$\rm TMF$ and $\rm SQFT:$ questions and conjectures

Theo Johnson-Freyd (Dalhousie/Perimeter)

Generalized Cohomology and Physics, ICTP, 4 November 2021

These slides available at http://categorified.net/ICTP.pdf

Background: SQFT•

The spectrum TMF[•] of Topological Modular Forms, as defined by Lurie, Hopkins–Miller, Goerss, ..., is an object of derived number theory: the global sections of the derived structure sheaf of the derived stack of derived elliptic curves. To work with TMF involves tracking Galois actions, descent data, spectral sequences,

Proposal [Segal, Stolz–Teichner]: TMF^{\bullet} has an analytic model given by:

 $\mathrm{TMF}^{\bullet} \simeq \mathrm{SQFT}^{\bullet} := \{ \text{compact 2D } \mathcal{N} = (0,1) \text{ SQFTs of degree } \bullet \}$

Motivation: K^{\bullet} can be defined derived-algebraically, but can also be modelled analytically in terms of super Hilbert spaces. There are many closely related models, one of which is:

 $\mathrm{K}^{\bullet} \simeq \{ \mathsf{compact}\ \mathcal{N}{=}1 \ \mathsf{SQM} \ \mathsf{models} \ \mathsf{of} \ \mathsf{degree} \ \bullet \}$

Background: $SQFT^{\bullet}$ SQFT $^{\bullet} = \{compact 2D \mathcal{N}=(0,1) \text{ SQFTs of degree } \bullet \}$

SQFT = supersymmetric quantum field theory = (unitary, Poincaré-invariant, etc.) QFT equipped with some susy. The minimal nonzero susy in 2D is $\mathcal{N} = (0, 1)$: there is one susy, which transforms as a right-handed chiral spinor under Spin(2).

The topology on $\{(S)QFTs\}$ should be one in which two SQFTs are close if they have the same low-energy ("effective") behaviour. **Example [Henriques]:** For (S)QM models, can use the topology of strong convergence of the resolvent (of \hat{H}).

Any (Spin, say) *n*D QFT can have a gravitational anomaly valued in $I\Omega_{Spin}^{n+2}$. When *n*=2, the iso class of the anomaly is the degree $2(c_L - c_R) \in I\Omega_{Spin}^4(\text{pt}) \cong \mathbb{Z}$. More precisely, we must give an isomorphism between the anomaly of our SQFT and a reference anomomaly in order to resolve some sign ambiguities. **Definition [Segal]:** A (unitary) QFT is compact if its Wick-rotated partition function converges absolutely on all closed spacetimes. For QM: $\exp(-\tau \hat{H})$ should be trace-class for all $\tau > 0$.

Examples: Sigma models with compact target. Massive boson (aka harmonic oscillator). **Nonexample:** Massless boson.

Lemma: SQFT⁴ⁿ is not contractible. **Proof:** The (appropriately normalized) partition function on tori with nonbounding spin structure provides a nontrivial locally-constant map $SQFT^{4n} \rightarrow \{ weakly holomorphic modular forms of weight <math>-2n \}.$

Conjecture [Seiberg]: For any fixed anomaly, dimension, and susy, {(possibly) noncompact QFTs} is contractible.

RG flow

Spaces of (S)QFTs come with a canonical one-parameter renormalization group (RG) flow which rescales the metric on spacetime. RG fixed points = (super)conformal field theories.

Zamolodchikov: In 2D, RG flow is Morse flow for $C = \frac{1}{2}(c_L + c_R) \ge 0$. **Expect:** C is Morse–Bott. (C is not Morse.)

Question: Does (downward) RG flow converge in {compact 2D (S)QFTs}? In other words, if a 2D QFT is compact, is its deep IR limit again compact?

If so, then $SQFT^{\bullet}$ can be studied Morse-theoretically in terms of "zig-zags along RG flow lines" between compact SCFTs. **Question:** Develop a model of TMF^{\bullet} built out of SCFTs.

