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Introduction

In the Fall Semester, 2008, Prof. Mark Haiman taught Math 261A: Lie Groups, at the University
of California Berkeley. The course covered the structure of Lie groups, Lie algebras, and their
(complex) representations. The textbooks were [2] and [11]. I was one of many students in that
class, and typed detailed notes [8], including all the motivation, discussion, questions, errors, and
personal confusions and commentary. What you’re reading right now is a first attempt to make
those notes more presentable. It is also a study aid for my qualifying exam. As such, we present only
the definitions, theorems, and proofs, with little motivation. I have made limited rearrangements
of the material. Each subsection corresponds to one or two one-hour lectures. Needless to say,
the pedagogy (and, since I was taking dictation, many of the words), are due to M. Haiman. In
particular, I have quoted almost verbatim the problem sets M. Haiman assigned in the class (the
reader may find my answers to some of the exercises in the appendices of [8]). Of course, any and
all errors are mine.

In addition to [2, 11], the reader might be interested in getting a sense of previous renditions
of UC Berkeley’s Math 261. In 2006 a three-professor tag-team taught a one-semester Lie Groups
and Lie Algebras course; detailed notes are available [18], and occasionally I have referenced those
notes, especially when I was absent or lost, or when my notes are otherwise lacking. They go
quickly through the material — about twice as fast as we did — eschewing most proofs. For a very
different version of the course, the reader may be interested in the year-long Lie Groups and Lie
Algebras course taught in 2001 [12].

These notes are typeset using TEXShop Pro on a MacBook running OS 10.5; the backend is
pdfLATEX. Pictures and diagrams are drawn using pgf/TikZ. For a full list of packages used, you
may peruse the LATEX source code for this document, available at http://math.berkeley.edu/

~theojf/LieGroupsBook.tex.
In addition to Mark Haiman, the people without whom I would not have been able to put

together this text were Alex Fink, Dustin Cartwright, Manuel Reyes, and the other participants in
the class.

0.1 Notation

We will generally use A,B, C, . . . for categories; named categories are written in small-caps, so that
for example A-mod is the category of (finite-dimensional) A-modules. Objects in a category are
generally denoted A,B,C, . . . , with the exception that for Lie algebras we use fraktur letters a, b, c.
The classical Lie groups we refer to with roman letters (GL(n,C), etc.), and we write M(n) for

vii
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the algebra of n× n matrices. Famous fields and rings are in black-board-bold: R,C,Q,Z, and we
use K rather than k for a generic field. The natural numbers N is always the set of non-negative
integers, so that it is a rig, or “ring with identities but without negations”.

In a category with products, we use {pt} for the terminal object, and × for the monoidal
structure; a general monoidal category is written with ⊗ for the product. We do not include
associators and other higher-categorical things.

For morphisms in a category we use lower-case Greek and Roman letters α, β, a, b, c, . . . . An
element of an object A in monoidal category is a morphism a : {pt} → A, or with {pt} replaced
by the monoidal unit; we will write this as “a ∈ A” following the usual convention. When the
category is concrete with products, this agrees with the set-theoretic meaning. The identity map
on any object A ∈ A we write as 1A. We always write the identity matrix as 1, or 1n for the n× n
identity matrix when we need to specify its size. Similarly, 0 and 0n refer to the zero matrix.

If M is a manifold (we will never need more general geometric spaces), we will write C (M)
for the continuous, smooth, analytic, or holomorphic functions on it, depending on what is natural
for the given space. Thus if M is a real manifold, we will always use the symbol C for the
sheaf of infinitely-differentiable or analytic functions on it, depending on whether the ambient
category is that of infinitely-differentiable manifolds or analytic manifolds. When working over
the complex numbers, C may refer to the sheaf of complex analytic functions or of holomorphic
functions. Moreover, the word “smooth” may mean any of “infinitely-differentiable”, “analytic”,
or “holomorphic”, depending on the choice of ambient category. When a statement does not hold
in this generality, we will specify. We write TM for the tangent bundle of M , and TpM for the
fiber over the point p.



Chapter 1

Motivation: Closed Linear Groups

1.1 Definition of a Lie Group

[8, Lecture 1]

1.1.1 Group objects

1.1 Definition Let C be a category with finite products; denote the terminal object by {pt}. A
group object in C is an object G along with maps µ : G × G → G, i : G → G, and e : {pt} → G,
such that the following diagrams commute:

G×G×G G×G

G×G G

1G×µ

µ×1G µ

µ

(1.1.1)

G{pt} ×G

G×G

G× {pt}

e×1G
µ

∼

1G×e

∼

(1.1.2)

{pt}G

G×G G×G

G

G×G G×G

e

∆

∆

µ

µ

1G×i

i×1G

(1.1.3)

1



2 CHAPTER 1. MOTIVATION: CLOSED LINEAR GROUPS

In equation 1.1.2, the isomorphisms are the canonical ones. In equation 1.1.3, the map G→ {pt}
is the unique map to the terminal object, and ∆ : G→ G×G is the canonical diagonal map.

If (G,µG, eG, iG) and (H,µH , eH , iH) are two group objects, a map f : G→ H is a group object
homomorphism if the following commute:

G×G G

H ×H H

µG

µH

f×f f {pt}

G

H

eG

eH

f (1.1.4)

(That f intertwines iG with iH is then a corollary.)

1.2 Definition A (left) group action of a group object G in a category C with finite products is a
map ρ : G×X → X such that the following diagrams commute:

G×G×X G×X

G×X X

1G×ρ

µ×1X ρ

ρ

(1.1.5)

X

G×X

{pt} ×X

ρ
e×1X

∼

(1.1.6)

(The diagram corresponding to equation 1.1.3 is then a corollary.) A right action is a map X×G→
X with similar diagrams. We denote a left group action ρ : G×X → X by ρ : Gy X.

Let ρX : G × X → X and ρY : G × Y → Y be two group actions. A map f : X → Y is
G-equivariant if the following square commutes:

G×X X

G× Y Y

ρX

1G×f f

ρY

(1.1.7)

1.1.2 Analytic and Algebraic Groups

1.3 Definition A Lie group is a group object in a category of manifolds. In particular, a Lie group
can be infinitely differentiable (in the category C∞-Man) or analytic (in the category C ω-Man)
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when over R, or complex analytic or almost complex when over C. We will take “Lie group” to
mean analytic Lie group over either C or R. In fact, the different notions of real Lie group coincide,
a fact that we will not directly prove, as do the different notions of complex Lie group. As always,
we will use the word “smooth” for any of “infinitely differentiable”, “analytic”, or “holomorphic”.

