery concerning Fig. 1.3, which I have left
to the last. 1 have deliberately drawn the figure so a8 to illustrate a
paradox. How can it be that, in accordance with my own prejudices,
each world appears to encompass the next one in its entirety? 1 do not
regard this issue as a reason for abandoning my prejudices, but merely for
demonstrating the presence of an even deeper mystery that transcends

those which I have been pointing to above. There may be a sense in
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1:5110h the three worlds are not separate at all, but merely reflect, individu-
y, aspects of a deeper truth about the world as a whole of whic;h we have

little conception at the i
present time. We have along w
matters can be properly illuminated. g way (0 go before such

Coic:?;;e aﬂowed mysel.f to stray too much {rom the issues that will

cor centrﬁ ; ;11;.) 'fhe matlln purpose of this chapter has been to emphasize
rtance that mathematics has in science, b i

; : , both ancient and

modern. Let us now take a glimpse into Plato’s world—at least into a

Notes

Section 1.2

1.1. }iﬁ?‘;‘:::ately} zta.llln}ost nothing reliable is known about Pythagoras, his life, his
, or of their work, apart from their very exist , itiot
Pythagoras of the role of sim GER i e B (197
ple ratios in musical harmony. S
Yet much of great im i i e P )
portance is commonly attributed to th
Accordingly, I shall use the term ‘Py i B o tabel, it o ol
cord , thagorean’ : i impli
,c;?tlon intended as to historical accurzu:yg simply as & label, wih no imell
his is the pure ‘diatonic seale’ in whi . i
laton] ich the frequencies (in inverse pr i
tl}:i lengths of" the wbrat:ng clements) arein the ratios 24:27:30; 32: 3‘pG Otll)(;)r;l;’ ?41:80
ﬁ: tr;lgc many $stal;mes‘ of simple ratios, which underlic harmonies that are [-JIea;in ,
compm;zliirs.e bl::wwzhlt;y I:}?tes’ of a modern piano are tuned (according to i
ecn agorean purity of harmony and th ili
changes) as approximations to the i rdine to e e
! se Pythagorean ratios, according to th
;erfp%r%mem scale, with relative frequencies lio?:o*:a’:a: oc’:j‘-(:c” e\:ng:
: ;—a : ;x1&0i9:6’.r.h. - (Note: {2;55 means the fifth power of % ie
. The quantity %2 is the twelfth root of 2, which i smber
whose twelfth power is 2, i.e. 21/'?, s0 ! gy
, 1.8 ,sothat 2 =2, See N
Ny e Note 1.3 and §5.2.)

L3.
3 ;t{::lz:_l:z ft'Elc;r:sN'I(‘);e l.fhthal:_tk;e rth power of a number is that number multiplied by
. Thus, the third power of 5i i ? =125
e e etlz. 515 125, written 5° = 125; the fourth power
ﬁhgzgt,hzgxtexﬁ: \:;s trying t;) ﬁxha ‘gap’ in his proof of Fermat’s Last Theorem
parent after his injtial presentation at Cambridge t
1993, a rumour spread throu i ' e et
1993, gh the mathematical communit,

: y that the math -
llc!;gr; I;I;;m };;'lltciles had found a counter-example to Fermat’s assertion. ‘E.arl?er:-1 ai;
1% R 1;;:s ha found a count_er-examplc to Euler’s conjecture—that there are,no
wasg;.g tsc_) ut;ons_ l;? the equation x* + ¢ + z* = w*—thereby proving it false. It

implausible, therefore, that he had -
re, proved that Fermat's assertio
was false. However, the e-mail that started the romour was dated 1 April ;mrii ivlsa(;

revealed to be a spoof perpetrated b i
; ¢ y Henri D ; i
}2 Technically it is a T1;-sentence; see §16.6. armon see Singh (1997), p- 293

1.2,

1.4.

;s:z::;(z)e tl}l':lli, m a sense, I am falling into my own trap by making such an
n. The issue is fot really whether the mathematicians taking such an
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extreme subjective view happen to constitute a tiny minority or not (and [ ha\:e
certainly not conducted a trustworthy survey among rpathematmans on this
point); the issue is whether such an extreme position is actually to be taken
seriously. I leave it to the reader to judge. .

1.7. Some readers may be aware of the results of Gédel and Cohen that the axiom of
choice is independent of the more basic standard axioms of set theory“ (the
Zermelo-Frankel axiom system). It should be made clear that. the_Godel—
Cohen argument does not in itself establish that the axiom of choice will never
be settled one way or the other. This kind of point is stressed, for example, in the
final section of Paul Cohen’s book {Cohen 1966, Chap. 14, §13), except that,
there, Cohen is more explicitly concerned with the continumm hypothesis than the
axiom of choice; see §16.5.

Section 1.4 . . )

1.8. There is perhaps an irony here that a fully fledged antl-PlaPonlst, who believes
that mathematics is ‘all in the mind’ must also believe—so it scems—that there
are no true mathematical statements that are in principl.e be)fogd reason. For
example, if Fermat’s Last Theorem had been inaccessible (in prlpcnple) to reason,
then this anti-Platonist view would allow no validity either to its tru.tt{ or to its
falsity, such validity coming only through the mental act of perceiving some
proof or disproof.

9. See e.g. Penrose (1997h). _
l.]lg. i/ly ofm views o(n the kind of change in our physical world-view that will l?e
needed in order that conscious mentality may be accommodated are expressed in
Penrose (1989, 1994, 1997a,1997b).
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An ancient theorem and a modern question

2.1 The Pythagorean theorem

LET us consider the issue of geometry. What, indeed, are the different
‘kinds of geometry’ that were alluded to in the last chapter? To lead up to
this issue, we shall return to our encounter with Pythagoras and consider
that famous theorem that bears his name:! for any right-angled triangle,
the square of the length of the hypotenuse (the side opposite the right
angle) is equal to the sum of the squares of the lengths of the other two
sides (Fig. 2.1). What reasons do we have for believing that this assertion is
true? How, indeed, do we ‘prove’ the Pythagorean theorem? Many argu-
ments are known. I wish to consider two such, chosen for their particular
transparency, each of which has a different emphasis.

For the first, consider the pattern illustrated in Fig. 2.2. Tt is composed
entirely of squares of two different sizes. It may be regarded as ‘obvious’
that this pattern can be continued indefinitely and that the entire plane is
thereby covered in this regular repeating way, without gaps or overlaps, by
squares of these two sizes. The Tepeating nature of this pattern is made
manifest by the fact that if we mark the centres of the larger squares, they
form the vertices of another system of squares, of a somewhat greater size
than either, but tilted at an angle to the original ones (Fig. 2.3) and which
alone will cover the entire plane. Each of these tilted squares is marked in
exactly the same way, so that the markings on these squares fit together to

» Fig. 2.1 The Pythagorean
theorem: for any right-angled
triangle, the squared length of the
hypotenuse ¢ is the sum of the
o squared lengths of the other two

a4 =2 sides ¢ and 5.
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Fig. 2.2 A tessellation of the plane by
squares of two different sizes.

13

Fig. 2.3 The centres of the (say) larger
squares form the vertices of a lattice of
still larger squares, tilted at an angle.

form the original two-square pattern. The same would apply if, instead of
taking the centres of the larger of the two squares of the original pattern,
we chose any other point, together with its set of corresponding points
throughout the pattern. The new pattern of tilted squares is just the same
as before but moved along without rotation—i.e. by means of a motion
referred to as a translation. For simplicity, we can now choose our starting
point to be one of the corners in the original pattern (see Fig. 2.4).

It should be clear that the area of the tilted square must be equal to the
sum of the areas of the two smaller squares—indeed the pieces into which
the markings would subdivide this larger square can, for any starting point
for the tilted squares, be moved around, without rotation, until they fit
together to make the two smaller squares (e.g. Fig. 2.5). Moreover, it is
evident from Fig. 2.4 that the edge-length of the large tilted square is the
hypotenuse of a right-angled triangle whose two other sides have lengths
equal to those of the two smaller squares. We have thus established the
Pythagorean theorem: the square on the hypotenuse is equal to the sum of
the squares on the other two sides.

The above argument does indeed provide the essentials of a simple proof
of this theorem, and, moreover, it gives us some ‘reason’ for believing that
the theorem has to be true, which might not be so obviously the case with
some more formal argument given by a succession of logical steps without
clear motivation. Tt should be pointed out, however, that there are several
implicit assumptions that have gone into this argument. Not the least of
these is the assumption that the seemingly obvious pattern of repeating
squares shown in Fig. 2.2 or even in Fig. 2.6 is actually geometrically
possible—or even, more critically, that a square is something geometrically
possible! What do we mean by a ‘square’ after all? We normally think of a
square as a plane figure, all of whose sides are equal and all of whose
_angles are right angles. What is a right angle? Well, we can imagine two
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Fig. 2.4 The lattice of tilted squares
can be shifted by a translation, here so
that the vertices of the tilted lattice lie
on Yertices of the original two-square
lattice, showing that the side-length of
a tilted square is the hypotenuse of a
right-angled triangle (shown shaded)
whose other two side-lengths are those
of the original two squares.

Fig_. 2.5 For any particular starting
point for the tilted square, such as that
t_:iepicted, the tilted square is divided
into pieces that fit together to make the
two smaller squares.

I Fig. 2.6 The familiar lattice of equal
HE B squares. How do we know it exists?

straight lines crossing each other at so i i
arei ail equal. Each of these equal anglc??sliﬁzerg’ali’l{agllclltn snfgoll;r eneles that
elus now try to construct a square. Take three equal line s;e ments AB
2 . e A sd 5D s s Do At on
\ .2,7. The que 1ses: i
length as thf: other three segmcits? Morec?:fl:rs,n;rré iﬁze;l;g)tﬁsﬁg
gﬂ?_A a}llso right anng:s? These angles should be equal to one another bya
right symmletry in the figure, but are they actually right angles? Thi
only seems obvious because of our familiarity with squares, or e.rh .
because we can recall from our schooldays some statement 0;‘ Eurﬁid tip:
can be used to tell us that the sides BA and CD would have 1o be * 11 al’
to each other, and some statement that any ‘transversal’ to apa;; E:f
parallels has to have corresponding angles equal, where it meets tlljle t\:o
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A } iD
F Tak

Fig. 2.7 Try to construct a square. Take

ABC and BCD as right angles, with .

AB = BC = CD. Doss it follow that DA is also

equal to these lengths and that DAB and CDA are
B ‘ C also right angles?

parallels. From this, it follows that the anglE: DAB gould lt;ag}) t((j) ll);:
' C (i.e. to the ang ,
al to the angle complementary to AD.
;cig 2.7, ADE being straight) as well as being, as note'd above, equal to
the ‘an‘gl,e ADC. An angle (ADC) can only be equal to 1t:;h cc:n;}llnlexpgntlirDy
if it | i t also prove that the side
le (EDC) if it is a right angle. We mus
iﬁf fh&: sam)e length as BC, but this now also follczlng, ];'orsexa:'rtnple.,nf;‘;)erg
i BA an . So,itis1
erties of transversals to the parall.els _
frrl?ep that we can prove from this kind of Eu_chdean argment ;hat
squares, made up of right angles, actually do exist. But there 1s a deep

issue hiding here.

2.2 Euclid’s postulates

In building up his notion of geometry, Euclid took consizderable c:_are1 to s;:e
what assumptions his demonstrations depende:l lugon.. In pa;t;lci:::lha:; erz
istingui i tions called axioms—

as careful to distinguish certain asser : %
f;.ken as sclf-evidently true, these being basically deﬁm'uons of what h(i
meant by points, lines, etc.—from the five postulates, whlchdvierfl:) astsm;lgf
i idi i t which appeared to be tru

s whose validity seemed less certain, ye ‘
?I?:geometry of our world. The final one of these assumptlops, referred ﬂtlo
as Buclid’s fifth postulate, was considered to ‘t_)e less obvious thz.llI)‘ll tc
others. and it was felt, for many centuries, that it ought to }3&1 posFisl Ed’(;
, ing i vident postulates. Eucl

find a way of proving it from the other more ¢
fifth postlsl(late is commonly referred to as the parallel postulute and I shall
follow this practice here. N o

Before dicussing the parallel postulate, it is worth pointing out :)1111?
nature of the other four of Euclid’s postulates. The postulates alr_t:1 C o
cerned with the geometry of the (Euclidean_) plane, though l_iuc]1 a ©
considered three-dimensional space later in .hIS works. ‘The basic e eImfl:lr;il 1
of his plane geometry are points, straight lines, al'lddcgfll':si Hertz,n : :d il

i ‘strai ine’ i ‘line’) to be indefinitely ex

consider a ‘straight line’ (or simply a ir ‘ ely !
both directions; otherwise I refer to a ‘line se.:gment . E}lchd s first posgt
late effectively asserts that there is a (unique) straight line segm
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connecting any two points. His second postulate asserts the unlimited
(continuous) extendibility of any straight line segment. His third
postulate asserts the existence of a circle with any centre and with any
value for its radius. Finally, his fourth postulate asserts the equality of all
right angles.? '
From a modern perspective, some of these postulates appear a little
strange, particularly the fourth, but we must bear in mind the origin of the
ideas underlying Euclid’s geometry. Basically, he was concerned with the
movement of idealized rigid bodies and the notion of congruence which
was signalled when one such idealized rigid body was moved into coinci-
dence with another. The equality of a right angle on one body with that on
another had to do with the possibility of moving the one so that the lines
forming its right angle would lie along the lines forming the right angle of
the other. In effect, the fourth postulate is asserting the isotropy and
homogeneity of space, so that a figure in one place could have the ‘same’
(i.e. congruent) geometrical shape as a figure in some other place. The
second and third postulates express the idea that space is indefinitely
extendible and without ‘gaps’ in it, whereas the first expresses the basic
nature of a straight line segment. Although Fuclid’s way of looking at
geomelry was rather different from the way that we look at it today, his
first four postulates basically encapsulated our present-day notion of a
(two-dimensional) metric space with complete homogeneity and isotropy,
and infinite in extent. In fact, such a picture seems to be in close accord-
ance with the very large-scale spatial nature of the actual universe,
according to modern cosmology, as we shall be coming to in §27.11 and
§28.10.

