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0. History and strategy

Feynman says:

U(t, q0, q1) =

∫
pathsϕ:[0,t]→N
ϕ(0)=q0, ϕ(t)=q1

exp

(
i

~
A(ϕ)

)
dϕ (∗)

where:

• U : R×N ×N → C is the integral kernel of the time

evolution operator in quantum mechanics on N ;

• A(ϕ) =
∫ t
τ=0 L(ϕ̇(τ), ϕ(τ))dτ is the action for a La-

grangian function L : TN → R;

• Planck’s constant ~ ∈ R is a small and positive;

• dϕ =
∏

0<τ<t dVol(ϕ(t)) does not exist (dVol is a

chosen volume form on N ).

Strategy to make sense of (∗):

• Set ~ � 1 infinitesimal;

• Define formal oscillating integral by copying ~ → 0

asymptotics of finite-dimensional integrals;

• Show that definition makes sense (hard!).

(Different possible strategy: use Wiener measure.)

Fact [folklore, c.f. Evans+Zworski]: M a f.d. manifold

with volume form dVol; f : M → R smooth (with good

growth near ∞). As ~ → 0,
∫
M exp

(
−(i~)−1f

)
dVol is

supported near critical points of f . Asymptotics known ex-

plicitly near each nondegenerate critical point of f .

Idea: P = {paths in N with duration t} is ∞-dim man-

ifold. Fibered over N × N . We want
∫

over fibers.

Fiberwise critical points = paths satisfying Euler-Lagrange

equations = classical paths = copy of TN if ∂
2L
∂v2 is every-

where nondegenerate.

So formal path integral inputs N , L, dVol, and a classi-

cal path γ satisfying nondegeneracy assumption, and out-

puts power-series =
∫

over ϕ infinitesimally near γ with

same boundary conditions.

N ×N

P C

ϕ7→(ϕ(0),ϕ(t))

exp(−(i~)−1A)

infinitesimal nbhd of TN

classical paths = TN

U =
pushforward

Integral is supported on vertical cross sections of infinites-

imal neighborhood of TN . So we should expect bad be-

havior near folds in TN → N ×N .

1. Nondegeneracy conditions

Assume ∂2L
∂v2 is everywhere nondegenerate. Then “project,

flow for duration t”: TN → N ×N is well-defined; iden-

tity TN = classical paths with duration t. (If N is non-

compact, replace TN with open nbhd thereof.) A classi-

cal path is nonfocal if this function is local diffeomorphism.

Focal paths = “folds” in picture.

Fact [Morse, c.f. Milnor]: If ∂
2L
∂v2 is everywhere positive-

definite, then focal paths are few and far between.

Action A is smooth function on fibers of P → N × N ;

at classical path γ, (fiberwise) Hessian A
(2)
γ makes sense.

Tfiber
ϕ P = {sections of ϕ∗TN → [0, t] vanishing at 0, t};

A
(2)
γ is second-order differential operator on Tfiber

γ P.

Theorem [folklore, c.f. TJF]: γ is classical path, γ(0) =

q0, γ(t) = q1. TFAE:

• γ is nonfocal, so can make γ depend smoothly on qa;

• A(2)
γ has no kernel on Tfiber

γ P;

• A(2)
γ has Green’s function = nonsmooth section of

(γ∗TN )⊗2 → [0, t]×2 vanishing on boundary square, with

A
(2)
γ G(ς, τ) = δ(ς, τ) (A(2) acts in ς slot);

• Sγ(t, q0, q1) = A
(0)
γ satisfies det ∂2S

∂q0∂q1
6= 0.

2. Feynman diagrams

M f.d. with dVol; f :M→ R smooth with nondeg critical

point; O compact nbhd of c.p. (no other c.p.s in O);

x i : O → RdimM local coords with dVol =
∏

dx i (these

exist by result of Moser) and x(c.p.) = 0. Set η = Morse

index of f at c.p. = # negative eigenvalues of f (2)(0).

Define a graphical calculus / Feynman rules:
x1 x2 xn

...
= −f (n)(0) · (x1 ⊗ · · · ⊗ xn)

=
(
f (2)(0)

)−1
, i.e. = −

A Feynman diagram is a combinatorial graph Γ (possi-

bly empty, disconnected, etc.). ev(Γ ) evaluates the dia-

gram. χ(Γ ) = |V |−|E|. |Aut Γ | = number of symmetries.

Example: ev
( )

=
(
−f (3)(0)

)⊗2 ◦
(

(f (2)(0))−1
)⊗3

;

χ = −1; |Aut| = 8.

Theorem [Feynman+Dyson, c.f. Evans+Zworski]:∫
O

exp

(
i

~
f

)
dVol

~→0
= (2πi~)dimM/2 ×

× exp

(
i

~
f (0)

)
× (−i)η ×

∣∣∣det f (2)(0)
∣∣∣−1/2

×

×
∑

Feynman diagrams Γ
with only trivalent and higher vertices

(i~)−χ(Γ ) ev(Γ )

|Aut Γ |

= (. . . )×
(

1+
i~
8

+
i~
12

+
i~
8

+ . . .

)
.
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3. Translation to infinite dimensions

M ; fiber of P → N × N . f ; A. γ nondegener-

ate classical path; think of it as depending smoothly on

boundary conditions γ(0) = q0, γ(t) = q1.