Question: $SQFT^{\bullet}$ isn't really a space — it is a stack. Develop Morse theory on stacks.

Spectrum structure

 $\mathsf{Basepoint} := \mathbf{0} \in \mathrm{SQFT}^{\bullet}$

The basepoint for $SQFT^{\bullet}$ is the Zero TQFT: for nonempty inputs, partition function $\equiv 0$, Hilbert space $\equiv \mathbb{C}^{0}$, etc.

An SQFT has spontaneous susy breaking if the operator 1 is a superdescendant (=is susy-exact). **Expect:** Spont. susy breaking iff deep IR limit is Zero. (This should be an example of susy localization. It is also a condition on the topology on $SQFT^{\bullet}$.)

Example: Fer(1) := a single chiral massless fermion λ . Choose the $\mathcal{N}=(0,1)$ susy generated by the supercurrent : λ :. At length scale L, this flows to Fer(1) with susy $L^{1/2}:\lambda$:. Renormalize λ . In the $L \to \infty$ limit, λ renormalizes to 0, and Fer(1) \to Zero.

Question: In some models, "Zero" is not a valid QFT. Is {SQFTs with spontaneous susy breaking} in any case contractible?

$\begin{array}{l} \text{Spectrum structure} \\ \Omega \mathrm{SQFT}^{\bullet} \simeq \mathrm{SQFT}^{\bullet-1} \end{array}$

Let $\mathbb{R} \to \mathrm{SQFT}^n$, $x \mapsto \mathcal{F}_x$ be a smooth family of SQFTs. Can dynamicalize the parameter x by promoting it to a scalar multiplet: a boson \hat{x} and its susy partner ψ , an antichiral fermion. " $\int_x \mathcal{F}_x$ "

Example: Fer(1)_x := (Fer(1) with susy $x:\lambda$:). Then $\int_x \text{Fer}(1)_x =$ (chiral fermion λ , full boson \hat{x} , antichiral fermion ψ , with $\mathcal{L} = \|\hat{x}\|^2 + \lambda \partial \lambda + \psi \partial \psi$). Theory is massive: the deep IR is the One tqft with partition function $\equiv 1$, $\mathcal{H} \equiv \mathbb{C}^1$, etc.

$$\otimes \operatorname{Fer}(1)_{x} : \operatorname{SQFT}^{\bullet-1} \leftrightarrows \Omega \operatorname{SQFT}^{\bullet} : \int_{x}$$

Question: Suppose \mathcal{F}_x is compact for every x and that $\mathcal{F}_x \to \text{Zero as } x \to \pm \infty$. How quickly must this converge for $\int_x \mathcal{F}_x$ to be compact?

Engineering specific Witten genera Powers of Δ

The Witten genus $Wit : SQFT^{\bullet} \rightarrow \{modular \text{ forms}\}$ is

$$\operatorname{Tr}_{\mathsf{R} ext{-sector}}ig((-1)^{\mathsf{F}}q^{L_0-c_L/24}ig) imes\eta(au)^{2(c_R-c_L)},$$

up to a convention-dependent $\sqrt[8]{1}$. Recall (Dedekind): $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)$, $\Delta(\tau) = \eta(\tau)^{24}$.

The Witten genus Wit : $\mathrm{TMF}^{\bullet} \to \{ \text{modular forms} \}$ is the edge map for the elliptic s.s. $\mathrm{H}^{\bullet}(\mathcal{M}_{ell}, \pi_{\bullet}\mathcal{O}^{der}) \Rightarrow \pi_{\bullet}\Gamma(\mathcal{M}_{ell}; \mathcal{O}^{der})$. Its image was calculated by Hopkins.

Example: If the $\mathcal{N}=(0,1)$ susy in \mathcal{F} enhances to (1,1), then automatically $\operatorname{Wit}(\mathcal{F}) \in \mathbb{Z}[\Delta]$. Coefficient counts Ramond-sector ground states. **Question:** Can every class in $\operatorname{Wit}(\operatorname{TMF}) \cap \mathbb{Z}[\Delta]$ be represented by an $\mathcal{N}=(1,1)$ SQFT?