What, then, is the nature of Euclid’s fifth postulate, the parallel postu-
late? As Euclid essentially formulated this postulate, it asserts that if two
straight line segments @ and b in a plane both intersect another straight line
¢ (so that ¢ is what is called a transversal of a and b) such that the sum of
the interior angles on the same side of ¢ is less than two right angles, then a
and b, when extended far enough on that side of ¢, will intersect some-
where (see Fig. 2.8a). An equivalent form of this postulate (sometimes
referred to as Playfair’s axiom) asserts that, for any straight line and for
any point not on the line, there is a unique straight line through the point
which is parallel to the line (see Fig. 2.8b). Here, ‘parallel’ lines would be
two straight lines in the same plane that do not intersect each other (and

tecall that my ‘lines’ are fully extended entities, rather than Euclid’s
‘segments of lines’).2-1

&2 [2.1] Show that if Euclid’s form of the parallel postulate holds, then Playfair’s conclusion of the
uniqueness of parallels must follow.

i
:
|
|
|




CHAPTER 2
§2.2

[

Ay

9

If sum of these
angles is less

than 2 right angles
then ¢ and b meet

Unique parallel
to a through P -
Fig. 2.8 (a) Euclid’s parallel postulate. Lines ¢ and b arsdtl;anlszzrfgls; t:)wzct) I;i ;11'1 :
" interi d bmeet cadd tole
line ¢, such that the interior angles where a an : _ s than twonie
’ d extended far enough) will uitimately .
angles. Then @ and b (assume . far enough) vl e e
ir’ i : plane an p
her. (b) Playfair’s (equivalent) axiom: ifaisali ;
g;a:{i Igz)t on };, then there is just one line parallel to a through P, in the plane.

Once we have the parailel postulate, we can proceed to estabhshlpt}:)?
property needed for the existence of a square. Ifa t‘ranslversal t;) a palone
straight lines meets them so that the sum of the interior a}rllg wes tﬁ:t ne

i i i les, then one can sho
side of the transversal is two right angles, one Do e
i i i 1. Moreover, it immediately fo
lines of the pair are indeed parallel. : o
ir has just the same angle property.
that any other transversal of the pair .
This isybasically just what we needed for tk_xedargumd ; 1i:ntt i%nif:r;u;l:)c::l:
i We see, indeed, tha
for the construction of our square. , b
to show that our constructio
arallel postulate that we must' use ] truct
Ectual]y )I;ields a square, with all its angles right angles :mdt:glil:; Sig;i
i tulate, we cannot es
the same. Without the parallel pos e, . '
squares (in the normal sense where all their angles are right angles) actu
lly exist. _
: ¥t may seem to be merely a matter of mathematical pdedalztry to Wg;ri
1 i i e needed in order to provi
about precisely which assumptions ar _ : o :

' i h an obvious thing as a square.
‘rigorous proof’ of the existence of suc in,

W%ly shoulid we really be concerned with such pedagltxiqlsvs‘}leﬁ, “;h:;:.aﬁ
*isj ili hat we all know about? Well, w
‘square’ is just that familiar figure t . .
bg seeing shortly that Euclid actually showed some ;xtl;aorfi1na.lr)(t é:frtsopla

ity i i Euclid’s pedantry 1s rela
cacity in worrying about such matters.
deepyissue that has a great deal to say about tk_le acturj,ll geometrif 01f1 t:;
universe, and in more than one way. In pa1_"tlcular, it is not a 1a an
obvious ’matter whether physical ‘squares’ exist on a cosmological sc
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in the actual universe. This is a matter for observation, and the evidence at
the moment appears to be conflicting (see §2.7 and §28.10).

2.3 Similar-areas proof of the Pythagorean theorem

I shall return to the mathematical significance of not assuming the parallel
postulate in the next section. The relevant physical issues will be re-
examined in §18.4, §27.11, §28.10, and §34.4. But, before discussing such
matters, it will be instructive to turn to the other proof of the Pythagorean
theorem that I had promised above.

One of the simplest ways to see that the Pythagorean assertion is indeed
true in Euclidean geometry is to consider the configuration consisting of
the given right-angled triangle subdivided into two smaller triangles by
dropping a perpendicular from the right angle to the hypotenuse (Fig. 2.9).
There are now three triangles depicted: the original one and the two into
which it has now been subdivided. Clearly the area of the original triangle
is'the sum of the areas of the two smaller ones.

Now, it is a simple matter to see that these three triangles are all similar
to one another. This means that they are all the same shape (though of
different sizes), i.e. obtained from one another by a uniform expansion or
contraction, together with a rigid motion. This follows because each of the
three triangles possesses exactly the same angles, in some order. Each of
the two smaller triangles has an angle in common with the largest one and
one of the angles of each triangle is a right angle. The third angle must also
agree because the sum of the angles in any triangle is always the same.
Now, it is a general property of similar plane figures that their areas are in
proportion to the squares of their corresponding linear dimensions, For
each triangle, we can take this linear dimension to be its Jongest side, i.e. its
hypotenuse. We note that the hypotenuse of each of the smaller triangles is

Fig. 2.9 Proof of the Pythagorean
theorem using similar triangles.
Take a right-angled triangle and
drop a perpendicular from its right
angle to its hypotenuse. The two
triangles into which the original
triangle is now divided have areas
which sum to that of the original
triangle. All three triangles are
similar, so their areas are in
proportion to the squares of their
respective hypotenuses. The Py-
thagorean theorem follows.
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the same as one of the (non-hypotenuse) sides of the orig-ir.lal lt:;f.;lng;ti:é
Thus, it follows at once (from the fact that thfh area of tlfnotrtllglgzp triangle
’ t the square
i of the areas of the other two) tha
;Snﬂifl:ﬁginal triangle is indeed the sum of the squares on the other two
ides: thagorean theorem! o
Sld”;iei’ieafg agiin, some particular assumptions in this argumen.t ':ﬁztf :z
hall need tc; examine. One important ingredient of the argumtralfg}svalue o
Ft’hat the angles of a triangle always add u.pl (tiohthe sar;':: ;?jltlzlii asl‘stwo ot
i i ° Euclid would have refer
this sum is of course 180°, but _ dioitas thoriel
¢ ' mathematical description 18 y
’_The more modern ‘natural’ mat to.
?klllegl :rslgles of a triangle, in Euclid’s geometry, add up to . Tl}:;c; c:; :Icl)t:;es
radians for the absolute measure of angle, wliere th; Qegé;?cs;eg:ilin Y
can write 180° = n.) The usual proof 15 ted .
nW/lgc(:)(’t:g(;v EA to E and draw a line AD, through A, which is EtEa:;j.:l)lf:ell ;3
C]g Then (as follows from the parallel postulate) t_he a?lgles e ZAD
AC.B are equal, and also DAB and CBA are e:luill. S;I;;; tt a; ;;; e als(;
o o ,
d BAC add up to n (or to 180°, or to tw :
Dfl:]?,tiré three angles ACB, CBA, and BAC of the tr1ang1ed—;1:r :vas
i‘relquired to prove. But notice that the parallel postll(llate Wasttlls; e tiflat
. lso makes use 0
' of of the Pythagorean theorem. a :
theT :ing similar figures are in proportion to the squares clylf tarilgnhlr;ei.cr)
measure of their sizes. (Here we chose the hypotenuse of eac rthegVery
represent this linear measure.) This fact_ not only depenc;s (gliangles o
existence of similar figures of different smes—w};mh fc;)r : ;150 angles o
i i lle]l postulate—bu
iz. 2.9 we established using the para on some
Eﬁrezsophisticated issues that relate to how we actually def:lnfe i.;:ln sz ‘
n-rectangular shapes. These general matters arf.: addressed in oms
Itllfe carrying out of limiting procedures, and I do not want to ente

Fig. 2.10 Proof that the sum
of the angles of a triangle
ABC sums to % (== 180° = two
right angles). Extend CA to E;
draw AD parallel to CB. It
follows from the parallel
postulate that the angles EAD
and ACB are equal and the
angles DAB and CBA are
equal. Since the angles EAD,
DAB, and BAC sum to x, s0
also do the angles ACB, CBA,

E  and BAC.
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this kind of discussion just for the moment,
issues related to the kind of numbers th
question will be returned to in §§3.1-3.

An important message of the discussion in the preceding sections is that
the Pythagorean theorem seems to depend on the parallel postulate. Is this
really so? Suppose the parallel postulate were false? Does that mean that
the Pythagorean theorem might itself actually be false? Does such a
possibility make any sense? Let us try to address the question of what
would happen if the paraile] postulate is indeed allowed to be taken to be
false. We shall seem to be entering a mysterious make-belief world, where
the geometry that we learned at school is turned all topsy-turvy. Indeed,
but we shall find that there is also a deeper purpose here.

It will take us into some deeper
at are used in geometry. The

2.4 Hyperbolic geometry: conformal picture

Have a look at the picture in Fig. 2.11. Tt is a reproduction of one of M. C.
Escher’s woodcuts, called Cirele Limit I, It actually provides us with a very
accurate representation of a kind of geometry—called hyperbolic (or
sometimes Lobachevskian) geometry-—in which the parallel postulate is
false, the Pythagorean theorem fails to hold, and the angles of a triangle
do not add to =. Moreover, for a shape of a given size, there does not, in
general, exist a similar shape of a larger size.

In Fig. 2.11, Escher has used a particular representation of hyperbolic

geometry in which the entire ‘universe’ of the hyperbolic plane is
‘squashed’ into the interior of a circle in an ordinary Euclidean plane,
The bounding circle represents “infinity’ for this hyperbolic universe. We
can see that, in Escher’s picture, the fish appear to get very crowded as they
get close to this bounding circle. But we must think of this as an illusion.
Imagine that you happened to be one of the fish. Then whether you are
situated close to the rim of Escher’s picture or close to its centre, the entire
(hyperbolic) universe will look the same to you. The notion of ‘distance’ in
this geometry does not agree with that of the Euclidean plane in terms of
which it has been represented. As we look down upon Escher’s picture
from our Buclidean perspective, the fish near the bounding circle appear to
us to be getting very tiny. But from the ‘hyperbolic’ perspective of the white
or the black fish themselves, they think that they are exactly the same size
and shape as those near the centre. Moreover, although from our outside
Euclidean perspective they appear to get closer and closer to the bounding
circle itself, from their own hyperbolic perspective that boundary always
remains infinitely far away. Neither the bounding circle nor any of the
‘Euclidean’ space outside it has any existence for them. Their entire uni-
verse consists of what to us seems to lie strictly within the circle.
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Fig. 2.11 M. C. Escher’s woodeut Circle Limit I, illustrating the conformal repre-
sentation of the hyperbolic plane.

In more mathematical terms, how is this picture of hyperbolic geometry
constructed? Think of any circle in a Euclidean plane. The set of points
lying in the interior of this circle is to represent the set of points in the
entire hyperbolic plane. Straight lines, according to the hyperbolic geom-
etry are to be represented as segments of Buclidean circles which meet the
bounding circle orthogonally—which means at right angles. Now, it turns
out that the hyperbolic notion of an angle between any {wo curves, at their
point of intersection, is precisely the same as the Fuclidean measure of
angle between the two curves at the intersection point. A representation of
this nature is called conformal. For this reason, the particular representa-
tion of hyperbolic geometry that Escber used is sometimes referred o as
the conformal, model of the hyperbolic plane. (It is also frequently referred
to as the Poincaré disc. The dubious historical justification of this termin-
ology will be discussed in §2.6.) .

