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0. History and strategy

Feynman says:

U(t, o, q1) = /

paths ¢:[0,t] =N
©(0)=aqo0, (t)=aq

o (3A@)do ()

where:

e U:RxN xN — Cis the integral kernel of the time
evolution operator in quantum mechanics on N

e Alp) = thzo L(o(T), o(T))dT is the action for a La-
grangian function L : TN — R;

e Planck’s constant h € R is a small and positive;

o dp = [[ocrer dVol(p(t)) does not exist (dVol is a
chosen volume form on N).

Strategy to make sense of (x):

e Set i < 1 infinitesimal;

e Define formal oscillating integral by copying i — 0
asymptotics of finite-dimensional integrals;

e Show that definition makes sense (hard!).

(Different possible strategy: use Wiener measure.)

Fact [folklore, c.f. Evans+Zworski]: M a f.d. manifold
with volume form dVol; f : M — R smooth (with good
growth near o). As h — 0, [, exp(—(ih)~1f) dVol is
supported near critical points of f. Asymptotics known ex-
plicitly near each nondegenerate critical point of f.

Idea: P = {paths in A/ with duration t} is co-dim man-
ifold. Fibered over N' x N. We want [ over fibers.
Fiberwise critical points = paths satisfying Euler-Lagrange
equations = classical paths = copy of TN if a L is every-
where nondegenerate.

So formal path integral inputs N, L, dVol, and a classi-
cal path -y satisfying nondegeneracy assumption, and out-
puts power-series = [ over ¢ infinitesimally near -y with
same boundary conditions.

infinitesimal nbhd of TA

exp(—(in)~1A)
- (C

1
1
1

= (0(0).0(t)) )

/

classical paths = TN

’
’

7
LU=

N XN -~ ~ pushforward

Integral is supported on vertical cross sections of infinites-
imal neighborhood of TA/. So we should expect bad be-
havior near folds in TA' — N x N

1. Nondegeneracy conditions

Assume g L is everywhere nondegenerate. Then “project,

flow for duration t": TN — N x N is well-defined; iden-
tity TN = classical paths with duration t. (If N is non-
compact, replace TA with open nbhd thereof.) A classi-
cal path is nonfocal if this function is local diffeomorphism.
Focal paths = “folds” in picture.

Fact [Morse, c.f. Milnor]: If g% is everywhere positive-
definite, then focal paths are few and far between.

Action A is smooth function on fibers of P — N x N;
at classical path -y, (fiberwise) Hessian Agz) makes sense.
Tf},berP = {sections of ¢*TN — [0, t] vanishing at 0, t};

AL?) is second-order differential operator on THberp,

Theorem [folklore, c.f. TJF]: -y is classical path, y(0) =
qo. ¥(t) = q1. TFAE:

e 7y is nonfocal, so can make <y depend smoothly on g;;

o AP has no kernel on Tfberp;

° AgQ) has Green’s function = nonsmooth section of
(v*TN)®2 — [0, t]*? vanishing on boundary square, with
A(2 G(s,7)=06(s,7) (A® acts in g slot)'

e Sy(t,qo,q1) = A( ) satisfies det

£0.

aq 6q1
2. Feynman diagrams

M f.d. with dVol; f : M — R smooth with nondeg critical
point; @ compact nbhd of c.p. (no other c.p.s in O);
x" 1 O — RIMM |ocal coords with dVol = [ dx’ (these
exist by result of Moser) and x(c.p.) = 0. Set n = Morse
index of f at c.p. = # negative eigenvalues of £(2)(0).

Define a graphical calculus / Feynman rules:
X1 X2 Xn

=—fM0)- (x4 @ @ xpy)

= (P) m s

A Feynman diagram is a combinatorial graph I (possi-
bly empty, disconnected, etc.). ev(l") evaluates the dia-
gram. x(I") = |V|—|E|. |Aut I'| = number of symmetries.

Example: ev(W) = (—f(3)(0))®2 o ((7"(2)(0))71)®3
X = —1; |Aut| = 8.

Theorem [Feynman+Dyson c.f. Evans+Zworski]:

/O exp <f> dVol "2° (2rrim)dimM/2 5
X exp (hf(O)) X (=N x ‘det 7‘(2)(0)‘71/2 X
y > (in)=x(MN ev(I)

: |Aut |
Feynman diagrams I
with only trivalent and higher vertices

— () <1+'§W+$@+'§V+---)-




Feynman Diagrams for Schrodinger's Equation; Theo Johnson-Freyd; GADGET Seminar, 15 Feb 2011; page 2/2

3. Translation to infinite dimensions

M ~ fiber of P - N x N. f ~ A. v nondegener-
ate classical path; think of it as depending smoothly on
boundary conditions y(0) = qo, ¥(t) = g1.