A Lie action is a group action in the category of manifolds.
A (linear) algebraic group over K (algebraically closed) is a group object in the category of

(affine) algebraic varieties over K.

1.4 Example The general linear group GL(n,K) of n×n invertible matrices is a Lie group over K
for K = R or C. When K is algebraically closed, GL(n,K) is an algebraic group. It acts algebraically
on Kn and on projective space P(Kn) = Pn−1(K).

1.2 Definition of a Closed Linear Group

[8, Lectures 2 and 3]
We write GL(n,K) for the group of n×n invertible matrices over K, and M(n,K) for the algebra

of all n× n matrices. We regularly leave off the K.

1.5 Definition A closed linear group is a subgroup of GL(n) (over C or R) that is closed as a
topological subspace.

1.2.1 Lie algebra of a closed linear group

1.6 Lemma / Definition The following describe the same function exp : M(n) → GL(n), called
the matrix exponential.

1. exp(a) def=
∑
n≥0

an

n!
.

2. exp(a) def= eta
∣∣∣
t=1

, where for fixed a ∈ M(n) we define eta as the solution to the initial value

problem e0a = 1, d
dte

ta = aeta.

3. exp(a) def= lim
n→∞

Å
1 +

a

n

ãn
.

If ab− ba = 0, then exp(a+ b) = exp(a) + exp(b).
The function exp : M(n)→ GL(n) is a local isomorphism of analytic manifolds. In a neighbor-

hood of 1 ∈ GL(n), the function log a def= −
∑
n>0

(1− a)n

n
is an inverse to exp.

1.7 Lemma / Definition Let H be a closed linear group. The Lie algebra of H is the set

Lie(H) = {x ∈ M(n) : exp(Rx) ⊆ H} (1.2.1)

1. Lie(H) is a R-subspace of M(n).



4 CHAPTER 1. MOTIVATION: CLOSED LINEAR GROUPS

2. Lie(H) is closed under the bracket [, ] : (a, b) 7→ ab− ba.

1.8 Definition A Lie algebra over K is a vector space g along with an antisymmetric map [, ] :
g⊗ g→ g satisfying the Jacobi identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 (1.2.2)

A homomorphism of Lie algebras is a linear map preserving the bracket. A Lie subalgebra is a
vector subspace closed under the bracket.

1.9 Example The algebra gl(n) = M(n) of n × n matrices is a Lie algebra with [a, b] = ab − ba.
It is Lie(GL(n)). Lemma/Definition 1.7 says that Lie(H) is a Lie subalgebra of M(n).

1.2.2 Some analysis

1.10 Lemma Let M(n) = V ⊕W as a real vector space. Then there exists an open neighborhood
U 3 0 in M(n) and an open neighborhood U ′ 3 1 in GL(n) such that (v, w) 7→ exp(v) exp(w) :
V ⊕W → GL(n) is a homeomorphism U → U ′.

1.11 Lemma Let H be a closed subgroup of GL(n), and W ⊆ M(n) be a linear subspace such that
0 is a limit point of the set {w ∈W s.t. exp(w) ∈ H}. Then W ∩ Lie(H) 6= 0.

Proof Fix a Euclidian norm on W . Let w1, w2, · · · → 0 be a sequence in {w ∈W s.t. exp(w) ∈ H},
with wi 6= 0. Then wi/|wi| are on the unit sphere, which is compact, so passing to a subsequence,
we can assume that wi/|wi| → x where x is a unit vector. The norms |wi| are tending to 0, so
wi/|wi| is a large multiple of wi. We approximate this: let ni = d1/|wi|e, whence niwi ≈ wi/|wi|,
and niwi → x. But expwi ∈ H, so exp(niwi) ∈ H, and H is a closed subgroup, so expx ∈ H.

Repeating the argument with a ball of radius r to conclude that exp(rx) is in H, we conclude
that x ∈ Lie(H). �

1.12 Proposition Let H be a closed subgroup of GL(n). There exist neighborhoods 0 ∈ U ⊆ M(n)
and 1 ∈ U ′ ⊆ GL(n) such that exp : U ∼→ U ′ takes Lie(H) ∩ U ∼→ H ∩ U ′.

Proof We fix a complement W ⊆ M(n) such that M(n) = Lie(H) ⊕W . By Lemma 1.11, we can
find a neighborhood V ⊆ W of 0 such that {v ∈ V s.t. exp(v) ∈ H} = {0}. Then on Lie(H)× V ,
the map (x,w) 7→ exp(x) exp(w) lands in H if and only if w = 0. By restricting the first component
to lie in an open neighborhood, we can approximate exp(x+w) ≈ exp(x) exp(w) as well as we need
to — there’s a change of coordinates that completes the proof. �

1.13 Corollary H is a submanifold of GL(n) of dimension equal to the dimension of Lie(H).

1.14 Corollary exp(Lie(H)) generates the identity component H0 of H.

1.15 Remark In any topological group, the connected component of the identity is normal.

1.16 Corollary Lie(H) is the tangent space T1H
def= {γ′(0) s.t. γ : R→ H, γ(0) = 1} ⊆ M(n).
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1.3 Classical Lie groups

[8, Lectures 4 and 5]
We mention only the classical compact semisimple Lie groups and the classical complex semisim-

ple Lie groups. There are other very interesting classical Lie groups, c.f. [14].

1.3.1 Classical Compact Lie groups

1.17 Lemma / Definition The quaternians H is the unital R-algebra generated by i, j, k with the
multiplication i2 = j2 = k2 = ijk = −1; it is a non-commutative division ring. Then R ↪→ C ↪→ H,
and H is a subalgebra of M(4,R). We defined the complex conjugate linearly by ī = −i, j̄ = −j, and
k̄ = −k; complex conjugation is an anti-automorphism, and the fixed-point set is R. The Euclidean
norm of ζ ∈ H is given by ‖ζ‖ = ζ̄ζ.

The Euclidean norm of a column vector x ∈ Rn,Cn,Hn is given by ‖x‖2 = x̄Tx, where x̄ is the
component-wise complex conjugation of x.

If x ∈ M(n,R),M(n,C),M(n,H) is a matrix, we define its Hermetian conjugate to be the matrix
x∗ = x̄T ; Hermetian conjugation is an antiautomorphism of algebras M(n) → M(n). M(n,H) ↪→
M(2n,C) is a ∗-embedding.

Let j =
Ç

0 −1
1 0

å
∈ M(2,M(n,C)) = M(2n,C) be a block matrix. We define GL(n,H) def=

{x ∈ GL(2n,C) s.t. jx = x̄j}. It is a closed linear group.