We are now in a position to see whether the angles of a triangle in
hyperbolic geometry add up to m or not. A quick glance at Fig. 2.12 leads
us to suspect that they do not and that they add up to something less. In
fact, the sum of the angles of a triangle in hyperbolic geometry always falls
short of . We might regard that as a somewhat unpleasant feature of
hyperbolic geometry, since we do not appear to get a ‘neat’ answer for the
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Fig. 2.12 The same BEscher pi i i
: _ : picture as Fig. 2.11, but with hyperbolic straight I
(bEwix.cth.aan cn‘c_:lcs or lines meeting the bounding circle orthogonally) and ihhyg:aif
olic triangle illustrated. Hyperbolic angles agree with the Euclidean ones. The

parallel postulate is evidently violated (letteri in Fi
triangle sum to less than . ( ng as in Fig. 2.8b) and the angles of a

sum of the angles of a trniangle. However i

. . , there is actually somethi
pgrt:cu]arly elegant and remarkable about what does happin when l:ﬁ
Etl' d 1}p the angles of a hy;_)erbolic triangle: the shortfall is always propor-
ional to the area of the triangle. More explicitly, if the three angles of the

triangle are 2, §, and vy, then we have the fi
Heinrich Lambert 1728-1777) ¢ formula (found by Johann

T—(x+f+7y) = C4,

where 4 is the area of the triangle and C is some constant. This constant
depends on the “units’ that are chosen in which lengths and areas are to be
measured. We can always scale things so that C = 1. It is, indeed, a
remarkat_;le fact that the area of a triangle can be so sit.nply e;(pressed, m
hyperbolic geonfetry. In Euclidean geometry, there is no way to express
the area of a triangle simply in terms of its angles, and the expregsion
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In fact, T have not quite finished my fiescriptlon of hyper?ol;;: g:(s):rlifl:;;g
in terms ,of this conformal representation, smce I_have nodygm ona i
how the hyperbolic distance between two points is to be define and

1d be appropriate to know what ‘distapce’ is before we can .rez _ )trance
Wl;)u t areas). Let me give you an expression for. tt_1e hyperbolic dis
abef\:fleen twotpoints A and B inside the circle. This 1s

QA-PB

log_——_QB-PA’

i lidean circle (i.e. hyperbolic
d Q are the points where the Euc cle (i -
VZhe'rehflianr;) t(t%rough A and B orthogonal to the bounfhng cu‘(fle meets zh;:
:)rilt;gdin circle and where ‘QA’, etc., refer to Euclidean d1stan;>es f;th
F? 2 13g)- If you want to include the C of Lam_bert 8 arg?fgorrﬁm 2c(iwro_
Ciﬁ 1.) just multiply the above distance expression by C7'/¢ (the rb P -
1 of ;Ijle square root of ¢)*>? For reasons that I hope mag cc;ﬁlw
?earer later, I shall refer to the quantity C'/% as the pseudo-radius o
gecljll’n Iflgt%ematical expressions like the abf)v; ‘101%’ forn;lulaiﬂs(ze?; (Si;u?;::l)g;
ly providing it for those who :
e ey oo, Tam i lain why the expression works
ici t going to explain why ! _
explicitly. In any case, [ am no goir e duined in
hyperbolic distance between / ints,
g oy e onlly hyperbolic straight line, or why the
; , is actually measured along a yPer ’ . v
211;3;:]123 along a hyperbolic straight line add. up appropr}ately). 1;;:133’
I apologize for the ‘log’ (logarithm), but that is the way things are. ,

Fig. 213 In the -::cnnformal1 i
i bolic distance

representation, thg hyper
between A and B is log {QA.PB/QB.PA}
where QA, etc. are Euclidean dlstarllces, P
and Q being where the Euclidean circle
through A and B, orthogona‘l to the

Q bounding circle (hyperbolic line), meets
this circle.

imple reason why? . .
[2.2] Can you see a simp . -
s [2.3]See if you can prove that, according to this formul‘a, if :’-\, B, and fC ?X: l;,h:-e? ];‘é;c’ce:sfj:c? e
%a h'yperbolic straight line, then the hyperbolicdistances AR’ etc. iau; Zs D Sss2.3.
may assume the general property of 1o garithms, log (ab) = loga +log
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this is a natural logarithm (‘log to the base e’) and I shall be having a good
deal to say about it in §§5.2,3. We shall find that logarithms are really very
beautiful and mysterious entities (as is the number ¢), as well as being
important in many different contexts.

Hyperbolic geometry, with this definition of distance, turns out to have all
the properties of Buclidean geometry apart from those which need the
parallel postulate. We can construct triangles and other plane figures of
different shapes and sizes, and we can move them around ‘rigidly’ (keeping
their hyperbolic shapes and sizes from changing) with as much freedom as
we can in Euclidean geometry, so that a natural notion of when two
shapes are ‘congruent’ arises, just as in Euclidean geometry, where ‘congru-
ent’ means ‘can be moved around rigidly until they come into coincidence’,
All the white fish in Escher’s woodcut are indeed congruent to each other,
according to this hyperbolic geometry, and so also are all the black fish.

2.5 Other representations of hyperbolic geometry

Of course, the white fish do not all look the same shape and size, but that is
because we are viewing them from a Fuclidean rather than a hyperbolic
perspective. Escher’s picture merely makes use of one particular Euclidean
representation of hyperbolic geometry. Hyperbolic geometry itself is a
more abstract thing which does not depend upon any particular Euclidean
representation, However, such representations are indeed very helpful to
us in that they provide ways of visualizing hyperbolic geometry by refer-
ring it to something that is more familiar and seemingly more ‘concrete’ to
us, namely Euclidean geometry. Moreover, such representations make it
clear that hyperbolic geometry is a consistent structure and that, conse-
quently, the parallel postulate cannot be proved from the other laws of
Euclidean geometry.

There are indeed other representations of hyperbolic geometry in terms
of Euclidean geometry, which are distinct from the conformal one that
Escher employed. One of these is that known as the projective model.
Here, the entire hyperbolic plane is again depicted as the interior of a
circle in a Euclidean plane, but the hyperbolic straight lines are now
represented as straight Euclidean lines (rather than as circular arcs).
There is, however, a price to pay for this apparent simplification, because
the hyperbolic angles are now not the same as the Euclidean angles, and
many people would regard this price as too high. For those readers who
are interested, the hyperbolic distance between two points A and B in this
representation is given by the expression (see Fig. 2.14)

1, RA-SB
2 °6RB A
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B Fig. 2.14 Inthe projective represgntation,
the formula for hyperbolic distance is now
1log {RA.SB/RB.SA}, where R and S are
the intersections of the Euclidean (i.e.
hyperbolic) straight line AB with the

bounding circle.

(taking C = 1, this being almost the same as the expression we had before,
for the conformal representation), where R and S are the intersections of the
extended straight line AB with the bounding circle. This representation of
hyperbolic geometry, can be obtained from the conformal one by means of

an expansion radially out from the centre by an amount given by
2R?

R4

bounding circle and rc i the Euclidean
f the bounding circle of a point in the
2.15).24 In Fig. 2.16, Escher’s picture
from the conformal to the projective
t detail, Escher’s precise artistry is still

where R is the radius of the
distance out from the centre ©
conformal representation (see Fig.
of Fig. 2.11 has been transformed
model using this formula. (Despite los

evident.) _
There is a more directly geometrical way of relating the conformal and

projective representations, via yet another clever representation of this
same geometry. All three of these representations are due to the ingenious

Fig. 215 To get from the conformal 0
the projective representation, expand out
from the centre by a factor 2R /(R + ),
where R is the radius of the bounding
circle and r. is the Euclidean distapce out
of the point in the conformal
representation.

£3(2.4] Show this. (Hins: You can use Beltrami's geometry, as iliustrated in Fig. 2.17. if you wish.)
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Fig. 2,16 [Escher’s pi ;
L picture of Fig, 2.
projective representation. g. 2.11 transformed from the conformal to the

g;gsstgeiic:;eter _Eu-genlo .Beltrami (1835-1500). Consider a sphere S,
whose eduaf hr cmgc;sies with the l?ounding circle of the projective repre-’
feprcsmtationypgi olic geometry given above. We are now going to find a
e :;11 flieit;:gp%;@etry on the northern hemisphere St of S
| cal ric ?eprcsentation. See Fig. 2.17. ’
fgoa:t:; grg;]leecg;et;eprescntanon in the plane (consideregd aslgor}-zoor?tz:lsl;
70, T e ;:_ sph<?re, we simply project vertically upwards (Fig
s e e ft ) ines +1_n the p!ape, representing hyperbolic straighé
ally, ’Now prese fe on 5" by semicircles meeting the equator orthogon-
2 o ;n t 1;gf: 1rom the regresentation on St to the conformal repre-
entation on, Ste plane, we prOerct from the south pole (Fig. 2.17b). This is
on i this book (soe S5, §15.4 22,5, §33.6) Tos mamorsont meapecits of
: e §8.3, §18.4, §22.9, §33.6). Two impo i
}zi:;)"gr;p?ﬁztprqecnon that we shall come to in §8I?3 rz:?: tt}?;(t)lijf E:lecsozf
forma ,( 1t preserves angle§, and that it sends circles on the spher
or, exceptionally, to straight lines) on the plane.[2-5)(2.6] phereto

269 [2.5] Assumin
g these two stated properties of i
o] A 5 \ s of stereographic projection, the
mpmsemaﬁonhi?:rb?hc geometry being as stated in §2.4, show that Belta;loi‘nf‘;lma‘l St
onformal, with hyperbolic ‘straight lines’ as vertical semicircles > hemispheri

2 {2.6] Can you see how
L you ses to prove these two properties? (Hint: i
cone of projection is intersected by two planes gf exac-tl(y ;;;c?:iﬁ“;'illtn)the Faae ofrcles, thasthe
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Fig. 2.17 Beltrami’s geometry, relating thr.ee of his representations of Eyper;?:;f
geometry. {a) The hemispheric represent?tlo‘n (conformal on the r:flrt erlj;aat ;—ial
sphere S*) projects vertically to thel projective representation ]clm : : n::?;he orte,
disc. (b) The hemispheric representation projects ster_cogr.aphma y, fr

pole to the conformal representation on the gquatorial dise.

The existence of various different models of hype_rbohc geometry,h ex-
pressed in terms of Euclidean space, serves to emph.asme the fact that these
are, indeed, merely ‘Euclidean models’ of hyperbolic geometg and are nlc?t
to be taken as telling us what hyperbolic g_eometry actuallyf is. Hyperbot ic
geometry has its own ‘Platonic existence’, just as doqs Euclidean geomet;y
(see §1.3 and the Preface). No one of the models is to be tak.ﬂ;ln asThe
‘correct’ picturing of hyperbolic geometry at the expense of the ot1 f:ri.1 z
representations of it that we have been considering are very valua 1 a
aids to our understanding, but only because the. Euclidean framewc;lr is
the one which we are more used to. For a sentient crt'aature brought up
with a direct experience of hyperbolic (rather than Euclidean) geometry, a
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model of Euclidean geometry in hyperbolic terms might seem the more
natural way around. In §18.4, we shall encounter yet another model of
hyperbolic geometry, this time in terms of the Minkowskian geometry of
special relativity.

To end this section, let us return to the question of the existence of
squares in hyperbolic geometry. Although squares whose angles are right
angles do not exist in hyperbolic geometry, there are ‘squares’ of a more
general type, whose angles are less than right angles. The easiest way to
construct a square of this kind is to draw two straight lines intersecting at
right angles at a point O. Our ‘square’ is now the quadrilateral whose four
vertices are the intersections A, B, C, D (taken cyclicly) of these two lines
with some circle with centre O. See Fig. 2.18. Because of the symmetry of
the figure, the four sides of the resulting quadrilateral ABCD are all equal
and all of its four angles must also be equal. But are these angles
right angles? Not in hyperbolic geometry. In fact they can be any (positive)
angle we like which is less than a right angle, but not equal to a right
angle. The bigger the (hyperbolic) square (i.e. the larger the circle, in
the above construction), the smaller will be its angles. In Fig. 2.19a,
I have depicted a lattice of hyperbolic squares, using the conformal
model, where there are five squares at each vertex point (instead of the
Euclidean four), so the angle is %n, or 72°. In Fig. 2.19b, I have depicted
the same lattice using the projective model. It will be seen that this does
not allow the modifications that would be needed for the two-square
lattice of Fig. 2.2.27

CA

#8 [2.7] Sce if you can do something similar, but with hyperbotic regular pentagens and squares.

Fig. 2.18 A hyperbolic
‘square’ is a hyperbolic
quadrilateral, whose vertices
are the intersections A, B, C,
D (taken cyclically) of two
perpendicular hyperbolic
straight lines through some
point O with some circle
centred at O. Because of
symmetry, the four sides of
ABCD as well as all the four
angles are equal. These
angles are not right angles,
but can be equal to any given
positive angle less than J .
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(b)

Fig. 2.19 A lattice of squares, in hyperbolioa space, I
each vertex, so the angles of the square are 2 0172

tion. (b) Projective representation.

in which five squares meet at
. (a) Conformal representa-

2.6 Historical aspects of hyperbolic geometry

A few historical comments concerning t}le discove'ry of hyperbn_)hc ‘geom-f
etry are appropriate here. For centuries following Fhe pubhcatut)nd ::o
Euclid’s elements, in about 300 BC, various n}athemaucxans attemp ';h
prove the fifth postulate from the other axioms a.nd postulates. : es.i
efforts reached their greatest heights with the heroic worllc by tth,f esult
Girolamo Saccheri in 1733. It would seem.that Sacctgerl_hxmse lrnus
ultimately have thought his life’s work a failure, constituting me;e y tin
unfulfilled attempt to prove the paralle_l post}llate by showmg }:t at gle:
hypothesis that the angle sum of every tnang.le is lt?ss than two 1ig ant o
led to a contradiction. Unable to do this logically after momento

struggles, he concluded, rather weakly:

The hypothesis of acute angle is absolutely false; because repugnant to the
nature of the straight line.’

i ‘ ’ lines a and b of Fig. 2.8.
The hypothesis of ‘acute angle’ asserts that the _ :
somet?rﬁes do not meet. It is, in fact, viable and actually yields hyperbolic
metry! . _ .
ge(I)-Iowrzid it come about that Saccheri effectxvelgf discovered someth{ng
that he was trying to show was impossible? Saccherl’s proposal for proving

Euclid’s fifth postulate was to make the assumption .that the ﬁt:[th po;tuiz;tiz
i contradiction from this assumption. In

was false and then derive a | from this ass ol romred and

fruitful principles ever to be put forward in mathematics—-very' pgssxbly

first introduced by the T “hagoreans-—called proof by contradiction (or

way he proposed to make use of one ¢
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reductio ad absurdum, to give it its Latin name). According to this proced-
ure, in order to prove that some assertion is true, one first makes the
supposition that the assertion in question is false, and one then argues
from this that some contradiction ensues. Having found such a contradic-
tion, one deduces that the assertion must be true after all.’ Proof by
contradiction provides a very powerful method of reasoning in mathemat-
ics, frequently applied today. A quotation from the distinguished math-
ematician G. H. Hardy is apposite here:

Reductio ad absurdum, which Euclid loved so much, is one of a mathemat-
ictan’s finest weapons. It is a far finer gambit than any chess gambit: a chess
player may offer the sacrifice of a pawn or even a picce, but a mathematician
offers the game.”