Pick local coords x i on N with dVol =
∏

dx i . Then

A(n) : T⊗nP → R makes sense, but depends on coords.

For ξ1, . . . , ξn ∈ TγP, an explicit Feynman rule:

ξ1 ξ2 ξn
...

= −A(n)(γ) · (ξ1 ⊗ · · · ⊗ ξn) =

= −
∫ t

0

n∏
k=1

dimN∑
ik=1

(
ξ̇ikk (τ) ∂

∂v ik
+ ξikk (τ) ∂

∂qik

)
L dτ

∂
∂v ,

∂
∂q act only on L, then evaluated at (γ̇(τ), γ(τ)).

If Γ is a Feynman diagram, a = 0, 1, and v ∈ TqaN ,

Γ

qa

v

def
=

dimN∑
i=1

v i
∂

∂qia

[
ev(Γ )

]
.

Introduce a new Feynman rule by demanding:

(∂2[−S])−1

10
q1 q0

= = (∂2[−S])−1

10
q1 q0

(Recall = −A(0) = −Sγ(q0, q1), so is invertible if γ

is nonfocal.)

Lemma: By variation of parameters,

ς τ

=
(∂2[−S])−1

γ γ
10

ς

q0

τ

q1

Θ(ς−τ)+
(∂2[−S])−1

γ γ
01

ς

q1

τ

q0

Θ(τ−ς).

The Morse index of a classical path is well-known, c.f.

Milnor. It is finite iff ∂2L
∂v2 is positive-definite.

An ad hoc definition (chosen to make units work out):

dim(fiber of P → N×2) = − dimN .

A more problematic ad hoc definition:∣∣∣detA(2)
∣∣∣−1

=

∣∣∣∣∣det
∂2
[
−Sγ(t, q0, q1)

]
∂q0 ∂q1

∣∣∣∣∣
Justification:

• ∂
∂qa

log
∣∣detA(2)

∣∣−1 want
= −Tr ∂A

(2)

∂qa

(
A(2)

)−1
= γ

qa

• ∂
∂qa

log

∣∣∣∣det
∂2
[
−Sγ(t,q0,q1)

]
∂q0 ∂q1

∣∣∣∣ have
=

(∂2[−S])−1

0 1
γ γ

γ
q0 q1

qa

Lemma: If converges, these agree.

This defines the formal path integral Uγ(t, q0, q1). It de-

pends on coordinates, might diverge, . . . .

4. Divergences

Main Problem: Individual Feynman diagrams may di-

verge: Gγ(ς, τ) has singularity like |ς − τ |; a vertex can

differentiate w.r.t. ς or τ ; so edge can include δ(ς − τ) =
1
2
∂2

∂ς∂τ |ς − τ |; so each loop can contribute δ(0).

Example: L(v , q) = v2

2q2 , dVol = dq. Then U(t, q0, q1)

diverges at one-loop order as t3

24 (δ(0))2.

Theorem [TJF]: If L(v , q) = 1
2a(q) ·v⊗2 +b(q) ·v+c(q)

and dVol =
√

det a is the volume form for the Riemannian

metric a, then divergences cancel at each order.

Proof: L is quadratic in v , so divergent loops do not

overlap. Consider sum (with symmetry factors) of degree-

n “wagon wheels” = single loop with n external edges.

Divergent part is

δ(0)× 1
n! Tr ∂n[log a] = δ(0)× 1

n!∂
n[log det a] = 0.

Example: + =

= δ(0)×Tr
(
−∂2a·a−1+∂a·a−1 ·∂a·a−1

)
+finite.

5. Paths that leave a coordinate patch

Theorem [TJF]: If there are no diverges, Uγ(t, q0, q1)

does not depend on the choice of coordinates, only on

that they be compatible with the volume form.

Theorem [TJF]: Let γ12 of duration t1 +t2 be nondegen-

erate and classical, and suppose that γ1 = γ12|[0,t1] and

γ2 = γ12|[t1,t1+t2] are nondegenerate. Let U12, U1, U2 be

the corresponding formal path integrals. Then:

U12(t1 + t2, q1, q2) =
∫
U1(t1, q1, q)U2(t2, q, q2) dq

Integral is formal (Feynman-diagrammatic), supported in

small neighborhood q ≈ γ12(t).

Theorem [TJF]: The generically-infinite sum

U(t, q0, q1)
def
=

∑
γ nondegenerate s.t.
γ(0)=q0,γ(t)=q1

Uγ(t, q0, q1)

converges pointwise in the sense of distributions.

6. Schrödinger equation

Theorem [TJF]: Suppose L(v , q) = 1
2a(q) · v⊗2 + b(q) ·

v + c(q), where a is Riemannian metric (kinetic energy),

b is 1-form (magnetic energy), c is function (potential

energy). Pick local coordinates so that det a = 1. Set:

Ĥq =
(
i~ ∂∂q + b(q)

)
· a
−1(q)

2 ·
(
i~ ∂∂q + b(q)

)
− c(q)

Then Uγ(t, q0, q1) satisfies

i~ ∂∂tUγ(t, q0, q1) = Ĥq1

[
U(t, q0, q1)

]
.

Theorem [TJF]: Same conditions. As a pointwise limit

of distributions:

lim
t→0

U(t, q0, q1) = δ(q0 − q1).