Engineering specific Witten genera Powers of Δ

Calculation [Hopkins]: $k\Delta^m \in Wit(TMF)$ iff $km \in 24\mathbb{Z}$. So minimum nonzero k is 24/gcd(24, m).

Example: Duncan's "supermoonshine" holomorphic $\mathcal{N}=1$ SCFT $V^{f\natural}$ realizes $24\Delta^{-1}$. Antiholomorphic $\bar{V}^{f\natural}$ realizes 24Δ .

Thus $(\bar{V}^{f\natural})^m$ realizes $24^m\Delta^m$. Let $k(m) \in \mathbb{Z}$ so that permutation orbifold $(\bar{V}^{f\natural})^m /\!\!/ S_m$ realizes $k(m)\Delta^m$. **Calculation [Gaiotto]:** $gcd(k(m), 24^m) = 24/gcd(24, m)$. **Cor:** The minimum expected values can be realized by systems with massively $(\sim 24^m)$ many vacua and a massive cancellation.

Question: Realize $\frac{24}{\gcd(24,m)}\Delta^m$ by an antiholomorphic SCFT with only one vacuum.

Engineering specific Witten genera

Theta series

Let L be an even unimodular lattice. Then the theta function $\Theta_L = \sum_{\ell \in L} q^{\ell}$ is in the image of Wit : $\mathrm{TMF}^{\bullet} \to \{ \text{modular forms} \}$. For example, $L = \mathrm{E}_8$ lattice $\rightsquigarrow \Theta_L = \text{weight-4}$ Eistenstein series.

Question: Realize Θ_L .

Nonsolution: Purely holomorphic lattice VOA V_L has $\mathcal{N}=(0,1)$ susy because its right-moving sector is trivial. But this realizes $\Theta_L/\eta^{2\mathrm{rank}(L)}$. To get Θ_L , we need $c_R - c_L = \mathrm{rank}(L)/2$.

The $\mathcal{N}=(0,1)$ sigma model with target the torus hom(L, U(1)) has correct $c_R - c_L$, but it has fermion zero-modes which make the Witten genus vanish. Maybe some clever orbifold procedure will kill the zero-modes?

Equivariant $SQFT^{\bullet}$

A *G*-equivariant QFT is sometimes said to have *G*-flavour symmetry (to distinguish from gauge symmetryredundancy). **Expect:** For any anomaly $\omega \in I\Omega_{Spin}^4(BG) \oplus I\Omega_{Spin}^4(pt)$,

$$\begin{split} \mathrm{SQFT}_{G}^{\omega} &:= \{ \mathsf{SQFTs} \text{ with } G\text{-flavour symmetry and anomaly } \omega \} \\ &\simeq \mathrm{TMF}_{G}^{\omega} := \omega\text{-twisted } G\text{-equivariant } \mathrm{TMF}. \end{split}$$

Remark: A standard way to study $\mathcal{Q} \in \operatorname{SQFT}_{G}^{\omega}$ is to study the " \mathcal{Q} +Neumann" boundary condition for 3D *G*-gauge theory. (Anomaly inflow mechanism: $\omega =$ gauge theory Lagrangian.) Can recover \mathcal{Q} with its *G*-action by forming a sandwich:

Categorical symmetry

QFTs can also have noninvertible aka categorical symmetries. For 2D SQFTs, the most general type of finite categorical symmetry is described by a super modular tensor category C: a C-equivariant SQFT is a supersymmetric boundary condition for the 3D (Reshetikhin–Turaev type) Spin TQFT determined by C.

Conjecture: There is a meaningful notion of C-equivariant TMF $\mathrm{TMF}^{\bullet}_{\mathcal{C}}$ for any super MTC \mathcal{C} . The assignment $\mathcal{C} \mapsto \mathrm{TMF}_{\mathcal{C}}$ is functorial for super Witt equivalences (=topological interfaces of 3D TQFTs). **E.g.:** $\mathrm{TMF}^{\omega+\bullet}_{\mathcal{G}}$ depends only on $\mathcal{C} = \mathcal{Z}(\mathrm{sVec}^{\omega}[\mathcal{G}])$.