1.18 Lemma / Definition The following are closed linear groups, and are compact:

• The (real) special orthogonal group SO(n,R) def= {x ∈ M(n,R) s.t. x∗x = 1 and detx = 1}.

• The (real) orthogonal group O(n,R) def= {x ∈ M(n,R) s.t. x∗x = 1}.

• The special unitary group SU(n) def= {x ∈ M(n,C) s.t. x∗x = 1 and detx = 1}.

• The unitary group U(n) def= {x ∈ M(n,C) s.t. x∗x = 1}.

• The (real) symplectic group Sp(n,R) def= {x ∈ M(n,C) s.t. x∗x = 1}.

There is no natural quaternionic determinant.

1.3.2 Classical Complex Lie groups

The following groups make sense over any field, but it’s best to work over an algebraically closed
field. We work over C.

1.19 Lemma / Definition The following are closed linear groups over C, and are algebraic:

• The (complex) special linear group SL(n,C) def= {x ∈ GL(n,C) s.t. detx = 1}.

• The (complex) special orthogonal group SO(n,C) def= {x ∈ SL(n,C) s.t. xTx = 1}.

• The (complex) symplectic group Sp(n,C) def= {x ∈ GL(2n,C) s.t. xT jx = j}.
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1.3.3 The Classical groups

In full, we have defined the following “classical” closed linear groups:

Group Group Algebra Algebra
Name Description Name Description dimR

C
om

pa
ct SO(n,R) {x ∈ M(n,R) s.t. x∗x = 1, detx = 1} so(n,R) {x ∈ M(n,R) s.t. x∗ + x = 0}

(n
2

)
SU(n) {x ∈ M(n,C) s.t. x∗x = 1, detx = 1} su(n) {x ∈ M(n,C) s.t. x∗ + x = 0, trx = 0} n2 − 1
Sp(n,R) {x ∈ M(n,H) s.t. x∗x = 1} sp(n,R) {x ∈ M(n,H) s.t. x∗ + x = 0} 2n2 + n

GL(n,H) {x ∈ GL(2n,C) s.t. jx = x̄j} gl(n,H) {x ∈M2n(C) s.t. jx = x̄j} 4n2

C
om

pl
ex SL(n,C) {x ∈ M(n,C) s.t. detx = 1} sl(n,C) {x ∈ M(n,C) s.t. trx = 0} 2(n2 − 1)

SO(n,C) {x ∈ M(n,C) s.t. xTx = 1,detx = 1} so(n,C) {x ∈ M(n,C) s.t. xT + x = 0} n(n− 1)
Sp(n,C) {x ∈ M(n,C) s.t. xT jx = j} sp(n,C) {x ∈ M(n,C) s.t. xT j + jx = 0} 2

(2n+1
2

)

1.20 Proposition Via the natural embedding M(n,H) ↪→ M(2n,C), we have:

Sp(n) = GL(n,H) ∩ U(2n) (1.3.1)
= GL(n,H) ∩ Sp(n,C) (1.3.2)
= U(2n) ∩ Sp(n,C) (1.3.3)

1.4 Homomorphisms of closed linear groups

1.21 Definition Let H be a closed linear group. The adjoint action H y H is given by by
gh

def= ghg−1, and this action fixes 1 ∈ H. This induces the adjoint action Ad : H y T1H = Lie(H).
It is given by g · y = gyg−1, where now y ∈ Lie(H).

1.22 Lemma Let H and G be closed linear groups and φ : H → G a smooth homomorphism.
Then φ(1) = 1, so dφ : T1H → T1G by X 7→ (φ(1 + tX))′(0). The diagram of actions commutes:

H y T1H

G y T1G

φ dφ

This is to say:
dφ(Ad(h)Y ) = Ad(φ(h)) dφ(Y ) (1.4.1)

Thus dφ [X,Y ] = [dφX, dφY ], so dφ is a Lie algebra homomorphism.
If H is connected, the map dφ determines the map φ.
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Exercises

1. (a) Show that the orthogonal groups O(n,R) and O(n,C) have two connected components,
the identity component being the special orthogonal group SOn, and the other consisting
of orthogonal matrices of determinant −1.

(b) Show that the center of O(n) is {±In}.
(c) Show that if n is odd, then SO(n) has trivial center and O(n) ∼= SO(n) × (Z/2Z) as a

Lie group.

(d) Show that if n is even, then the center of SO(n) has two elements, and O(n) is a
semidirect product (Z/2Z) n SO(n), where Z/2Z acts on SO(n) by a non-trivial outer
automorphism of order 2.

2. Construct a smooth group homomorphism Φ : SU(2)→ SO(3) which induces an isomorphism
of Lie algebras and identifies SO(3) with the quotient of SU(2) by its center {±I}.

3. Construct an isomorphism of GL(n,C) (as a Lie group and an algebraic group) with a closed
subgroup of SL(n+ 1,C).

4. Show that the map C∗ × SL(n,C) → GL(n,C) given by (z, g) 7→ zg is a surjective ho-
momorphism of Lie and algebraic groups, find its kernel, and describe the corresponding
homomorphism of Lie algebras.

5. Find the Lie algebra of the group U ⊆ GL(n,C) of upper-triangular matrices with 1 on
the diagonal. Show that for this group, the exponential map is a diffeomorphism of the Lie
algebra onto the group.

6. A real form of a complex Lie algebra g is a real Lie subalgebra gR such that that g = gR⊕ igR,
or equivalently, such that the canonical map gR⊗RC→ g given by scalar multiplication is an
isomorphism. A real form of a (connected) complex closed linear group G is a (connected)
closed real subgroup GR such that Lie(GR) is a real form of Lie(G).

(a) Show that U(n) is a compact real form of GL(n,C) and SU(n) is a compact real form
of SL(n,C).

(b) Show that SO(n,R) is a compact real form of SO(n,C).

(c) Show that Sp(n,R) is a compact real form of Sp(n,C).
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Chapter 2

Mini-course in Differential Geometry

2.1 Manifolds

[8, Lectures 6, 7, and 8]

2.1.1 Classical definition

2.1 Definition Let X be a (Hausdorff) topological space. A chart consists of the data U ⊆
open

X

and a homeomorphism φ : U ∼→ V ⊆
open

Rn. Rn has coordinates xi, and ξi
def= xi ◦ φ are local

coordinates on the chart. Charts (U, φ) and (U ′, φ′) are compatible if on U ∩ U ′ the ξ′i are smooth
functions of the ξi and conversely. I.e.:

U ∩ U ′U U ′

φ

V

φ′

V ′

φ̄

W

φ̄′

W ′⊇V ⊆ V’
φ̄′◦φ̄−1

smooth with smooth inverse

(2.1.1)

An atlas on X is a covering by pairwise compatible charts.