We shall be seeing other uses of this important principle later (see §3.1 and
§616.4,6).

However, Saccheri failed in his attempt to find a contradiction. He was
therefore not able to obtain a proof of the fifth postulate. But in striving
for it he, in effect, found something far greater: a new geometry, different
from that of Euclid—the geometry, discussed in §§2.4,5, that we now call
hyperbolic geometry. From the assumption that Euclid’s fifth postulate
was false, he derived, instead of an actual contradiction, 2 host of strange-
looking, barely believable, but interesting theorems. However, strange as
these results appeared to be, none of them was actually a contradiction. As
we now know, there was no chance that Saccheri would find a genuine
contradiction in this way, for the reason that hyperbolic geometry does
actually exist, in the mathematical sense that there is such a consistent
structure. In the terminology of §1.3, hyperbolic geometry inhabits Plato’s
world of mathematical forms. (The issue of hyperbolic geometry’s physical
reality will be touched upon in §2.7 and §28.10.)

A little after Saccheri, the highly insightful mathematician Johann
Heinrich Lambert (1728-1777) also derived a host of fascinating geomet-
rical results from the assumption that Euclid’s fifth postulate is false,
including the beautiful result mentioned in §2.4 that gives the area of a
hyperbolic triangle in terms of the sum of its angles. It appears that
Lambert may well have formed the opinion, at least at some stage of his
life, that a consistent geometry perhaps could be obtained from the denial
of Euclid’s fifth postulate. Lambert’s tentative reason seems to have been
that he could contemplate the theoretical possibility of the geometry on a
‘sphere of imaginary radius’, i.e. one for which the ‘squared radius’ is
negative. Lambert’s formula « -- (& + § + ) = CA gives the area, 4, of a
hyperbolic triangle, where a, §, and y are the angles of the triangle and
where C is a constant (—C being what we would now call the ‘Gaussian
curvature’ of the hyperbolic plane). This formula looks basically the same
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i Hariot (1560-1621),
i wn one due, in 1603, to Thor}las : '

jlsf ?{ge(zliuzliﬁnf ), for the arca 4 of 2 spherical tr:angéegl drawnt\f‘;iké
grc.:at circle arcs® on a sphere of radius R (see Fig. 2.20).1% To retrl

Lambert’s formula, we have to put

R p

But, in order to give the positive value of EZ’, asd}wfouéld tl:ee };;f:;crll aic;;
hyp:.arbolic geometry, we require th§ sphere’s radius ?h R
(i.e. to be the square root of a negative num_??{). Ngte ai e e
\L. "ven by the imaginary quantity (= C)™ " This expla ns fhe o
ES o do-radius’, introduced in §2.4, for the real quantity €7/ o
Ezzlbert’s ptoc;e;dure is perfectly justified from our morc modern perspe

tives (see Chapter 4 and §18.4, Fig. 18.9), and it indicates great insight on

.« part to have foreseen this. . o
hls&[? ?s however, the conventional standpomnt (somewhat ynfair, in my

opinion) to deny Lambert the honour of having first constructed non-

Euclidean geometry, and to consider that (about half a century later) the

istent
first person to have come to a clear acceptance of a fully consiste

geometry, distinct from that of Euclid, in which the parallel postulate 15

t mathematician Carl Friedrich Gauss. Being an excep-

false, was the grea . gan o
, i 1 of the controversy

i cautious man, and being fearfu of t : t

:'ie(:it?;lt){on might cause, Gauss did not publish hus findings, and kept them to

ing on it, hyperbolic
himself.? Some 30 years after Gauss had begun working y

Fig. 2.20 Hariot’s formula for the
area of a spherical triangle, on a‘sphere
of radius R, with angles &, B, v, 18

A = R¥a + B +7 — ™). Lambert’s
formula, for a hyperbolic triangle, has
c=-1/R.

. . s

this spherical triangle formula, basically using ox}ly syl;mm:tan;ra;gsgrgn;:m

and the fact that the total arca of the sphere is 4nR?. ‘flint: S;:i:;t ;1;1; ggg:inagl ;) :'; ::s O
ircle arcs connecling a

of a sphers bounded by two great cire : antipoc

then cr:’ut and paste and use symmetry argnments. Keep Fig. 2.201n

#5 [2.8] Try to prove
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geometry was independently rediscovered by various others, including the
Hungarian Janos Bolyai (by 1829) and, most particularly, the Russian
geometer Nicolai Ivanovich Lobachevsky in about 1826 (whence hyper-
bolic geometry is frequently called Lobachevskian geometry).

The specific projective and conformal realizations of hyperbolic geom-
etry that T have described above were both found by Eugenio Beltrami,
and published in 1868, together with some other elegant representations
including the hemispherical one mentioned in §2.5. The conformal
representation is, however, commonly referred to as the ‘Poincaré
model’, because Poincaré's rediscovery of this representation in 1882 is
better known than the original work of Beltrami (largely because of the
important use that Poincaré made of this model).!? Likewise, poor old
Beltrami’s projective representation is sometimes called the ‘Klein repre-
sentation’. It is not uncommon in mathematics that the name normally
attached to a mathematical concept is not that of the original discov-
erer. At least, in this case, Poincaré did rediscover the conformal repre-
sentation (as did Klein the projective one in 1871). There are other
instances in mathematics where the mathematician(s) whose name(s)
are attached to a result did not even know of the result in question!!!

The representation of hyperbolic geometry that Beltrami is best
known for is yet another one, which he found also in [868. This
represents the geometry on a certain surface known as a pseudo-sphere
(see Fig. 2.21). This surface is obtained by rotating a tractrix, a curve
first investigated by Isaac Newton in 1676, about its ‘asymptote’. The
asymptote is a straight line which the curve approaches, becoming
asymptotically tangent to it as the curve recedes to infinity. Here, we
are to imagine the asymptote to be drawn on a horizontal plane of
rough texture. We are to think of a light, straight, stiff rod, at one end
P of which is attached a heavy point-like weight, and the other end R
moves along the asymptote. The point P then traces out a tractrix.
Ferdinand Minding found, in 1839, that the pseudo-sphere has a constant

R Asymptote

(b)

7 Fig. 2.21 (a) A pseudo-sphere. This is obtained by rotating, about its asymptote

(b)a tractrix. To construct a tractrix, imagine its plane to be horizontal, over which is

" dragged alight, frictionless straight, stiffrod. One end of the rod is a point-like weight
P with friction, and the other end R moves along the (straight) asymptote.
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§2.7

, negative intrinsic geometry, and Beltrami used this fact to construct the first has been our main concern in this chapter. But what is ellipti
i model of hyperbolic geometry. Beltrami’s pseudo-sphere model seems to be geometry? Essentially, elliptic plane geometry is that satisfied by ptic
; the one that persuaded mathematicians of the consistency of plane hyper- drawn on the surface of a sphere. Tt figured in the discugsio%lure?f
‘ bolic geometry, since the measure of hyperbolic distance agrees with Lambert’s approach to hyperbolic geometry in §2.6. See Fig. 2.22a b(;;

the Euclidean distance along the surface. However, it is a somewhat awk-
ward model, because it represents hyperbolic geometry only locally, rather
than presenting the entire geometry all at once, as do Beltrar%li’s other
models.

2.7 Relation to physical space

Hyperbolic geometry aiso works perfectly well in higher dimensions. More-
over, there are higher-dimensional versions of both the conformal and
projective models. For three-dimensional hyperbolic geometry, instead of
a bounding circle, we have a bounding sphere. The entire infinite three-
dimensional hyperbolic geometry is represented by the interior of this
finite Euclidean sphere. The rest is basically just as we had it before. In the
conformal model, straight lines in this three-dimensional hyperbolic geom-
etry are represented as Euclidean circles which meet the bounding sphere
orthogonally; angles are given by the Euclidean measures, and distances are
given by the same formula as in the two-dimensional case. In the projective
model, the hyperbolic straight lines are Euclidean straight lines, and dis-
tances are again given by the same formula as in the two-dimensional case.

What about our actual universe on cosmological scales? Do we expect that
its spatial geometry is Euclidean, or might it accord more closely with some
other geometry, such as the remarkable hyperbolic geometry (but in three |
dimensions) that we have been examining in §§2.4-6. This isindeed a serious
question. We know from Einstein’s general relativity (which we shall come to |
in §17.9 and §19.6) that Euclid’s geometry is only an (extraordinarily accur-
ate) approximation to the actual geometry of physical space. This physical .
geometry is not even exactly uniform, having small ripples of irregularity
owing to the presence of matter density. Yet, strikingly, according to the best
observational evidence available to cosmologists today, these ripples appear
to average out, on cosmological scales, to a remarkably exact degree (sce
§27.13 and §§28.4-10), and the spatial geometry of the actual universe seems
to accord with a uniform (homogeneous and isotropic—see §27.11) geom-
etry extraordinarily closely. Euclid’s first four postulates, at least, would
seem to have stood the test of time impressively well.

A remark of clarification is needed here. Basically, there are three

types of geometry that would satisfy the conditions of homogeneity Fig.2.22 The thr - ,

; . ) . . L ee basic kinds of unifo i
(every point the same) anfl isotropy (e_very direction the same?, referr_ed using tessellations of angels and devils, (a)rgﬁiiei:zn(;?g; asillustrated by Esche_r
to as Euclidean, hyperbolic, and elliptic. Euc.lidean geometry is familiar dean case (zero curvature), and (c) Hyperbolic case (ne a;’;;‘ir vature), (b)Euch_
to us (and has been for some 23 centuries). Hyperbolic geometry conformal representation (Escher’s Circle Limit IV, to be Eompar:;;?ittf;)i;?lt?)e
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for Escher’s rendering of the elliptic, Euclidean, and hyperbolic cases,
respectively, using a similar tessellation of angels and devils in all three
cases, the third one providing an interesting alternative to Fig.2.11. {There
is also a three-dimensional version of elliptic geometry, and there are
versions in which diametrically opposite points of the sphere are con-
sidered to represent the same point. These issues will be discussed a little
more fully in §27.11.) However, the elliptic case could be said to violate
Fuclid’s second and third postulates (as well as the first). For it is a
geometry that is finite in extent (and for which more than one ing segment
joins a pair of points).

What, then, is the observational status of the large-scale spatial geom-
etry of the universe? It is only fair to say that we do not yet know, although
there have been recent widely publicized claims that Euchd was right all
along, and his fifth postulate holds true also, so the averaged spatial
geometry is indeed what we call ‘Euclidean’.}? On the other hand, there
is also evidence (some of it coming from the same experiments) that seems
to point fairly firmly to & hyperbolic overall geometry for the spatial
universe.!*> Moreover, some theoreticians have long argued for the elliptic
case, and this is certainly not ruled out by that same evidence that is
argued to support the Buclidean case (see the later parts of §34.4). As
the reader will perceive, the issuc is still fraught with controversy and, as
might be expected, often heated argument. In later chapters in this book, [
shall try to present a good many of the considerations that have been put
forward in this connection (and I do not attempt to hide my own opinion
in favour of the hyperbolic case, while trying to be as fair to the others as I
can).

Fortunately for those, such as myself, who are atiracted to the beauties
of hyperbolic geometry, and also to the magnificence of modern physics,
there is another role for this superb geometry that is undisputedly funda-
mental to our modern understanding of the physical universe. For the
space of velocities, according to modern relativity theory, is certainly a
three-dimensional hyperbolic geometry (see §18.4), rather than the Euclid-
ean one that would hold in the older Newtonian theory. This helps us to
understand some of the puzzles of relativity. For example, imagine a
projectile hurled forward, with near light speed, from a vehicle that also
moves forwards with comparable speed past a building. Yet, relative to
that building, the projectile can never exceed light speed. Though this
seems impossible, we shall see in §18.4 that it finds a direct explanation
in terms of hyperbolic geometry. But these fascinating matters must wait
until later chapters.

