The Universal Target Catesorg
JHU Topolugy Seminar
Theo Johnson-F reyQ, 11 April 2024
Besed on jt work in pougress w/ David Reutte
And inspirction fur Freed-Scheimbuer-Telcen, schenk et al, and Hopkins.
(1) Mutivation

Suppoge you here a quantur syste ~ 1 some species of puticle-like excititirs. They can moue arond, and convert unto each othe: they forn a category. This categny has:
(f) super pozition
(frion
In $\geq 3+1 D$, it is sym nonoidel.
Questm: Can yn consistently ussisn a u-space of "intunal shtes" to every puticle?
1.e. \exists ? syn $\otimes \quad e \rightarrow$ Vec?

Answer: Not neressu: (7. Es. take two protons, prepare the in identize saves.

Then

should give $|\varphi\rangle \otimes|\varphi\rangle$
buck, but in fact gives $-|\varphi\rangle \otimes|\varphi\rangle$.
Cheap fix [Dirac]: work wo sVen:
$\mathbb{Z} / 2$-sided Ven U modified $/ /$
There CDelisne]: This fix suffices. If $A_{\neq 0}$ is sym $\otimes \mathbb{C}$-lined and rot too large, the $\exists A \rightarrow$ sven.

Compare: Maybe you just cant to represent local uperatus. Mage just thane that wove top'ly. These fir an \mathbb{R} alg, can in $\geq 1+1 D$.

Questu: \exists ? $A \rightarrow \mathbb{R}$? Answ: No.
Cheap fy [laideo]: work -1
$C=\left\{Q_{2}\right.$-grode $Q \quad \mathbb{R}$-umber $w l$
mudifred multiplicatr.3
Theore [Hiber 7]: This suffires.

Can also so histe A typical quanth systr can have"extended objects". E.s. befects in a lattize where the crystal stucture doesnit alisn.
These firn higle ategries.

General Questin: Find a universal terget hisher catesry Where any rot-too-luse sy- \otimes cet nors to.
(2) Existence + Chor-ctvizatin

To organize all levels at the sue the, Ill use sovethny this dept has som expertise in: atesovial spectra. A cat sp-is a sefence $e^{0}, \infty 1, \ldots$ of puinkl higher categories al

$$
\Omega e^{n}:=E_{n Q_{e^{n}}(\text { pointy })} \simeq e^{n-1}
$$

will use cat sp w/:

* e^{n} is a weak (ak- (inn)-cat.
* $e^{0} 2 \mathbb{Q}$.
* e^{n} is Cauchy complete.
* e^{n} his all adjoint.

1 tend to say tower for such a cit sp. But I'm open to vocab sussestios
Exuplei $\left(\mathbb{Q}, \operatorname{mol}^{f Q}(\mathbb{Q}), \operatorname{mal}^{f \cdot l}\left(\operatorname{mol}^{f l}(\mathbb{Q})\right)\right.$,

$$
\equiv \mathbb{Q}^{\prime \prime}
$$

Defn: A tower A° is sepuably closed (ak. sep'ly Nullste(lessitam) if $\forall A^{\circ} \rightarrow B^{\circ}$ w) $B \neq 0$ an B a sufficiently finte extasio, the \exists a splittios $A^{-} \curvearrowleft B^{\circ}$

Goal: Buill + study the separble chosue W° of \mathbb{Q}° (or \mathbb{R}° o...)

Some fectures of W° (if it exists):
(i) $W^{0} \cong \overline{\mathbb{Q}}$ (ov \mathbb{C} or...)

$$
w^{\prime} \cong \operatorname{sVec}_{\overline{\mathbb{B}}} . \text { [Deligne] }
$$

If e^{0} any dower, the θ a speation (in the woucct sense) $G_{m}\left(C^{0}\right)=$ invertible dbjs, nows, in e.
And $\mu\left(e^{*}\right):=G_{m}\left(e^{*}\right)\left[f_{n}\right]=$ the mb-π-frite approxint of $G_{m}\left(e^{-}\right)$.
(ii) $\mu\left(w^{-}\right) \cong I \mathbb{Q} / \mathbb{Z}$

Pf: Test aguinst gp a'ss of π-frite speetr.

Theoren (JF-Rertter): Ary W^{a} sumifyig
(i), (ii) is seplly closed.
whin's reelly song on: the is a "galois spece" $\pi_{\leq \infty}^{e t}\left(\mathbb{Q}^{-}\right)=B G \cdot\left((25)^{2} / \sqrt{2}\right)$
and (i) $\Rightarrow \pi_{\leqslant 1}=*$
(ii) $\Rightarrow H_{0}=*$
so Horericz \Rightarrow tha space $=$ K.
Wht we sha: if w^{0} sitistes (1) $\neg A Q$ $W^{0} \rightarrow B^{0}$ is an iso on $W^{\prime} \rightarrow B^{\prime}$, the $w^{\circ} \rightarrow \mathbb{B}^{\circ}$ is a solucble extasin.
$a-d:$
Cofegwial Kronnecker-Weber Thr:
For a tower, (cii) \leftrightarrow is
abelin-closed (egrr: soluably closed), ie. no nontrivial abelon extusins.