2.2 Lemma If U and U ′ are compatible with all charts of A, then they are compatible with each
other.

2.3 Corollary Every atlas has a unique maximal extension.

2.4 Definition A manifold is a Hausdorff topological space with a maximal atlas. It can be real,
infinitely-differentiable, complex, analytic, etc., by varying the word “smooth” in the compatibility
condition equation 2.1.1.

2.5 Definition Let U be an open subset of a manifold X. A function f : U → R is smooth if it is
smooth on local coordinates in all charts.

9
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2.1.2 Sheafs

2.6 Definition A sheaf of functions S on a topological space X assigns a ring S (U) to each open
set U ⊆

open
X such that:

1. if V ⊆ U and f ∈ S (U), then f |V ∈ S (V ), and

2. if U =
⋃
α Uα and f : U → R such that f |Uα ∈ S (Uα) for each α, then f ∈ S (U).

The stalk of a sheaf at x ∈ X is the space Sx
def= limU3x S (U).

2.7 Lemma Let X be a manifold, and assign to each U ⊆
open

X the ring C (U) of smooth functions

on U . Then C is a sheaf. Conversely, a topological space X with a sheaf of functions S is a
manifold if and only if there exists a covering of X by open sets U such that (U,S |U ) is isomorphic
as a space with a sheaf of functions to (V,S Rn |V ) for some V ⊆ Rn open.

2.1.3 Manifold constructions

2.8 Definition If X and Y are smooth manifolds, then a smooth map f : X → Y is a continuous
map such that for all U ⊆ Y and g ∈ C (U), then g ◦ f ∈ C (f−1(U)). Manifolds form a category
Man with products: a product of manifolds X × Y is a manifold with charts U × V .

2.9 Definition Let M be a manifold, p ∈ M a point, and γ1, γ2 : R→ M two paths with γ1(0) =
γ2(0) = p. We say that γ1 and γ2 are tangent at p if (f ◦ γ1)′(0) = (f ◦ γ2)′(0) for all smooth f on
a nbhd of p, i.e. for all f ∈ Cp. Each equivalence class of tangent curves is called a tangent vector.

2.10 Definition Let M be a manifold and C its sheaf of smooth functions. A point derivation is
a linear map δ : Cp → R satisfying the Leibniz rule:

δ(fg) = δf g(p) + f(p) δg (2.1.2)

2.11 Lemma Any tangent vector γ gives a point derivation δγ : f 7→ (f ◦γ)′(0). Conversely, every
point derivation is of this form.

2.12 Lemma / Definition Let M and N be manifolds, and f : M → N a smooth map sending
p 7→ q. The following are equivalent, and define (df)p : TpM → TqN , the differential of f at p:

1. If [γ] ∈ TpM is represented by the curve γ, then (df)p(X) def= [f ◦ γ].

2. If X ∈ TpM is a point-derivation on SM,p, then (df)p(X) : SN,q → R (or C) is defined by
ψ 7→ X[ψ ◦ f ].

3. In coordinates, p ∈ U ⊆
open

Rm and q ∈W ⊆
open

Rn, then locally f is given by f1, . . . , fn smooth

functions of x1, . . . , xm. The tangent spaces to Rn are in canonical bijection with Rn, and a
linear map Rm → Rn should be presented as a matrix:

Jacobian(f, x) def=
∂fi
∂xj

(2.1.3)
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2.13 Lemma We have the chain rule: if M
f→ N

g→ K, then d(g ◦ f)p = (dg)f(p) ◦ (df)p.

2.14 Theorem (Inverse Mapping Theorem) 1. Given smooth f1, . . . , fn : U → R where
p ∈ U ⊆

open
Rn, then f : U → Rn maps some neighborhood V 3 p bijectively to W ⊆

open
Rn with

s/a/h inverse iff det Jacobian(f, x) 6= 0.

2. A smooth map f : M → N of manifold restricts to an isomorphism p ∈ U → W for some
neighborhood U if and only if (df)p is a linear isomorphism.

2.1.4 Submanifolds

2.15 Proposition Let M be a manifold and N a topological subspace with the induced topology
such that for each p ∈ N , there is a chart U 3 p in M with coordinates {ξi}mi=1 : U → Rm such that
U ∩ N = {q ∈ U s.t. ξn+1(q) = · · · = ξm(q) = 0}. Then U ∩ N is a chart on N with coordinates
ξ1, . . . , ξn, and N is a manifold with an atlas given by {U∩N} as U ranges over an atlas of M . The
sheaf of smooth functions CN is the sheaf of continuous functions on N that are locally restrictions
of smooth functions on M . The embedding N ↪→M is smooth, and satisfies the universal property
that any smooth map f : Z →M such that f(Z) ⊆ N defines a smooth map Z → N .

2.16 Definition The map N ↪→ M in Proposition 2.15 is an immersed submanifold. A map
Z →M is an immersion if it factors as Z ∼→ N ↪→M for some immersed submanifold N ↪→M .

2.17 Proposition If N ↪→M is an immersed submanifold, then N is locally closed.

2.18 Proposition Any closed linear group H ⊆ GL(n) is an immersed analytic submanifold. If
Lie(H) is a C-subspace of M(n,C), then H is a holomorphic submanifold.

Proof The following diagram defines a chart near 1 ∈ H, which can be moved by left-multiplication
wherever it is needed:

U V
exp

log
M(n) ⊇

∈0
⊆ GL(n)

∈1

Lie(H) ∩ U H ∩ V

(2.1.4)
�

2.19 Lemma Given TpM = V1 ⊕ V2, there is an open neighborhood U1 × U2 of p such that Vi =
TpUi.

2.20 Lemma If s : N →M ×N is a s/a/h section, then s is a (closed) immersion.

2.21 Proposition A smooth map f : N →M is an immersion on a neighborhood of p ∈ N if and
only if (df)p is injective.
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2.2 Vector Fields

[8, Lectures 8, 9, and 10]

2.2.1 Definition

2.22 Definition Let M be a manifold. A vector field assigns to each p ∈ M a vector xp, i.e. a
point derivation:

xp(fg) = f(p)xp(g) + xp(f) g(p) (2.2.1)

We define (xf)(p) def= xp(f). Then x(fg) = f x(g) + x(f) g, so x is a derivation. But it might be
discontinuous. A vector field x is smooth if x : CM → CM is a map of sheaves. Equivalently, in
local coordinates the components of xp must depend smoothly on p. By changing (the conditions
on) the sheaf C , we may define analytic or holomorphic vector fields.