What about the Pythagorean theorem, which we have seen to fail in
hyperbolic geometry? Must we abandon this greatest of the specific
Pythagorean gifts to posterity? Not at all, for hyperbolic geometry—and,
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;r:;l;eii, :jll Ll-lri l:;llenllanman’ geometries t_hat generalize hyperbolic geom-
Einstein’s genefalﬁlgo:; 1'(‘)’; (riel‘:;zit(j?gg%t§c§issintial ey
depends vitally upon the Pythagore;m theo;e;n 1"11 . '§18.'1, e Tt of
S ) olding in the lim

:1;:;151 g;sﬁzfﬁz;n};{tgrcover, its enormous influence perngleates othenrrll :fa(;{
et moan c::s and:Z physics (e:g. the ‘unitary’ metric structure of
Quantur har s fee § ,23) Desplt_e the fact that this theorem is, in a

, superseded for ‘large’ distances, it remains central to the small—,scale

structure of geometry, findin i
try, g a range of applicati
exceeds that for which it was originally put folz'gv;i?it.lon that epormously

Notes

Section 2.1

2.1. Ttis historically ver

y unclear who actually first
Ls bl : proved what we now refer t
Pythagorean theorem’, see Note 1.1, The ancient Bgyptians and Ball-ay(l)oilsiz?rlxes

seem to have known at least many i i
: y instances of th
by Pythagoras or his followers is largely surmise.ls theorem. The true fole played

Section 2.2

2.2. Even wi i
Eucﬂd’ ;t‘l; ;l;: ;n;?;inttof;i care, however, various hidden assumptions remained in
Suclid’s wo séemed ty g ? w1t_h. what we_would now call ‘topological’ issues that
yould have seomed o be mt'mtlvely obvious’ to Euclid and his contemporaries
oo Koot ateth ass%mptlons were pointed out only centuries {ater particu:
S o ¢ end of the 19th century. [ shall ignore these in wha,t follows
.2 as (1939). Compare also Schutz {1997), who gives a nice axiomati(;

account of Minkowski's 4-dimensional \
Section 2.4 spacetime geometry (§17.8, §18.1).

2.3,

2.4. The ‘ex; i i i

referredp:;nﬁ?]t\]f 2?;?1101:;55;:11 as C1/2 is frequently used in this book, As already

; 1, €aNS a X @ X & X a X a; corr i : iti

fet ans " espondingly, for a

exmigsnt,othe prt?duct of a with itself a total of » times is written ii’y This nlznizltl'we

Frionds 1o imsﬂatlve exponents, so that a~! is the reciprocal l/z of a‘ and a™" is lt‘i)lu

disc;; rocel O/f # 02f a:’/,nor equxvale:n_tly (a'}". In accordance with the mote gelmra?
.2, a*/", for a positive number g, is the ‘nth root of a’, which is the

2

(positive) number satisfyi 1/ny"
power of /. ying (¢'/*)"= a (see Note 1.2). Moreover, 2"/ is the mth

Section 2.6
gg Saccheri {1733), Prop. XXXIII.
.6. There is a standpoint known as intuitionism, which is held to by a (rather small)

minori ici i i i
mino c::p(t):‘dm;?:m;nclgns,‘m whlch_ the principle of ‘proof by contradiction’ is
pot accept le.ads t;) i;ct;on 1; that ;hm principle can be non-constructive in that it
. ssertion of the existence of i
o ¢ ' some mathemati i
rele};c;ut any act}lal con_struction for it having been provided. This C;l " ome
nee to the issues discussed in §16.6. Sce Heyting (1956) . e rome

2.7, Hardy (1940), p. 34.
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9 8. Great circle arcs are the ‘shortest’ curves (geodesics) on the surface of a sphere;
they lie on planes through the sphere’s centre.

2.9. Tt is a matter of some dispute whether Gauss, who was professicnally concerned
with matters of geodesy, might actually have tried to ascertain whether there are
measurable deviations from Euclidean geometry in physical space. Owing to his
well-known reticence in matters of non-Euclidean geometry, it is unlikely that
he would let it be known if he were in fact trying to do this, particularly since (as
we now know) he would be bound to fail, owing to the smallness of the effect,
according to modern theory. The present consensus seems to be that he was ‘just
doing geodesy’, being concerned with the curvature of the Earth, and not
of space. But I find ita little hard to believe that he would not also have been
on the lookout for any significant discrepancy with Euclidean geometry; see
Fauvel and Gray (1987), Gray (1979).

2.10. The so-called ‘Poincaré half-plane’ representation (with metric form
(dx? + &)/ see §14.7) is also due to Beltrami; see Beltrami (1868). The
constant negative curvature of the ‘Poincaré metric’ 4(dx? + a5/
(1-x- y2)? of Figs. 2.11-13 was actually noted by Riemann (1854)!

2.11. This appears to have applied even to the great Gauss himself (who had, on the
other hand, very frequently anticipated other mathematicians’ work). There is an
important topological mathematical theorem now referred to as the ‘Gauss—

Bonnet theorem’, which can be elegantly proved by use of the so-called ‘Gauss
map’, but the thecrem itself appears actually to be due to Blaschke and the
elegant proof procedure just referred to was found by Olinde Rodrigues. It
appears that neither the result nor the proof procedure werc even known to
Giauss or to Bonnet, There is a more elemental ‘Gauss—Bonnet’ theorem, cot-
rectly cited in several texts, see Wiltmore (1959), also Rindler (2001).

Section 2.7
212, The main evidence for the overall structure of the universe, as a whole comes

from a detailed analysis of the cosmic microwave background radiation (CMB)
that will be discussed in §627.7,10,11,13, §528.5,10, and §30.14. A basic reference
is de Bernardis et al. (2000); for more accurate, more recent data, see Netterfield
et al. (2001) (concerning BOOMERanG). See also Hanany et al. (2000) (con-
cerning MAXIMAY), Halverson et al. (2001) (concerning DASD), and Bennett
et al. (2003) (concerning WMAP).

2.13. See Gurzadyan and Torres (1997) and Gurzadyan and Kocharyan (1994) for the
theoretical underpinnings, and Gurzadyan and Kocharyan (1992) (for COBE
data) and Gurzadyan et al. (2002, 2003) (for BOOMERanG data and (2004) for
WMAP data) for the corresponding analysis of the actual CMB data.

3
Kinds of number in the physical world

3.1 A Pythagorean catastrophe?

LET us now return to the issue of proof by contradiction, the very principle
that Saccheri tried hard to use in his attempted proo,f of Euclid’s ﬁtl?th
po'stu_late. There are many instances in classical mathematics where the
prineiple has been successfully applied. One of the most famous of these
dates bz}ck to the Pythagoreans, and it settled a mathematical issue in a
way which greatly troubled them. This was the following. Can one find a
’rraﬁlonal number (i.e. a fraction) whose square is precisely the number 2?7
. e answer turns out_ to. be no, and the mathematical assertion that I sha]i
emonstrate shortly is, indeed, that there is no such rational number
%y were thfa Pythagoreans so troubled by this discovery? Recall tlllat a
fracuon—.that is, a rational number—is something that can be expressed
as the ratio /b of two integers (or whole numbers) ¢ and & withpb no
zero. (See the Preface for a discussion of the definition of a f’raction ) Tlrll;,
Pythagoreans had originally hoped that all their geometry could l;e €x-
pressed in terms of lengths that could be measured in terms of rational
numbers. Rational numbers are rather simple quantities, being describable
a1.1d understood in simple finite terms; yet they can ‘t;e used to specif
distances that are as small as we please or as large as we please pr 313;
geon.letry c?ould be done with rationals, then this would make -thin s
relatively simple and easily comprehensible. The notion of an ‘irration‘f]’
number, on t}}e other hand, requires infinite processes, and this had
preser}ted cons1de_3rable difficulties for the ancients (and wit,h good reason)
Why is there a difficulty in the fact that there is no rational number thai
squares to 2? This comes from the Pythagorean theorem itself. If, in
_Eucl.ldean geometry, we have a square whose side length is unit- tile
its dlagonz_il length is a number whose square is 12 4 12 = 2 (see Fiy, 3 1;1
It would indeed be catastrophic for geometry if there were no gz;tct.uai
number that could describe the length of the diagonal of a square. Th
Pythagoreans tried, at first, to make do with a notion of ‘actual nm.nber?

that could be described simply i :
y in terms of rat:
sce why this will not work. ios of whole numbers. Let us
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Fig. 3.1 A square of unit side-lertgth has
diagonal V2, by the Pythagorean theorem.

1

The issue is to see why the equation

-2

has no solution for integers a and b, where we take tllzese integ;rs to(l:z
icti aan
iti f by contradiction to prove that no suc
PO e erofons my the contrary, that such an @ and
an exist. We therefore try to suppose, on , th
?) do exist. Multiplying the above equation by B? on both sides, we find that

it becomes
a* =2

and we clearly conclude! that @ > b* > 0. Now th(e ritgh;-dhal‘-f c:igfé ?gi . cri
ioni t be even (not odd, s
the above equation is even, whence a mus incethe suare
i = 2¢, for some positive mteg
f any odd number is odd). Hence a=2c, e po .
gul?st?tuting 2¢ for a in the above equation, and squaring 1t out, we obtain

4c? =28,

that is, dividing both sides by 2,

B =262,
and we conclude 2 > ¢ > 0. Now, this is precisely the same equatilon thz;)t
we had displayed before, except that b now replaces a, and ¢ replaces 0.

Note that the corresponding integers arc now smaller _thanbth_eylr wear:1
before. We can now repeat the argument again and again, obtainng

unending sequence of equations
2o, =23, =2 d* =28, ..,

where
E>sPsd>d>d>...,
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all of these integers being positive. But any decreasing sequence of
positive integers must come to an end, contradicting the fact that this
sequence is unending. This provides us with a contradiction to what
has been supposed, namely that there is a rational number which squares
to 2. It follows that there is no such rational number—as was required to
prove 2

Certain points should be remarked upon in the above argument. In
the first place, in accordance with the normal procedures of math-
ematical proof, certain properties of numbers have been appealed to
in the argument that were taken as either ‘obvious’ or having been
previously established. For example, we made use of the fact that the
square of an odd number is always odd and, moreover, that if an
integer is not odd then it is even. We also used the fundamental fact
that every strictly decreasing sequence of positive integers must come
to an end.

One reason that it can be important to identify the precise assumptions
that go into a proof-—even though some of these assumptions could be
perfectly ‘obvious’ things—is that mathematicians are frequently inter-
ested in other kinds of entity than those with which the proof might be
originally concerned. If these other entities satisfy the same assumptions,
then the proof will still go through and the assertion that had been proved
will be seen to have a greater generality than originally perceived, since it
will apply to these other entities also. On the other hand, if some of the
needed assumptions fail to hold for these alternative entities, then the
assertion that may turn out to be false for these entities. (For example, it
is important to realize that the parallel postulate was used in the proofs of
the Pythagorean theorem given in §2.2, for the theorem is actually false for
hyperbolic geometry.)

In the above argument, the original entities are integers and we
are concerned with those numbers—the rational numbers—that are

 constructed as quotients of integers. With such numbers it is indeed

the case that none of them squares to 2. But there are other kinds
of number than merely integers and rationals. Indeed, the need for

L a square root of 2 forced the ancient Greeks, very much against
 their wills at the time, to proceed outside the confines of integers

and rational numbers—the only kinds of number that they had previ-
ously been prepared to accept. The kind of number that they found

| themselves driven to was what we now call a ‘real number’: a number

that we now express in terms of an unending decimal expansion (although

| such a representation was not available to the ancient Greeks). In fact, 2
f does indeed have a real-number square root, namely (as we would now
b write it)
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V2 = 1.414213562373095048 801 68872... .

We shall consider the physical status of such ‘real’ numbers more closely In
the next section.

As a curiosity, we may ask why the above proof of the non-existence of
a square root of 2 fails for real mumbers (or for real-number ratios, which
amounts to the same thing). What happens if we replace ‘integer’ by ‘real
number’ throughout the argument? The basic difference is that it is not
true that any strictly decreasing sequence of positive reals (or even of
fractions) must come to an end, and the argument breaks down at that
point.> (Consider the upending sequence Li Lt % ..., for
example.) One might worry what an ‘0dd’ and ‘even’ real number would
be in this context. In fact the argument encounters no difficulty at that
stage because all real numbers would have to count as “even’, since for any
real g there is always a real ¢ such that a = 2¢, division by 2 being always

possible for reals.

3.2 The real-number system

Thus it was that the Greeks were forced into the realization that rational
aqumbers are. not enough, if the ideas of (Euclid’s) geometry are to be
properly developed. Nowadays, we do not worry unduly if a certain
geometrical quantity cannot be measured simply in terms of rational
numbers alone. This is because the notion of a ‘real number’ is Very
familiar to us. Although our pocket calculators express numbers in
terms of only a finite number of digits, we readily accept that this is an
approximation forced upon us by the fact that the calculator is a finite
object. We are prepared to allow that the ideal (Platonic) mathematical
number could certainly require that the decimal expansion continues
indefinitely. This applies, of course, even to the decimal representation of
most fractions, such as

1= 0.333333333...,
B =2416 666666. ..,
$ — 1.285714285714285,

21— 1.601 35135135....