Pick local coords x' on N with dVol = [Jdx’. Then
A - T®D _y R makes sense, but depends on coords.
For &1,..., &n € T4P, an explicit Feynman rule:

= ANy (G1® - ®&) =
t n dlmN

SR IDNGIOE

k=1 Ik 1
a@ 5q act only on L, then evaluated at (y(7),y(7)).
If I is a Feynman diagram, 2= 10,1, and v € TN,

+ &)

a
aq’k> LdT

Introduce a new Feynman rule by demanding:
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L do

(Recall e = —A©) = 5% is invertible if 7y

is nonfocal.)

5+(qo, q1), so

Lemma: By variation of parameters,

(N =% 2l e@-n+ Lo 9 e(r—9).
< - ’Y do q1: ’Y ’Y g1 4o ’Y
¢ E : +

The Morse index of a classical path is well-known, c.f.
Milnor. It is finite iff 8 2 is positive-definite.

An ad hoc definition (chosen to make units work out):
dim(fiber of P — N?) = —dim .

A more problematic ad hoc definition:

20
eta[

~1
det A<2>‘ — |d
‘ 090 0q1

Sy(t, g0, 1)] ‘

Justification:

o 2 log|det A)| T " T 042 (A4()) 7 = Ky

|

|

|

da

2 1
5 3] [—Sw(t,CIo.Ch)] have Sy
® 34, log | det Oqo Oqn X

Lemma: If \ﬁ converges, these agree.

This defines the formal path integral Uy(t, go, g1). It de-
pends on coordinates, might diverge, .. ..

4. Divergences

Main Problem: |Individual Feynman diagrams may di-
verge: G,(s,T) has singularity like | — 7|; a vertex can
differentiate w.r.t. ¢ or T; so edge can include d(s — 7) =

%a?;Tlg — T]; so each loop can contribute §(0).

Example: L(v,q) = 2, dVol = dg. Then U(t, do, q1)

diverges at one-loop order as 2%((5(0))2.

Theorem [TJF]: If L(v, q) = $a(q)-v®2+b(q)-v+c(q)
and dVol = v/det a is the volume form for the Riemannian
metric a, then divergences cancel at each order.

Proof: [ is quadratic in v, so divergent loops do not
overlap. Consider sum (with symmetry factors) of degree-
n “wagon wheels” = single loop with n external edges.
Divergent part is

§(0)x 4 Tro™log a] = 6(0)x 8"[log det a] = 0.

Example: )+ \/ =~/ =

=6(0)xTr(—0%a-a"1+08a-a~1-8a-a~ 1) +finite.

5. Paths that leave a coordinate patch

Theorem [TJF]: If there are no diverges, U,(t, go. q1)
does not depend on the choice of coordinates, only on
that they be compatible with the volume form.

Theorem [TJF]: Let «y1» of duration t1 + t> be nondegen-
erate and classical, and suppose that y; = '712|[0't1] and
Yo = ’le\[tl,t1+t2] are nondegenerate. Let Ujpp, Uy, Us be
the corresponding formal path integrals. Then:

Ua(t1 + t2, g1, ¢2) = [ Ur(t1, G1, q) Ua(t2, g, g2) dg
Integral is formal (Feynman-diagrammatic), supported in
small neighborhood g ~ 7y12(t).

Theorem [TJF]: The generically-infinite sum

def
= Z U’Y(tv qovql)

U(t,qo. q1) =
7 nondegenerate s.t.

~ O)=g(t)=a S
converges pointwise in the sense of distributions.

6. Schrodinger equation

Theorem [TJF]: Suppose L(v, q) = 2a(q) - v¥2 + b(q) -
v + ¢(q), where a is Riemannian metric (kinetic energy),
b is 1-form (magnetic energy), c is function (potential
energy). Pick local coordinates so that deta = 1. Set:
Aq = (inZ + b(q)) - 25D - (ind + b(q)) — c(q)
Then U,y(t Qo. q1) satisfies
inS:Uy(t, qo. q1) = Hag, [U(t, a0, a1)].

Theorem [TJF]: Same conditions.
of distributions:

lim U(t, go, q1) = 6(q0 — q1).
t—0

As a pointwise limit