Henceforth, the word “vector field” will always mean “smooth (or analytic or holomorphic)
vector field”. Similarly, we will use the word “smooth” to mean smooth or analytic or holomorphic,
depending on our category.

2.23 Lemma The commutator [x, y] def= xy − yx of derivations is a derivation.

Proof An easy calculation:

xy(fg) = xy(f) g + x(f) y(g) + y(f)x(g) + f xy(g) (2.2.2)
Switch X and Y , and subtract:

[x, y](fg) = [x, y](f) g + f [x, y](g) (2.2.3)
�

2.24 Definition A Lie algebra is a vector space l with a bilinear map [, ] : l × l → l (i.e. a linear
map [, ] : l⊗ l→ l), satisfying

1. Antisymmetry: [x, y] + [y, x] = 0

2. Jacobi: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

2.25 Proposition Let V be a vector space. The bracket [x, y] def= xy − yx makes End(V ) into a
Lie algebra.

2.26 Lemma / Definition Let l be a Lie algebra. The adjoint action ad : l → End(l) given by
adx : y 7→ [x, y] is a derivation:

(adx)[y, z] = [(adx)y, z] + [y, (adx)z] (2.2.4)

Moreover, ad : l→ End(l) is a Lie algebra homomorphism:

ad([x, y]) = (adx)(ad y)− (ad y)(adx) (2.2.5)
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2.2.2 Integral Curves

Let ∂t be the vector field f 7→ d
dtf on R.

2.27 Proposition Given a smooth vector field x on M and a point p ∈ M , there exists an open
interval I ⊆

open
R such that 0 ∈ I and a smooth curve γ : I →M satisfying:

γ(0) = p (2.2.6)
(dγ)t(∂t) = xγ(t) ∀t ∈ I (2.2.7)

When M is a complex manifold and x a holomorphic vector field, we can demand that I ⊆
open

C is

an open domain containing 0, and that γ : I →M be holomorphic.

Proof In local coordinates, γ : R → Rn, and we can use existence and uniqueness theorems for
solutions to differential equations; then we need that a smooth (analytic, holomorphic) differential
equation has a smooth (analytic, holomorphic) solution.

But there’s a subtlety. What if there are two charts, and solutions on each chart, that diverge
right where the charts stop overlapping? Well, since M is Hausdorff, if we have two maps I →M ,
then the locus where they agree is closed, so if they don’t agree on all of I, then we can go to the
maximal point where they agree and look locally there. �

2.28 Definition The integral curve
∫
x,p(t) of x at p is the maximal curve satisfying equations 2.2.6

and 2.2.7.

2.29 Proposition The integral curve
∫
x,p depends smoothly on p ∈M .

2.30 Proposition Let x and y be two vector fields on a manifold M . For p ∈ M and s, t ∈ R,
define q by the following picture:

p1

p2

p3

p

q ∫
x

t ∫
y

s

∫
x

−t

∫
y

−s

Then for any smooth function f , we have f(q)− f(p) = st[x, y]pf +O(s, t)3.

Proof Let α(t) =
∫
x,p(t), so that f(α(t))′ = xf(α(t)). Iterating, we see that

Ä
d
dt

än
f(α(t)) =

xnf(α(t)), and by Taylor series expansion,

f(α(t)) =
∑ 1

n!

Å
d

dt

ãn
f(α(0))tn =

∑ 1
n!
xnf(p)tn = etxf(p). (2.2.8)
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By varying p, we have:

f(q) =
Ä
e−syf

ä
(p3) (2.2.9)

=
Ä
e−txe−syf

ä
(p2) (2.2.10)

=
Ä
esye−txe−syf

ä
(p1) (2.2.11)

=
Ä
etxesye−txe−syf

ä
(p) (2.2.12)

We already know that etxesye−txe−sy = 1 + st[x, y] + higher terms. Therefore f(q) − f(p) =
st[x, y]pf +O(s, t)3. �

2.2.3 Group Actions

2.31 Proposition Let M be a manifold, G a Lie group, and G y M a Lie group action, i.e. a
smooth map ρ : G ×M → M satisfying equations 1.1.5 and 1.1.6. Let x ∈ TeG, where e is the
identity element of the group G. The following descriptions of a vector field `x ∈ Vect(M) are
equivalent:

1. Let x = [γ] be the equivalence class of tangent paths, and let γ : I → G be a representative
path. Define (`x)m = [γ̃] where γ̃(t) def= ρ

Ä
γ(t)−1,m

ä
. On functions, `x acts as:

(`x)mf
def=

d

dt

∣∣∣∣
t=0

f
Ä
γ(t)−1m

ä
(2.2.13)

2. Arbitrarily extend x to a vector field x̃ on a neighborhood U ⊆ G of e, and lift this to ˜̃x on
U ×M to point only in the U -direction: ˜̃x(u,m)

def= (x̃u, 0) ∈ TuU × TmM . Let `x act on
functions by:

(`x)f def= −˜̃x(f ◦ p)
∣∣∣
{e}×M=M

(2.2.14)

3. (`x)m
def= −(dρ)(e,m)(x, 0)

2.32 Proposition Let G be a Lie group, M and N manifolds, and GyM , Gy N Lie actions,
and let f : M → N be G-equivariant. Given x ∈ TeG, define `Mx and `Nx vector fields on M and
N as in Proposition 2.31. Then for each m ∈M , we have:

(df)m(`Mx) = (`Nx)f(m) (2.2.15)

2.33 Definition Let G y M be a Lie action. We define the adjoint action of G on Vect(M) by
gy

def= dg(y)gm = (dg)m(ym). Equivalently, G y CM by g : f 7→ f ◦ g−1, and given a vector field

thought of as a derivation y : CM → CM , we define gy
def= gyg−1.

2.34 Example Let G y G by right multiplication: ρ(g, h) def= hg−1. Then G y TeG by the
adjoint action Ad(g) = d(g − g−1)e, i.e. if x = [γ], then Ad(g)x = [g γ(t) g−1].
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2.35 Definition Let ρ : GyM be a Lie action. For each g ∈ G, we define gM to be the manifold
M with the action gρ : (h,m) 7→ ρ(ghg−1,m).

2.36 Corollary For each g ∈ G, the map g : M → gM is G-equivariant. We have:

g`x = dg(`x) = `
gMx = `(Ad(g)x) (2.2.16)

2.37 Proposition Let ρ : Gy G by ρg : h 7→ hg−1. Then ` : TeG→ Vect(G) is an isomorphism
from TeG to left-invariant vector fields, such that (`x)e = x.