For a fraction, the decimal expanson is always ultimately periodic, which is
to say that after a certain point the infinite sequence of digits consists of
some finite sequence repeated indefinitely. In the above examples the
repeated sequences are, respectively, 3, 6, 285714, and 135.
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Decnpal expansions were not available to the ancient Greeks, but they
had their own ways of coming to terms with irrational numbers ’ In effect
what they adopted was a system of representing numbers in temis of wha;.
are now called continued fractions. There is no need to go into this in full
d_etailvhere, _but some brief comments are appropriate. A continued frac-
tion” is a finite or infinite expressiona+ G+ (c+ (d+ - -- )"')"1)”l wh
a,b, c,d, ... are positive integers: ' TR

|
1
1

d+ -

Any rational number larger than 1 ca i

: _ n be written as a terminating such
expression (where to avoid ambiguity we normally require the final ﬁlteger
to be greater than 1), e.g. 52/9 =5+ (1 + G+ ()" H )1

52 1
14—
341
2

and, to represent a positive rational less than 1, we just allow the first

a+
b+
c+

| Integer in the expression to be zero. To express a real number, which is not

rational, we simply®!) allow the continued-fraction expression to run on

 forever, some examples being’

V2Z=14Q+@+Q+@+---yhyyhyt
T-V3=54 G+ 0+ Q+0+C+0 +2 4 ) D)y iyt
=34+ T +A5+ 1+ @2+ +A+A+2+--)HHHh -yt

In the first two of these infinite examples, the sequences of natural

rllurgbe;rs ;halt agpearh—namcly 1,2,2, 2 2, ... in the first case and 5, 3
1,2, 1,21, 2, ... in the second—have the propert are
. 2, ond- y that they are
' ultimately periodic (the 2 repeating indefinitely in the first case an}c; the

sequence 1, 2 repeating indefinitely in the second).’3 Recall that, as

@ 3-1] Expel iment with Your poc. et ca Cu! 1] yO v d X CS‘S' to obtain
k I ator (assu ng u ha £ an k
these €xXpansions to the accuracy avallabte- Taker = 3-141 592 653 589 193 T Uilﬂf. Keep takmg
14
‘ hote of thc)ultc er patl of each l'll].'lllbﬂl, Sllbtractlng 1t Oﬁl and then fo"ﬂlﬂg the lGClpIOCa.l Of the

; £ [3.2] Assuming this eventual periodicity of these two continued-fraction expressions, show that

th .
e numbers they represent must be the quantities on the left. (Hine: Find a quadratic equation

. that must be satisfied by this quantity, and refer to Note 3.6.)
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already noted above, in the familliar decimallno_tanon, it 12 ntshe V;c;nzt;)lr
mumbers that have (fnie o) UREEY U kon epreseniaion,
i ree - .
regiﬁ. ttiseralfzgledngttl?a? ft}';}elerational numbers now alvyays l?a;lre a ﬁlr;;z
?lzscription. A natural question t_o ask, in tl?ls context, lﬁa::;; I:uijsma s
have an ultimately periodic continued-fraction 1'epreseb hor gr Lis o
markable theorem, first proved, to our knowledgli:, yrﬂoSt o ortant
CRny el o Joste Izhlat(;‘ I;:féiﬁlg:rlf?n (g;apter 20) that the
‘ © ’ . -
z:liirb;fse iiht::?:;?r:sﬁﬁlalgon in terms of clonti1.1ued fzactlons are ultim-
ately periodic are what are cz_ﬂled quadratic trrat_zonfzri;v. e for Grock
What is a quadratic irrational and w.'hat is 1;&:1 1f01:m
geometry? It is a number that can be written mn the .

a-’r\/E,

d where b is not a perfect square. Such

ere g and b are fractions, and o
gt?mbers are important in Euclidean geometry because they are

most immediate irrational numbers that are encohunterl;d ;:;1 izlﬁi;ag-ll
compass constructions. (Recall the Pythagorean theore 1’3 O s
first led us to consider the problem of V2, and other Su;lli-s O s
of Euclidean lengths directly lead us to other numbe

fOrfl’n.r)ticular examples of quadratic irrationals are those cases whe;e a=0
andab is a (non-square) natural number, or rational greater than 1, €.g.

V3. V3., V3, V6, V7, VB, VIO, V11, ...

tation of such a number is pa.rticw;ln.laﬂifl
striking. The sequence of natural pumbers that defines 1tt tslis; ;1 11;02::;1; !
fraction has a curious characteristic property‘. It fstzérts w1c e e (e
A. then it is immediately followed by a ‘palin romjlD o e
01".[6 which reads thehsartl;rte backws;is)é BC, % D, 13 é B, 2:4 -
ich the seque ,C, D,...., D C 5 :
gss(eli%?ﬁd:f?r?;celv;.hThe number /14 is a good example, for which the

sequence is

The continued-fraction represen

3,1,2,1,6,1,2, 1,6 1,2,1,6,1,2,1,6,....
i is just
Here A = 3 and the palindromic sequence B CD,...,D, C,Bis]
the three-term sequence 1, 2, 1.
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tetos seems to have established much of this. There appears even to be
some evidence of this knowledge (including the repeating palindromic
sequences referred to above) revealed in Plato’s dialectics.”

Although incorporating the quadratic irrationals gets us some way
towards numbers adequate for Euclidean geometry, it does not do all
that is needed. In the tenth (and most difficult) book of Euclid, numbers
like Va+ b are considered (with @ and b positive rationals). These
are not generally quadratic irrationals, but they occur, nevertheless, in
ruler-and-compass constructions. Numbers sufficient for such geometric
constructions would be those that can be built up from natural numbers
by repeated use of the operations of addition, subtraction, multiplication,
division, and the taking of square roots. But operating exclusively with
such numbers gets extremely complicated, and these numbers are still
too limited for considerations of Euclidean geometry that go beyond
ruler-and-compass constructions. It is much more satisfactory to take
the bold step—and how bold a step this actually is will be indicated in
§816.3-5—of allowing infinite continued-fraction expressions that are
completely general. This provided the Greeks with a way of describing
numbers that do turn out to be adequate for Euclidean geometry.

These numbers are indeed, in modern terminology, the so-called ‘real
numbers’. Although a fully satisfactory definition of such numbers is not
regarded as having been found until the 19th century (with the work of
Dedekind, Cantor, and others), the great ancient Greek mathematician
and astronomer Eudoxos, who had been one of Plato’s students, had
obtained the essential ideas already in the 4th century Bc. A few words
about Eudoxos’s ideas are appropriate here.

First, we note that the numbers in Euclidean geometry can be expressed
in terms of ratios of lengths, rather than directly in terms of lengths. In this
way, no specific unit of length (such as ‘inch’ or Greek ‘dactylos’) was

| needed. Moreover, with ratios of lengths, there would be no restriction as

to how many such ratios might be multiplied together (obviating the
apparent need for higher-dimensional ‘hypervolumes’ when more than

i three lengths are multiplied together). The first step in the Eudoxan theory
was to supply a criterion as to when a length ratio a : & would be greater

than another such ratio ¢ : d. This criterion is that some positive integers M
and N exist such that the length a added to itself M times exceeds b added
to itself N times, while also 4 added to itself N times exceeds ¢ added to

b itself M times.[33] A corresponding criterion holds expressing the condi-
# tion that the ratio @ : b be less than the ratio ¢ : 4. The condition for

| equality of these ratios would be that neither of these criteria hold. With

. 2 ms very likely ua _ r . . |
How It o e & lotver e e thing: 1 b this ingenious notion of ‘equality’ of such ratios, Eudoxos had, in effect, an

that they knew quite a lot—very possibly all the thingshthat 2Il h‘i’:ﬁ
described above (including Lagrange’s t_hcorem), ,although to?; m 'gheae-
have lacked rigorous proofs for everything. Plato’s contemporary

3 [3.3] Can you see why this works?
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abstract concept of a ‘real number’ in terms of length ratios. He also
provided rules for the sum and product of such real numbers.?4

There was a basic difference in viewpoint, however, between the Greek
notion of a real number and the modern one, because the Greeks regarded
the number system as basically ‘given’ to us, in terms of the notion of
distance in physical space, so the problem was to try to ascertain how these
‘distance’ measures actually behaved. For ‘space’ may well have had the
appearance of being itself a Platonic absolute even though actual physical
objects existing in this space would inevitably fall short of the Platonic
ideal 8 (However, we shall be seeing in §17.9 and §§19.6,8 how Einstein’s
general theory of relativity has now changed this perspective on space and
matter in a fundamental way.)

A physical object such as a square drawn in the sand or a cube hewn
from marble might have been regarded by the ancient Greeks as a reason-
able or sometimes an excellent approximation to the Platonic geometrical
ideal. Yet any such object would nevertheless provide a mere approxima-
tion. Lying behind such approximations to the Platonic forms—so it
would have appeared—would be space itself: an entity of such abstract
or notional existence that it could well have been regarded as a direct
realization of a Platonic reality. The measure of distance in this ideal
geometry would be something to ascertain; accordingly, it would be ap-
propriate to try to extract this ideal notion of real number from a geom-
etry of a Euclidean space that was assumed to be given. In effect, this is
what Eudoxos succeeded in doing.

By the 19th and 20th centuries, however, the view had emerged that the
mathematical notion of number should stand separately from the nature of
physical space. Since mathematically consistent geometries other than that
of Euclid had been shown to exist, this rendered it inappropriate to insist
that the mathematical notion of ‘geometry’ should be necessarily extracted
from the supposed nature of ‘actual’ physical space. Moreover, it could be
very difficult, if not impossible, to ascertain the detailed nature of this
supposed underlying *Platonic physical geometry’ in terms of the behaviour
of imperfect physical objects. In order to know the nature of the numbers
according to which ‘geometrical distance’ is to be defined, for example, it
would be necessary to know what happens both at indefinitely tiny and
indefinitely large distances. Even today, these questions are without clear-
cut resolution (and I shall be addressing them again in later chapters). Thus,
it was far more appropriate to develop the nature of number in a way that
does not directly refer to physical measures. Accordingly, Richard Dede-

kind and Georg Cantor developed their ideas of what real numbers ‘are’ by
use of notions that do not directly refer to geometry.

{2 [3.4] Can you see how to formulate these?
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]?edekind’s definition of a real number is in term infini
r.at:onal numbe.rs. Basically, we think of the rational rfui’fb:fngztliﬁz Qf
tive qnd negatlye (and zero), to be arranged in order of si;,e WepcS]-
imagine tha_t this prdering takes place from left to right whcre.we thig‘ﬁ
of_‘ the negative ll'anonals as being displayed going off indef’initely to the left
W‘lth 0 in the n_nddle, and the positive rationals displayed going off indeﬁ-,
n{telgf to the right. (This is just for visualization purposes; in fact Ded
k}n.d ] prgce@ure is entirely abstract.) Dedekind ifnagines’ a ‘cuf’ wh'c;
divides this display neatly in two, with those to the left of the cut bein, 1zll
‘sn.uzller than those to the right. When the ‘knife-edge’ of the cut docsgnot
hit’ an act.ual rational number but falls between them, we say that it
defines an irrational real number. More correctly, this oc,curs when those
to the left have no actual largest member and those to the right, no actual
smallt_ist one, When the system of ‘irrationals’, as defined in ter;ns of such
cuts, is adjoined to the system of rational numbers that we already h
then the complete family of real numbers is obtained. Y
thD;adekmd ] pr?gedure leads, _by means of simple definitions, directly to
e laws of addition, subtraction, multiplication, and division for real
number.s. Moreover, it enables one to go further and define limits, whereb
such things as the infinite continued fraction that we saw before’ ’

1+Q+Q2+Q+C+-- )y HH !

or the infinite sum

1 1 1 1
[ R R

3757775
T‘nay.be assigned real-number meanings. In fact, the first gives us the
}rra(tilonal number v/, and the second, 411c. The ability to take limits is
un1 amental for many 1_'nathematical notions, and it is this that gives the
;Zz;dr}um‘tfprs_t_thmr particular strengths.? (The reader may recall that the

or ‘limiting procedures’ was a requirement fo iti

of areas, as was indicated in §2.3.) " the genersl definition

3.3 Real numbers in the physical world

Thereisa profounq isspe that is being touched upon here. In the develop-

r&t::]t t(;f {rir:leghemﬁtlcal 1_deas, one important initial driving force has always

been ¢ thSizr:it \::‘rllac;uc;luintl:c'tures thatl lac:curate]y mirror the behaviour
. . . it is normally not possibl i

physical vs.rorld 1t§elf in such precise detail thal;p approel):i(;t:l);failll;i-tt:?ﬁ

mathematlcal notions can be abstracted directly from it. Instead, pro

is made because mathematical notions tend to have a ‘momentunl’pof %l];:i
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own that appears to spring almost entirely from within the subject itself.
Mathematical ideas develop, and various kinds of problem seem to arise
naturally. Some of these (as was the case with the problem of finding the
length of the diagonal of a square) can lead to an essential extension of the
original mathematical concepts in terms of which the problem had been
formulated. Such extensions may seeim to be forced upon us, or they may
arise in ways that appear to be matters of convenience, consistency, or
mathematical elegance. Accordingly, the development of mathematics
may seem to diverge from what it had been set up to achieve, namely
simply to reflect physical behaviour. Yet, in many instances, this drive for
mathematical consistency and elegance takes us to mathematical struc-
tures and concepts which turn out to mirror the physical world in a much
deeper and more broad-ranging way than those that we started with. It is
as though Nature herself is guided by the same kind of criteria of consist-
ency and elegance as those that guide human mathematical thought.
An example of this is the real-number system itself. We have no direct
evidence from Nature that there is a physical notion of ‘distance’ that
extends to arbitrarily large scales; still less is there evidence that such a
notion can be applied on the indefinitely tiny level. Indeed, there is no
evidence that ‘points in space’ actually exist in accordance with a geometry
that precisely makes use of real-number distances. In Buclid’s day, there
was scant evidence to support even the contention that such Euclidean
‘distances’ extended outwards beyond, say, about 10t metres,!® or in-
wards to as little as 105 metres. Yet, having been driven mathematically
by the consistency and elegance of the real-number system, all of our
broad-ranging and successful physical theories t0 date have, without
exception, still clung to this ancient notion of ‘real number’. Although
there might appear to have been little justification for doing this from the
evidence that was available in Euclid’s day, our faith in the real-number
system appears to have been rewarded. For our successful modern theories
of cosmology now allow us to extend the range of our real-number
distances out to about 1026 metres or more, while the accuracy of our
{heories of particle physics extends this range inwards to 1017 metres or
jess. (The only scale at which it bas been seriously proposed that a change
might come about is some 18 orders of magnitude smaller even than that,
namely 10~ metres, which is the ‘Planck scale’ of quantum gravity that
will feature strongly in some of our later discussions; €.8. §§31.1,6—12,14
and §32.7.) It may be regarded as a remarkable justification of our use of
mathematical idealizations that the range of validity of the real-number
system has extended from the total of about 10'7, from the smallest to the
largest, that seemed appropriate in Euclid’s day to at least the 10 that our
theories directly employ today, this representing a stupendous increase by