Theorem [Henriques–Morrison]: $\mathrm{TMF}^{\bullet}_{\mathcal{C}} \otimes \mathbb{Q}$ does meaningfully exist (at least for \mathcal{C} bosonic). Hard part: the Galois action.

Flavoured-compactness

A 2D SQFT with *G*-flavour symmetry can be placed on any worldsheet Σ equipped with a *G*-bundle. The strength of the *G*-bundle is called the fugacity of the flavour symmetry.

Definition: An SQFT is *G*-flavoured-compact if its Wick-rotated partition function converges absolutely whenever the fugacity is nonzero, but it is allowed to diverge at fugacity 0.

Example: Take the sigma model with target $\mathbb{C} = \mathbb{R}^2$ and G = U(1) = SO(2) acting in the canonical way. At nonzero fugacity, if the string tries to wander away from $0 \in \mathbb{C}$, it will get stretched, which costs energy. So the theory is flavoured-compact.

Equivariant SQFT^{\bullet}

Flavoured-compactness

Question: Define and analyze flavoured-compact bordism spectra and flavoured-compact TMF. Interpret:

- ▶ level-*N* TMF as \mathbb{Z}/N -flavoured-compact TMF.
- ► Jacobi forms with a pole at z = 0 as U(1)-flavoured-compact modular forms.
- trumpet geometries as flavoured-compact-nullbordisms. E.g.:

 formulas relating meromorphic Jacobi and mock-modular forms (e.g. polar decomposition) in terms of adding/removing trumpets.

Tmf[●] etc.

Like for ordinary modular forms, it makes sense to ask for topological modular forms whose growth at the cusp $\tau \to i\infty$ is no worse than q^D . Tmf[•] := holomorphic at the cusp (D = 0); Tcf[•] := topological cusp forms = vanish at the cusp (D = 1).

This roughly translates to the request that, in the Ramond sector, the spectrum of L_0 be bounded below by $D + \frac{c_L}{8} - \frac{c_R}{12}$. **Question:** What is the physical meaning of this request?

Unlike for ordinary modular forms, there are holomorphic topological modular forms of negative weight. **Example:** $\pi_{-21} \text{Tmf} \cong \mathbb{Z}$ generated by $\Delta^{-1}\nu$. $\pi_{-21} \text{TMF} \cong 0$. **Theorem [Stojanoska]:** $I_{\mathbb{Z}} \text{Tmf}^{\bullet} \cong \Sigma^{21} \text{Tmf}^{\bullet}$.

Question: Physically describe these negative-weight Tmf classes.

Tmf[●] etc.

Moonshine

For $\mathrm{TMF}^{\bullet}_{\mathcal{G}}$, space of cusps \approx adjoint quotient $\frac{\mathcal{G}}{\mathcal{G}} = \mathrm{L}(\mathrm{B}\mathcal{G})$.

Moonshine is about *G*-equivariant modular objects which grow as q^D near the cusp $e \in \frac{G}{G}$, and as q^{D+1} near all other cusps. **E.g.:** \mathbb{Z}/N -modular \approx modular for $\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | c \equiv 0 (N) \}$. If $f(\tau)$ is $\Gamma_0(N)$ -modular of weight=0 and grows as q^{-1} near *e* and as q^0 near the other cusps, then *f* is a hauptmodul: an iso (upper half plane)/ $\Gamma_0(N) \xrightarrow{\sim} \mathbb{P}^1$.

Question: Define and study a version of Tmf_{G}^{\bullet} with this type of mixed cuspidal behaviour.

Question: Monstrous moonshine involves hauptmoduln for subgps of $SL_2(\mathbb{R})$ not contained in $SL_2(\mathbb{Z})$. Do these make sense in TMF?