Proof Let λ : G y G be the action by left-multiplication: λg(h) = gh. Then for each g, λg is ρ-
equivariant. Thus dλg(`x) = λg(`x) = `x, so `x is left-invariant, and (`x)e = x since ρ(g, e) = g−1.
Conversely, a left-invariant field is determined by its value at a point:

(`x)g = (dλg)e(`xe) = (dλg)e(x) (2.2.17)
�

2.2.4 Lie algebra of a Lie group

2.38 Lemma / Definition Let GyM be a Lie action. The subspace of Vect(M) of G-invariant
derivations is a Lie subalgebra of Vect(M).

Let G be a Lie group. The Lie algebra of G is the Lie subalgebra Lie(G) of Vect(G) consisting
of left-invariant vector fields, i.e. vector fields invariant under the action λ : G y G given by
λg : h 7→ gh.

We identify Lie(G) def= TeG as in Proposition 2.37.

2.39 Lemma Given G y M a Lie action, x ∈ Lie(G) represented by x = [γ], and y ∈ Vect(M),
we have:

d

dt

∣∣∣∣
t=0

γ(t)yf = [`x, y]f (2.2.18)

Proof

d

dt

∣∣∣∣
t=0

γ(t)yf (p) =
d

dt

∣∣∣∣
t=0

γ(t) y γ(t)−1f (p) (2.2.19)

=
d

dt

∣∣∣∣
t=0

γ(t) y f(γ(t) p) (2.2.20)

=
d

dt

∣∣∣∣
t=0

γ(t) y f(γ(0) p) + γ(0)
d

dt

∣∣∣∣
t=0

yf(γ(t)p) (2.2.21)

= `x(yf)(p) + y
d

dt

∣∣∣∣
t=0

f(γ(t)p) (2.2.22)

= `x(yf)(p) + y(−`x f)(p) (2.2.23)
= [`x, y]f (p) (2.2.24)

�
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2.40 Corollary Let GyM be a Lie action. If x, y ∈ Lie(G), where x = [γ], then

`M
Ä
`Ad(−x) y

ä
=

d

dt

∣∣∣∣
t=0

`
Ä
Ad(γ(t))y

ä
f = [`x, `y] f (2.2.25)

2.41 Lemma The Lie bracket defined on Lie(GL(n)) = gl(n) = Te GL(n) = M(n) defined in
Lemma/Definition 2.38 is the matrix bracket [x, y] = xy − yx.

Proof We represent x ∈ gl(n) by [etx]. The adjoint action on GL(n) is given by AdG(g)h = ghg−1,
which is linear in h and fixes e, and so passes immediately to the action Ad : GL(n) y Te GL(n)
given by Adg(g) y = gyg−1. Then

[x, y] =
d

dt

∣∣∣∣
t=0

etxye−tx = xy − yx. (2.2.26)
�

2.42 Corollary If H is a closed linear group, then Lemma/Definitions 2.38 and 1.7 agree.

Exercises

1. (a) Show that the composition of two immersions is an immersion.
(b) Show that an immersed submanifold N ⊆M is always a closed submanifold of an open

submanifold, but not necessarily an open submanifold of a closed submanifold.

2. Prove that if f : N → M is a smooth map, then (df)p is surjective if and only if there are
open neighborhoods U of p and V of f(p), and an isomorphism ψ : V ×W → U , such that
f ◦ ψ is the projection on V .

In particular, deduce that the fibers of f meet a neighborhood of p in immersed closed
submanifolds of that neighborhood.

3. Prove the implicit function theorem: a map (of sets) f : M → N between manifolds is smooth
if and only if its graph is an immersed closed submanifold of M ×N .

4. Prove that the curve y2 = x3 in R2 is not an immersed submanifold.

5. Let M be a complex holomorphic manifold, p a point of M , X a holomorphic vector field.
Show that X has a complex integral curve γ defined on an open neighborhood U of 0 in
C, and unique on U if U is connected, which satisfies the usual defining equation but in a
complex instead of a real variable t.

Show that the restriction of γ to U ∩ R is a real integral curve of X, when M is regarded as
a real analytic manifold.

6. Let SL(2,C) act on the Riemann sphere P1(C) by fractional linear transformations
ñ
a b
c d

ô
z =

(az+ b)/(cz+ d). Determine explicitly the vector fields f(z)dz corresponding to the infinites-
imal action of the basis elements

E =
ñ

0 1
0 0

ô
, H =

ñ
1 0
0 −1

ô
, F =

ñ
0 0
1 0

ô
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of sl(2,C), and check that you have constructed a Lie algebra homomorphism by computing
the commutators of these vector fields.

7. (a) Describe the map gl(n,R) = Lie(GL(n,R)) = M(n,R) → Vect(Rn) given by the in-
finitesimal action of GL(n,R).

(b) Show that so(n,R) is equal to the subalgebra of gl(n,R) consisting of elements whose
infinitesimal action is a vector field tangential to the unit sphere in Rn.

8. (a) Let X be an analytic vector field on M all of whose integral curves are unbounded (i.e.,
they are defined on all of R). Show that there exists an analytic action of R = (R,+)
on M such that X is the infinitesimal action of the generator ∂t of Lie(R).

(b) More generally, prove the corresponding result for a family of n commuting vector fields
Xi and action of Rn.

9. (a) Show that the matrix
ñ
−a 0
0 −b

ô
belongs to the identity component of GL(2,R) for all

positive real numbers a, b.

(b) Prove that if a 6= b, the above matrix is not in the image exp(gl(2,R)) of the exponential
map.
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Chapter 3

General theory of Lie groups

3.1 From Lie algebra to Lie group

3.1.1 The exponential map

[8, Lecture 10]
We state the following results for Lie groups over R. When working with complex manifolds,

we can replace R by C throughout, whence the interval I ⊆
open

R is replaced by a connected open

domain I ⊆
open

C. As always, the word “smooth” may mean “infinitely differentiable” or “analytic”
or . . . .

3.1 Lemma Let G be a Lie group and x ∈ Lie(G). Then there exists a unique Lie group homo-
morphism γx : R→ G such that (dγx)0(∂t) = x. It is given by γx(t) = (

∫
e `x)(t).

Proof Let γ : I → G be the maximal integral curve of `x passing through e. Since `x is left-
invariant, gγ(t) is an integral curve through q. Let g = γ(s) for s ∈ I; then γ(t) and γ(s)γ(t)
are integral curves through γ(s), to they must coincide: γ(s + t) = γ(s)γ(t), and γ(−s) = γ(s)−1

for s ∈ I ∩ (−I). So γ is a groupoid homomorphism, and by defining γ(s + t) def= γ(s)γ(t) for
s, t ∈ I, s+ t 6∈ I, we extend γ to I + I. Since R is archimedean, this allows us to extend γ to all
of R; it will continue to be an integral curve, so really I must have been R all along. �

3.2 Corollary There is a bijection between one-parameter subgroups of G (homomorphisms R→
G) and elements of the Lie algebra of G.