a factor of some 102,
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Sy;lt"il::'et;; ::11 %I(l);;d fleatlh m(;ire to the physical validity of the real-number
. In the first place, we must consider th
volumes are also quantities for which, s e eatal
’ real-number measures are
appropriate. A volume measure is the cub i s
: e of a distance measur d
area is the square of a distance). Accordi i e
' : ordingly, in the case of vol
may consider that it is the cube of th ’ evant, Fos
. . ' e above range that i
EBuclid’s time, this would give us a range of abg t X 1§7rglevanst1' o
today’s theories, at least (10"'3)3= 1012 Moreoveroﬁheg'loar) :th]0 ;hfor
ical measures that require real . iptic ding to. our
-number descriptions, accordi
presently successful theories. The m : e
: . ost noteworthy of these is ti
According to relativit i ; T space 1o
v theory, this needs to be adjoined
. . ' to space t
provide us with spacetime {which is th j o . .
I ; ¢ subject of our deliberati
::el?l};apter ?7). Spacetime volumes are four-dimensional, and it mg}ﬁ
el t::Iconsxder.e:d that the temporal range (of again about 10% or more
into0 al range, in our weI%—t'ested theories) should also be incorporated
fnt Eulrl considerations, giving a total of something like at least 10!
Mg shall see some far larger real numbers even than this coming into ou1;
! I:ecz::;ge:;tloltlﬁ (see §27f: 13 and §28.7), although it is not really clear in
at the use of re i i
some o real numbers (rather than, say, integers) is
leol\gziie ;{r:p?rtaritly I\?Y ph¥sical theory, from Archimedes, through Gali
wton, to Maxwell, Einstein, Schrddinger, Di ’ )
crucial role for the real-number s , S that it o e e
ystem has been that it provides a n
eces-
Za)lryAfl'{amework for the s_tandard formulation of the caleulus (see Chapter
fo;- the?;n;‘cers;full ?iynanul\c;al theories have required notions of the calculus
ormulations. Now, the conventional a
: ormulat , pproach to calculus re-
;11111:‘:1; ;kllle mgm;e:hmal nature of the reals to be what it is. That is to say iﬁl
end of the scale, it is the entire ran i
. nzll _ ge of the real numbers that
in principle being made use of. The i her
_ _ . ideas of calculus underli
physical notions, such as velocit ol
v, momentum, and energy. Consequentl
:1111: nrt::l-:lvg;nt;er syst':ncli enters our successful physical theories in a? fund::
or our description of all these quantiti
; T 0 ' ; es also. He
;?I;r;tllc}{leqt ea{x:her 1111 connection with areas, in §2.3 and §3.2, the inltﬂiexiitis
imit of small-scale stru ys i ing
alod pon. cture of the real-number systemn is being
foiite\zzsrg?gﬁstirlll afskhwh_eﬁer the real-number system is really ‘correct’
on of physical reality at its deepest levels. Wh
mechanical ideas were beginnin i " in the 30eh con-
g to be introduced early in the 20
tury, there was the feeling that . o
Y, perhaps we were now beginni i
a discrete or granular nature to th i ® malist scales. 1!
e physical world at its smallest scales.!!
ir;e;ggy?ulld appar_ently exist only in discrete bundles—or ‘quanta’—ax.ld
ical quantities of ‘action’ and ‘spin’
_ . pin’ seemed to occur only i
discrete multiples of a fundamental unit (see §§20.1,5 for the clasgic:;
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i 4 i terpart; see §§22.8-12 for
concept of action and §26.6 for 1Fs.quantum coun ; .
spin). Ij\ccordingly, various physicists attempted to build up an z_lltcrnaétge
picture of the world in which discrete processes governed all actions at the

ini 1s. _
mn}l;csat“}:eer, as we now understand qu}zlmtl{m rr;iclt;agice:i; t]i:;a::1 tl;tiasocx;yg tiogi
nor even lead us) to the view thal
Iglfatnﬁ;ienﬁuie to space, time, or energy at its tiniest level; (Tee Cil;aeﬁ?:;
21 and 22, particularly the last sentence of §22.13). Nevert he esfs, he idea
has remained with us that there may indeed be, at root, suc ; un mer-
tal discreteness to Nature, despite the fact tl.lat quantum mec amcsl,e s
standard formulation, certainly does r.wt imply this. Ij‘olr1 e)fciantllzo, e
great quantum physicist Erwin Schrédinger was am'ong_t e : Is N m}: o
pose that a change to some form of fundamental spatial discretene g

12

actually be necessary:*
The idea of a continuous range, so familiar to mamerpaticians in our day§i311:
something quite exorbitant, an enormous extrapolation of what is accesst
10 us.

He related this proposal to some carly Greek thir}king concernibx}g 11:hg
discreteness of Nature. Einstein, also, suggested, in his last publishe

words, that a discretely based (‘algebraic”) theory might be the way for-

ward for the future physics:!?

One can give good reasons why reality cannot be represented as a contl(lim-
ous field. ... Quantum phenomena. .. must tead to an attempt to Enn a
purely algebraic theory for the description of reality. But nobody knows

how (o obtain the basis of such a theory.**

Others'” also have pursued ideas of this kinc‘l; see §33.1. In the latefliit()is,t;
myself tried this sort of thing, coming up with a scheme that Ifre erntum_
as the theory of ‘spin networks’, in which the dllsc.rcte nature of qua -
mechanical spin is taken as the fundamental building block f(;lr ;1 cor;: na
torial (i.c. discrete rather than real-number-based) approach to p }i’deaé
(This scheme will be briefly described in §32.6.) Although 1r]ny r;wntheory
along this particular direction did not develap toa clompfe f:nSlVCt theory
(but, to some extent, became later transmogrified into tw'1stor the %3;
see §33.2), the theory of spin networks has now _been 11:_11)?; éntal
others, into one of the major ?golgralfuﬁles' fgrbz;tiza}cléler;%rtiﬁft:ioig sglthese
ntum gravity. shall giv _
E)r;?gzrsni;:asq :ig Chap%.er 3; Nevertheless, as tried and tested physical

theory stands today—as it has for the past 24 centur.ies—real numb.tars1
still form a fundamental ingredient of our understanding of the physica

world.
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3.4 Do natural numbers need the physical world?

In the above description, in §3.2, of the Dedekind approach to the real-
number system, I have presupposed that the rational numbers are already
taken as ‘understood’. In fact, it is not a difficult step from the integers to
the rationals; rationals are just ratios of integers (see the Preface). What
about the integers themselves, then? Are these rooted in physical ideas?
The discrete approaches to physics that were referred to in the previous
two paragraphs certainly depend upon our notion of ratural number (..
‘counting number’) and its extension, by the inclusion of the negative
numbers, to the integers. Negative numbers were not considered, by the
Greeks, to be actual ‘numbers’, so let us continue our considerations by
first asking about the physical status of the natural numbers themselves.

The natural numbers are the quantities that we now deaote by 0, 1, 2, 3,
4, etc., i.e. they are the non-negative whole numbers. (The modern pro-
cedure 1s to include 0 in this list, which is an appropriate thing to do from
the mathematical point of view, although the ancient Greeks appear not to
have recognized ‘zero’ as an actual number. This had to wait for the Hindu
mathematicians of India, starting with Brahmagupta in 7th century and
followed up by Mahavira and Bhaskara in the 9th and 12th century,
respectively.) The role of the natural numbers is clear and unambiguous.
They are indeed the most elementary ‘counting numbers’, which have a
basic role whatever the laws of geometry or physics might be. Natural
numbers are subject to certain familiar operations, most particularly the
operations of addition (such as 37+ 79 = 116) and multiplication (e.g.
37 x 79 = 2923), which enable pairs of natural numbers to be combined
together to préduce new natural numbers. These operations are independ-
ent of the nature of the geometry of the world. .

We can, however, raise the question of whether the natural numbers
themselves have a meaning or indeed existence independent of the actual
nature of the physical world. Perhaps our notion of natural numbers
depends upon there being, in our universe, reasonably well-defined dis-
crete objects that persist in time. Natural numbers initially arise when we
wish to count things, after all. But this seems to depend upon there
actually being persistent distinguishable ‘things” in the universe which
are available to be ‘counted’. Suppose, on the other hand, our universe
were such that numbers of objects had a tendency to keep changing.
Would natural numbers actually be ‘natural’ concepts in such a universe?
Moreover, perhaps the universe actually contains only a finite number of
‘things’, in which case the ‘natural’ numbers might themselves come to an
end at some point! We can even envisage a universe which consists only of
an amorphous featureless substance, for which the very notion of numer-
ical quantification might seem intrinsically inappropriate. Would the

63




S0 CHAPTER 3

notion of ‘natural number’ be at all relevant for the description of uni-
verses of this kind?

Even though it might well be the case that inhabitants of such a universe
would find our present mathematical concept of a ‘natural number’ diffi-
cult to come upon, it is hard to imagine that there would not still be an
important role for such fundamental entities. There are various ways in
which natural numbers can be introduced in pure mathematics, and these
do not seem to depend upon the actual nature of the physical universe at
all. Basically, it is the notion of a ‘set” which needs to be brought into play,
this being an abstraction that does not appear to be concerned, in any
essential way, with the specific structure of the physical universe. In fact,
there are certain definite subtleties concerning this question, and I shall
return to that issue later (in §16.5). For the moment, it will be convenient
to ignore such subtleties.

Let us consider one way (developed by Cantor from ideas of Giuseppe
Peano, and promoted by the distinguished mathematician John von Neu-
mann) that natural numbers can be introduced merely using the abstract
notion of set. It also leads on to what are called ‘ordinal numbers’. The
simplest set of all is referred to as the ‘null set’ or the ‘empty set’, and it is
characterized by the fact that it contains no members whatever! The empty
set is usually denoted by the symbol @, and we can write this definition

@=11

where the curly brackets delineate a set, the specific set under consider-
ation having, as its members, the quantities indicated within the brackets.
In this case, there is nothing within the brackets, so the set being described
is indeed the empty set. Let us associate @ with the natural number 0. We
can now proceed further and define the set whose only member is @5 1.e.
the set {@}. It is important to realize that {7} is not the same set as the
empty set @. The set {&} has one member (namely @), whereas @ itself has
none at all. Let us associate {&} with the natural number 1. We next define
the set whose two members are the two sets that we just encountered,
namely @ and {&}, so this new set is {@, {@} }, which is to be associated
with the natural number 2. Then we associate with 3 the collection of all
the three entities that we have encountered up to this point, namely the set
{2, (@}, {2, {@}}}, and with 4 the set {@, {@}, {@, {&}}, {@, {2},
{2, {&} }}}, whose members are again the sets that we have encountered
previously, and so on. This may not be how we usually think of natural
numbers, as a matter of definition, but it is one of the ways that mathem-
aticians can come to the concept. (Compare this with the discussion in the
Preface.) Morcover, it shows us, at least, that things like the natural
numbers!” can be conjured literally out of nothing, merely by employing
the abstract notion of ‘set’. We get an infinite sequence of abstract
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(Platonic) mathematical entities—sets containing, respectively, zero, one

ot L
X ;;m;g:—miln ;hli} case, the natural numbers themselves—yet this ‘existence’
ngly be conjured up by, and ceriaj
i _ f nly accessed by, th

exercise of our mental Imaginati i ’ e detais

1018, without any ref; i
o tho o e e . 1 any reference to the details

ysical universe. Dedekind’s i

o ature of ot ive construction, moreover
Y mental’ kind of procedure b i ,

enabling us to ‘construct’ the ent; mbers. 8 ol et
entire system of real numbers, 1% stiJl w1 ’
any reference to the actual i Yot s ot

physical nature of the world. Y. indi

. : ct . Yet, as indicate

bove, ‘real numbers’ indeed seem to have a direct relevance to the reac}

3.5 Discrete numbers in the physical world

?ou;s{ an'; getting slightly ahead of myself. We may recall that Dedekind’s
numbr;tss 1d(3n n:lallyAmade use of sets of rational numbers not of natural
rectly. As indicated above, it is not hard ‘
. \ to ‘define’ what
mean by a rational number once o norgber.
. we have the notion of
But, as an intermediate step. it j i fine the motion oo
But, €p, It 1s appropriate to define the notj
Inte otion of
Izlnéref;;“;l;f)h 15;.1 nat'r:ral number or the negative of a natural number (t?]lt:
. g its own negative). In a fi 1 i
ety o : . ormal sense, there is no
£ a mathematical definition of ‘negative’
. : nathem: egative’; roughly s -
Ing we just attach a ‘sign’, written as -, to each natural numbe% (ez(cé);?g)

y if)hlég(idt?a: it lis c_lealr that, unlike the natural numbers themselves, there
Ot physical content to the notion of i ,
' ‘ con| a negative number
é)ily;:fal tu:_)bjects. Negative mt'egers certainly have an extremely va]uab?cf
ganizational role, such as with bank balances and other financia] trans-