Man pf ingredent: Categrical thommothy.
morcaer, thas tells you huw to bilQ W? sat $\overline{\mathbb{Q}}$ (or $\overline{\mathbb{R}}$). Na iterntuely do a bunch of Kummer extersins.
S Konner dy only clessifies A-extusis if yor heve "Ath rots of wity".
Th-: Iterative Kunmer extersiss can create all rouk of vity.
(3) Calculating the Galos so-
set Gal: $=\operatorname{Gal}\left(w^{\circ} / \mathbb{Q}^{-}\right)$.
The cyclotromic cheracter is

$$
\begin{equation*}
\operatorname{Gal} \longrightarrow \operatorname{Aut}(I \mathbb{Q} / \mathbb{Z})=\widehat{\$} \times \tag{G}
\end{equation*}
$$

actur on $\mu\left(w^{0}\right)$.
The fibce of this wip is $\frac{G L,(\tilde{x})}{G-1}=$

$$
\left\{\begin{array}{r}
w^{\circ} \text { is an } Q^{\circ} \text { a's clave } \\
\left.\tau: \mu\left(w^{\circ}\right) \simeq I Q+\mathbb{Q}\right) \\
\text { is a chore of equi }\} .
\end{array}\right.
$$

Since 20. hed all doals, 1 an think of its elts as TQFTs.

Hor to constroct a $\pi Q F \tau$? ohe wy: frite pith ρ (ak= higher semialdedrib).

Best rose is abelim CS thy
Geven a π-fuite speetrum A and an inhonogeneoss quadratiz Ructu $q: A \rightarrow I Q L / D G B$ look at the TQFT

$$
M^{n} \longmapsto \int_{a: M \rightarrow A} \exp (2 \pi i \int_{M} \underbrace{}_{\in \mathbb{Q} / \mathbb{Z}} q(a))
$$

This is an "a Qa" type artm.
Thm (Gauss): Th3 TQFT is inuortible iff q is mondegenerate.

Set $l=L$-thy of π-fnite spectre山) inhan $I Q / D$-valued que feactions.

$$
e^{U}=[e, I Q / e]
$$

There is a $n p \frac{\hat{\beta}^{x}}{\text { Gal }} \rightarrow e^{2}$
equn

$$
l \times \frac{\hat{\phi}^{x}}{G-a l} \rightarrow I Q / \mathbb{Z} \quad \operatorname{lin} x l
$$

give by

$$
\begin{aligned}
& ((A, q),(w, \tau)) \longmapsto \\
& \tau^{-1}\binom{\text { Gauss-sin TUFT Built }}{f(A, \tau \circ f)}
\end{aligned}
$$

Main The: This gauss nip $\frac{\hat{\$}^{x}}{\text { Gal }} \rightarrow l^{v}$ is almost an iso. It fils in de 0 , and the only the failure is: the un. ans if the fibre is the profinite completion of a

$$
K\left(\pi / 2^{x \infty} \times \alpha / e^{x \infty}, 4\right) .
$$

The technifue in the proof is a versin of surgeny thory fir $T Q F T_{s}$ instecd of nemiflls. Just like for maifuld burgery, the che the it fils is clue fo "nondelim Knottig" of 1-minilds in 3-menifug.

The $(e / 2)^{x \infty} \times(Q / T)^{x \infty}$ is clual tr the troly quantorn witt sp

$$
\begin{aligned}
& \left(\frac{M T C s}{\text { morit equN }}\right) \\
& \left(\begin{array}{ccc}
m+c s & \text { bui } 4 & \text { fo } \\
\text { abelr } & \text { sos } & w / \\
\text { and } & \text { mu-s, } \\
\text { and } & \text { lsing } & \text { MTcs }
\end{array}\right)
\end{aligned}
$$

(4) A cosollogy and a conjectice.

Usual sorgery for from molfids:

$$
\begin{aligned}
& G 1 \underset{\substack{\text { cyc } \\
\text { chaitr }}}{ } G L,(\hat{\Phi}) \rightarrow l^{v} \text {. }
\end{aligned}
$$

Conjecture: The j-honuorphis faturs thro the cyclotomil character.

Enfrcad gaplessness the:
Plysici fect: A QFT co have a grua amb luing in İ \mathbb{C}^{x}. Fre th LES, we RQ:

In: If the amarb of the fft is sontruis) in $I \mathbb{C}^{x}$, the the gft is gaphes, excrot of cher the amaly is an Arf-Kervire inucriant and there exist Kervare-ind-1 frued mifolds (which hippers anky in diensis $2,6,14,30,62$, and possibly 126 by a fauss th of Hill-Hekins-Ravand ().

$$
F \mid N
$$