3.3 Definition The exponential map exp : Lie(G)→ G is given by expx def= γx(1), where γx is as
in Lemma 3.1.

3.4 Proposition Let x(b) be a smooth family of vector fields on M parameterized by b ∈ B a
manifold, i.e. the vector field x̃ on B ×M given by x̃(b,m) = (0, x(b)

m ) is smooth. Then (b, p, t) 7→Ä∫
p x

(b)
ä

(t) is a smooth map from an open neighborhood of B×M×{0} in B×M×R to M . When
each x(b) has infinite-time solutions, we can take the open neighborhood to be all of B ×M × R.

19
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Proof Note that Ç∫
(b,p)

x̃

å
(t) =

Ç
b,

Ç∫
p
x(b)

å
(t)
å

(3.1.1)

So B×M ×R→ B×M π→M by (b, p, t) 7→
Ä∫

(b,p) x̃
ä

(t) 7→
Ä∫
p x

(b)
ä

(t) is a composition of smooth
functions, hence is smooth. �

3.5 Theorem (Exponential Map) For each Lie group G, there is a unique smooth map exp :
Lie(G) → G such that for x ∈ Lie(G), the map t 7→ exp(tx) is the integral curve of `x through e;
t 7→ exp(tx) is a Lie group homomorphism R→ G.

3.6 Example When G = GL(n), the map exp : gl(n)→ GL(n) is the matrix exponential.

3.7 Proposition The differential at the origin (d exp)0 is the identity map 1Lie(G).

Proof d(exp tx)0(∂t) = x. �

3.8 Corollary exp is a local homeomorphism.

3.9 Definition The local inverse of exp : Lie(G)→ G is called “log”.

3.10 Proposition If G is connected, then exp(Lie(G)) generates G.

3.11 Proposition If φ : H → G is a group homomorphism, then the following diagram commutes:

Lie(H)

H

Lie(G)

G

exp exp

(dφ)e

φ

(3.1.2)

If H is connected, then dφ determines φ.

3.1.2 The Fundamental Theorem

[8, Lecture 11]
Like all good algebraists, we assume that Axiom of Choice.

3.12 Theorem (Fundamental Theorem of Lie Groups and Algebras)

1. The functor G 7→ Lie(G) gives an equivalence of categories between the category scLieGp of
simply-connected Lie groups (over R or C) and the category LieAlg of finite-dimensional
Lie algebras (over R or C).

2. “The” inverse functor h 7→ Grp(h) is left-adjoint to Lie : LieAlg→ LieGp.
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We outline the proof. Consider open neighborhood U and V so that the horizontal maps are a
homeomorphism:

U V

⊆

Lie(G)

⊆

G

∈

0

∈

e

exp

log
(3.1.3)

Consider the restriction µ : G×G→ G to (V ×V )∩µ−1(V )→ V , and use this to define a “partial
group law” b : open→ U , where open ⊆ U × U , via

b(x, y) def= log(expx exp y) (3.1.4)

We will show that the Lie algebra structure of Lie(G) determines b.
Moreover, given h a finite-dimensional Lie algebra, we will need to define b and build H̃ as the

group freely generated by U modulo the relations xy = b(x, y) if x, y, b(x, y) ∈ U . We will need to
prove that H̃ is a Lie group, with U as an open submanifold.

3.13 Corollary Every Lie subalgebra h of Lie(G) is Lie(H) for a unique connected subgroup H ↪→
G, up to equivalence.

The standard proof of Theorem 3.12 is to first prove Corollary 3.13 and then use Theorem 4.99.
We will use Theorem 4.89 rather than Theorem 4.99.

3.14 Theorem (Baker-Campbell-Hausdorff Formula (second part only))

1. Let T (x, y) be the free tensor algebra generated by x and y, and T (x, y)[[s, t]] the (non-
commutative) ring of formal power series in two commuting variables s and t. Define b(tx, sy) def=
log(exp(tx) exp(sy)) ∈ T (x, y)[[s, t]], where exp and log are the usual formal power series.
Then

b(tx, sy) = tx+ sy + st
1
2

[x, y] + st2
1
12

[x, [x, y]] + s2t
1
12

[y, [y, x]] + . . . (3.1.5)

has coefficients all coefficients given by Lie bracket polynomials in x and y.

2. Given a Lie group G, there exists a neighborhood U ′ 3 0 in Lie(G) such that U ′ ⊆ U
exp

�
log

V ⊆ G

and b(x, y) converges on U ′ × U ′ to log(expx exp y).

We need more machinery than we have developed so far to prove part 1. We work with analytic
manifolds; on C manifolds, we can make an analogous argument using the language of differential
equations.

Proof (of part 2.) For a clearer exposition, we distinguish the maps exp : Lie(G) → G from
ex ∈ R[[x]].
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We begin with a basic identity. exp(tx) is an integral curve to `x through e, so by left-invariance,
t 7→ g exp(tx) is the integral curve of `x through g. Thus, for f analytic on G,

d

dt

î
f(g exp tx)

ó
=
Ä
(`x)f

ä
(g exp tx) (3.1.6)

We iterate: Å
d

dt

ãn î
f(g exp tx)

ó
=
Ä
(`x)nf

ä
(g exp tx) (3.1.7)

If f is analytic, then for small t the Taylor series converges:

f(g exp tx) =
∞∑
n=0

Å
d

dt

ãn î
f(g exp tx)

ó∣∣∣∣
t=0

tn

n!
(3.1.8)

=
∞∑
n=0

Ä
(`x)nf

ä
(g exp tx)

∣∣∣
t=0

tn

n!
(3.1.9)

=
∞∑
n=0

Ä
(`x)nf

ä
(g)

tn

n!
(3.1.10)

=
∞∑
n=0

Ç
(t `x)n

n!
f

å
(g) (3.1.11)

=
Ä
et `xf

ä
(g) (3.1.12)

We repeat the trick:

f(exp tx exp sy) =
Ä
esLyf

ä
(exp tx) =

Ä
et `xesLyf

ä
(e) =

Ä
etxesyf

ä
(e) (3.1.13)

The last equality is because we are evaluating the derivations at e, where `x = x.
We now let f = log : V → U , or rather a coordinate of log. Then the left-hand-side is just

log(exp tx exp sy), and the right hand side is
Ä
etxesy log

ä
(e) =

Ä
eb(tx,sy) log

ä
(e), where b is the formal

power series from part 1. — we have shown that the right hand side converges. But by interpreting
the calculations above as formal power series, and expanding log in Taylor series, we see that the
formal power series

Ä
eb(tx,sy) log

ä
(e) agrees with the formal power series log

Ä
eb(tx,sy)

ä
= b(tx, sy).