Sn;;g[il: ccl)lunt. as m_egative). I am referring, instead, to numbers that are
Quantities, in the sense that there is no directional (or temporal)

65




CHAPTER 3
§3.5

3

spect to the quantity in question. In these circumstances iit azpaegise tc:ht;et
';ahg case that it is the system of integers, both positive and neg ,
haitd':zcigggiif:él];ei'::zt;i‘:t only in about the l.ast hundredtye}a:; :1:30112
beco:ne apparent that the system of integers does mctllectii c;(;e;ll az e e
direct physical relevance. The ﬁ_rst exarr_lple of ap Iyim'c S hs far
to be appropriately quantified by integers 1s ei€ e e
s Ithough there is as yet no complete theoretical Justilx o
o 1Sh1'm?§:?) (ihe electric charge of any discrete isolat.ed body 18 mf ::1 !
o 1?1"1 d in, terms of integral multiples, positive, negative, of zeroi otmn
e ler value, namely the charge on the proton'(or on the: € eg tha;
Par_n;u.a the ne’gative of that of the proton).2® It is now believe bt
s composite objects built up, in a sense, f_rc‘am smal]e‘r enti ’
D forrod (0 as 1farks’ (and additional chargeless entities called_ gluons’).
elios totﬁxs' ¥ uarks to each proton, the quarks having electric charges
T}'lere epective \?alues 3 2 _1 These constituent charges add up to give
o Iesf’t’—(;tll:: 1 for tlie’ ;;oto3n. If quarks are fundamental cntitlets; ;he:
:;Ilice E;tsz;c ‘c;harge unit is one third of that which we seemed tcz1 hiivie ;n :ro%
Nevertheless, it is still true that el;ct.nc charge 18 glea%szreromn e
i rs. but now it is integer multiples of one third of 2 p ton chers,
la‘t}:giol,e of quarks and gluons in modern particle physics will be dis
" §§25.3'H7 .)har ¢ is just one instance of what is called an additive qua:m_m;
Elgcchcuantgum numbers are quantities that serve to chagaﬁ ehr:;e
e part les of Nature. Such a guantum nurnber,' wpwh I sha e
o partgc N real number of some kind, is ‘additive’ 1_f, in _order to er;ve
Fake t1O i? : a composite entity, we simply add up the mfimdual values 2:
he son _C; nt particles—taking due account of the signs, of courslc{e, s
th'e GOHStlb‘le -rl;entioned case of the proton and its constituent quarks. )
;’;“: ir};; s(::ifl:cing fact, according to the state of ourb pn;:feI:; ep?ng:d
: ditive guantum nDumMpErs
knom'ed%le" ﬂtlsﬁm:nofk:lh(;w;s?ec:n of ing’,gers, not general real numbe;s,
gzinr?tiesirg;)ly natural numbers—so that the negative values actually do
ocrl;gtt:act according to 20th-century physic:s, there is nov; a ge::zt:ll :Zrtlisg ;;1.
which it ’is meaningful to refer to a negative nl}mber g 31; yhis et
The great physicist Paul Dirac put fgrward, in 192d— {ood) heory
entiparils, sccording to WhiG (&8 KCL il or which cach
i is also a co .
t):jp;_ t(i)\fepa;:;ﬁ,n?f;;ier has precisely the negative of the va.lue that ?‘NI;?E
? 1the: c?;'iginal particle; see §§24.2,8. Thus, the system of mtegersto e
o tives included) does indeed appear to have a clear relcvancte o the
g;%rzizﬂ universe—a physical relevance that has become apparent only

66

Kinds of number in the physical waorld §3.5

the 20th century, despite those many centuries for which integers have
found great value in mathematics, commerce, and many other human
activities.

One important qualification should be made at this juncture, however.
Although it is true that, in a sense, an antiproton is a negative proton, it is
not really ‘minus one proton’. The reason is that the sign reversal refers
only to additive quantum numbers, whereas the notion of mass is not
additive in modern physical theory. This issue will be explained in a bit
more detail in §18.7. ‘Minus one proton’ would have to be an antiproton
whose mass is the negative of the mass value of an ordinary proton. But
the mass of an actual physical particle is not allowed to be negative. An
antiproton has the same mass as an ordinary proton, which is a positive
mass. We shall be seeing later that, according to the ideas of quantum field
theory, there are things called ‘virtual’ particles for which the mass (or,
more correctly, energy) can be negative. ‘Minus one proton’ would really
be a virtual antiproton. But a virtual particle does not have an independ-
ent existence as an ‘actual particle’.

Let us now ask the corresponding question about the rational numbers.
Has this system of numbers found any direct relevance to the physical
universe? As far as is known, this does not appear to be the case, at least as
far as conventional theory is concerned. There are some physical curios-
ities?? in which the family of rational numbers does play its part, but it
would be hard to maintain that these reveal any fundamental physical role
for rational numbers. On the other hand, it may be that there is a
particular role for the rationals in fundamental quantum-mechanical
probabilities (a rattonal probability possibly representing a choice between
alternatives, each of which involves just a finite number of possibilities).
This kind of thing plays a role in the theory of spin networks, as will be
briefly described in §32.6. As of now, the proper status of these ideas is
unclear.
Yet, there are other kinds of number which, according to accepted
theory, do appear to play a fundamental role in the workings of the
universe. The most important and striking of these are the complex

L numbers, in which the seemingly mystical quantity +/—1, usually denoted
' by 7, is introduced and adjoined to the real-number system. First encoun-

tered in the 16th century, but treated for hundreds of years with distrust,
the mathematical utility of complex numbers gradually impressed the

t mathematical community to a greater and greater degree, until complex
t numbers became an indispensable, even magical, ingredient of our math-

ematical thinking. Yet we now find that they are fundamental not just to

p mathematics: these strange numbers also play an extraordinary and very

basic role in the operation of the physical universe at its tiniest scales. This

f is a cause for wonder, and it is an even more striking instance of the
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convergence between mathematical ideas and the deeper workings of the
physical universe than is the system of real numbers that we have been
considering in this section. Let us come to these remarkable numbers

next.

Notes

Section 3.1
3.1, The notations >, <, =, =, frequently used in this book, respectively stand for ‘is

greater than’, ‘is less thar’, ‘is greater than or equal to’, and ‘is less than or equal
to’ (made appropriately grammatical).

3.2. Some readers might be aware of an apparently shorter argument which starts by
demanding that a/b be “in its lowest terms’ (i.c. that @ and b have no common
factor). However, this assumes that such a lowest-terms expression always exists,
which, though perfectly true, needs to be shown. Finding a lowest-term expression
for a given fraction 4/B (implicitly or explicitly-—say using the procedure known
as Euclid’s algorithm; see, for example, Hardy and Wright 1945, p. 134
Davenport 1952, p. 26; Littlewood 1949, Chap. 4; and Penrose 1989, Chap. 2)
involves reasoning similar to that given in the text, but more complicated.

3.3. One might well object that it is somewhat curious to use real numbers in the above
proof, since the ‘real rationals’ (i.c. quotients of reals) would simply be real
numbers all over again. This does not invalidate what has just been said, however.
It may be remarked that it is as well that a and b were taken to be integers, in the
original argument, and not themselves taken to be rationals. For, if a and & were
merely rational, then the argument would fail at the *decreasing sequence’ part,
even though the result itself would still be true.

Section 3.2

3.4. At a casual glance, expressions like a+ &+ (c+(d+ --- )"y may look
rather odd. However, they are very natural in the context of ancient Greek
thinking (although the Greeks did not use this particular notation). The procedure
of Euclid’s algorithm was referred to in Note 3.2 in the context of finding the
lowest-term form of a fraction. Euclid’s algorithm (when unravelled) leads pre-
cisely to such a continued fraction expression. The Greeks would apply this same
procedure to the ratio of two geometrical lengths. In the most general case, the
result would be an infinite continued fraction, of the kind considered here.

3.5. For more information (with proofs) concerning continued fractions, see the
elegant account given in Chapter 4 of Davenport (1952). It may be remarked
that in certain respects the continued-fraction representation of real numbers is
deeper and more interesting than the normal one in terms of decimal expansions,
finding applications in many different areas of modern mathematics, including the
hyperbolic geometry discussed in §§2.4,5. On the other hand, continued fractions
are not at all well suited for (most) practical calculation, the conventional decimal
representation being far easier to use,

3.6. Quadratic irrationals are so called because they arise in the sclution of a gencral
quadratic equation

Ax2+Bx+C=0:

- 3.16. Sce Ashtekar {1986); Ashtekar

| 3.18. This notion of ‘construct’ should n
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with 4 non-zero, the solutions being

B . [rB\? ¢ B 2
B J(BY.c. . B [\t ¢
24" (u) 44d —o V(ﬂ) i

where, to keep within the realm
4A4C. When A, B, and C are in
Do rational solution to the equ
tionals.
3.7. Professor Stelios Negrepontis informs me that this evid
_ll!:l; Pl?tomc Iiixalogue: the Statesman (= Politikos)
caetetos-the Sophist-the Politikos. See Negr i
3 . cpont;
3.8. Sec Sorabji (1984, 1988) for an account of an%:ieﬁt A
of space.
3.9. See Hardy (1914); Conway (1976); Burkill (1962).
Section 3.3
3.10. Thf:l scientific notation ‘10'’ for a ‘miltion million’ makes
?:rm:s::ﬂ;led 1‘11 N?te? 1.2 and 2_.4. In this book, I shall tend to avoid verbal
e s ch as {mlllon » and especially ‘billion’, in preference to this much clearer
o el_ ¢ notation, The word ‘billion’ is particularly confusing, as in American
u tﬁe Eiow commonb_a adopted also in the UK-—bjllion’ refers, to 10°, whereas
Ianguaoeser't(nn?re IOg1C3.l!)2 UK usage, in agreement with most other }Suropcan’
= ‘onegmhllj 0:: he';s to 10] - Negative exponents, such as in 10~¢ (which refers
, are i i
e also used here in accordance with the normal scientific
The distance 10'? metres is about 7
; times the Earth-Sun separati is i
il;;)téghl})fdt,lle distance of the planet Jupiter, although that distancepwas n%?‘g: oo
. uclid’s day and would have been guessed to be rather smaller .
1. See, {ol: example, Russell (1903), Chap. 4, .
3.12. Schrédinger (1952), pp. 30-1.
3.13. See Stachel (1995).
3.14. Einstein (1955), p. 166.

3.15. Seee.g. Snyder (1947); Schild (1949); and Ahmavaara (1965).
and Lewandowski (2004); Smolin (1998, 2001);

use of exponents,

Rovelli (1998, 2003).

| Section 3.4
j 3.17. The notion of ‘ordinal number”,

that is implied here in th i

lon ¢ 1 ¢ finite cas

also to mﬁmrelordmal numbers, the smallest being Cantor’s ‘' h?, l:x'tcnds
ordered collection of a// finite ordinals, » WHER s the

ot be taken in too st

P ofc : strong a sense, howaver, W,

shal e I‘indmg in §16.6 that there are certain real numbers (it fact most of them?
are maccessible by any computational procedure.

} Section 3.5

3.19. The Irish physicist George Johnstone Stone
‘(crude) estimate of the basic electric charge, and, i
electron” for this fundamental unit. In 1909!
Andrews Millikan designed his famous “ojl-
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k.

4
Magical complex numbers

4.1 The magic number ‘i’

How is it that —1 can have a square root? The square of a positive number
is always positive, and the square of a negative number is again positive
(and the square of 0 is just 0 again, so that is hardly of use to us here). It
seems impossible that we can find a number whose square is actually
negative. Yet, this is the kind of situation that we have seen before,
when we ascertained that 2 has no square root within the system of
rational numbers, In that case we resolved the situation by extending
our system of numbers from the rationals to a larger system, and we
| settled on the system of reals. Perhaps the same trick will work again.
Indeed it will. In fact what we have to do is something much easier and
' far less drastic than the passage from the rationals to the reals. (Raphael
i Bombelli introduced the procedure in 1572 in his work L’digebra,
b following Gerolamo Cardano’s original encounters with complex numbers
in his Ars Magna of 1545.) All we need do is introduce a single quantity,
| called ‘1, which is to square to —1, and adjoin it to the system of reals,
| allowing combinations of i with real numbers to form expressions such as

a+ib,

| where a and b are arbitrary real numbers. Any such combination is called a
| complex number. It is easy to see how to add complex numbers:

(@+ib)+ (c+idy=(a+)+i(b+d)

which is of the same form as before (with the real numbers @ + ¢ and b+ d
‘taking the place of the a and 5 that we had in our original expression).
What about multiplication? This is almost as easy. Let us find the product

fof a + ib with ¢ + id. We first simply multiply these factors, expanding the
expression using the ordinary rules of algebra;!

(@ + ib)(c + id) = ac + ibc + aid + ibid
= ac + i(be + ad) + i*bd.
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