This completes the proof of part 2. �

3.2 Universal Enveloping Algebras

3.2.1 The Definition

[8, Lecture 12]

3.15 Definition A representation of a Lie group is a homomorphism G → GL(n,R) (or C). A
representation of a Lie algebra is a homomorphism Lie(G) → gl(n) = End(V ); the space End(V )
is a Lie algebra with the bracket given by [x, y] = xy − yx.
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3.16 Definition Let V be a vector space. The tensor algebra over V is the free unital non-
commuting algebra T V generated by a basis of V . Equivalently:

T V def=
⊕
n≥0

V ⊗n (3.2.1)

The multiplication is given by ⊗ : V ⊗k × V ⊗l → V ⊗(k+l). T is a functor, and is left-adjoint to
Forget : Alg→ Vect.

3.17 Definition Let g be a Lie algebra. The universal enveloping algebra is

Ug
def= T g/

¨
[x, y]− (xy − yx)

∂
(3.2.2)

U : LieAlg→ Alg is a functor, and is left-adjoint to Forget : Alg→ LieAlg.

3.18 Corollary The category of g-modules is equal to the category of Ug-modules.

3.19 Example A Lie algebra g is abelian if the bracket is identically 0. If g is abelian, then
Ug = Sg, where SV is the symmetric algebra generated by the vector space V (so that S is
left-adjoint to Forget : ComAlg→ Vect).

3.20 Example If f is the free Lie algebra on generators x1, . . . , xd, defined in terms of a universal
property, then U f = T (x1, . . . , xd).

3.21 Definition A vector space V is graded if it comes with a direct-sum decomposition V =⊕
n≥0 Vn. A morphism of graded vector spaces preserves the grading. A graded algebra is an

algebra object in the category of graded vector spaces. I.e. it is a vector space V =
⊕

n≥0 along
with a unital associative multiplication V ⊗ V → V such that if vn ∈ Vn and vm ∈ Vm, then
vnvm ∈ Vn+m.

A vector space V is filtered if it comes with an increasing sequence of subspaces

{0} ⊆ V≤0 ⊆ V≤1 ⊆ · · · ⊆ V (3.2.3)

such that V =
⋃
n≥0 Vn. A morphism of graded vector spaces preserves the filtration. A filtered

algebra is an algebra object in the category of filtered vector spaces. I.e. it is a filtered vector space
along with a unital associative multiplication V ⊗ V → V such that if vn ∈ V≤n and vm ∈ V≤m,
then vnvm ∈ V≤(n+m).

Given a filtered vector space V , we define grV def=
⊕
n≥0 grn V , where grn V

def= V≤n/V≤(n−1).

3.22 Lemma gr is a functor. If V is a filtered algebra, then grV is a graded algebra.

3.23 Example Let g be a Lie algebra over K. Then Ug has a natural filtration inherited from the
filtration of T g, since the ideal 〈xy − yx = [x, y]〉 preserves the filtration. Since Ug is generated
by g, so is grUg; since xy − yx = [x, y] ∈ U≤1, grUg is commutative, and so there is a natural
projection Sg� grUg.
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3.2.2 Poincaré-Birkhoff-Witt Theorem

[8, Lectures 12 and 13]

3.24 Theorem (Poincaré-Birkhoff-Witt) The map Sg→ grUg is an isomorphism of algebras.

3.25 Corollary g ↪→ Ug. Thus every Lie algebra is isomorphic to a Lie subalgebra of some
End(V ), namely V = Ug.

Proof (of Theorem 3.24) Pick an ordered basis {xα} of g; then the monomials xα1 . . . xαn for
α1 ≤ · · · ≤ αn are an ordered basis of Sg, where we take the “deg-lex” ordering: a monomial of lower
degree is immediately smaller than a monomial of high degree, and for monomials of the same degree
we alphabetize. Since Sg� grUg is an algebra homomorphism, the set {xα1 . . . xαn s.t. α1 ≤ · · · ≤
αn} spans grUg. It suffices to show that they are independent in grUg. For this it suffices to show
that the set S def= {xα1 . . . xαn s.t. α1 ≤ · · · ≤ αn} is independent in Ug.

Let I = 〈xy − yx − [x, y]〉 be the ideal of T g such that Ug = T g/I. Define J ⊆ T g to be the
span of expressions of the form

ξ = xα1 · · ·xαk (xβxγ − xγxβ − [xβ, xγ ])xν1 · · ·xνl (3.2.4)

where α1 ≤ · · · ≤ αk ≤ β > γ, and there are no conditions on νi, so that J is a right ideal. We
take the deg-lex ordering in T g. The leading monomial in equation 3.2.4 is x~αxβxγx~ν . Thus S is
an independent set in T g/J . We need only show that J = I.

The ideal I is generated by expressions of the form xβxγ − xγxβ − [xβ, xγ ] as a two-sided ideal.
If β > γ then

Ä
xβxγ − xγxβ − [xβ, xγ ]

ä
∈ J ; by antisymmetry, if β < γ we switch them and stay

in J . If β = γ, then
Ä
xβxγ − xγxβ − [xβ, xγ ]

ä
= 0. Thus J is a right ideal contained in I, and the

two-sided ideal generated by J contains I. Thus the two-sided ideal generated by J is I, and it
suffices to show that J is a two-sided ideal.

We multiply xδξ. If k > 0 and δ ≤ α1, then xδξ ∈ J . If δ > α1, then xδξ ≡ xα1xδxα2 · · · +
[xδ, xα1 ]xα2 . . . mod J . And both xδxα2 . . . and [xδ, xα1 ]xα2 . . . are in J by induction on degree.
Then since α1 < δ, xα1xδxα2 · · · ∈ J by (transfinite) induction on δ.

So suffice to show that if k = 0, then we’re still in J . I.e. if α > β > γ, then we want to show
that xα (xβxγ − xγxβ − [xβ, xγ ]) ∈ J . Well, since α > β, we see that xαxβ − xβ − [xα, xβ] ∈ J , and
same with β ↔ γ. So, working modulo J , we have

xα (xβxγ − xγxβ − [xβ, xγ ]) ≡ (xβxα + [xα, xβ])xγ − (xγxα + [xα, xγ ])xβ − xα[xβ, xγ ]
≡ xβ (xγxα + [xα, xγ ]) + [xα, xβ]xγ − xγ (xβxα + [xα, xβ])
− [xα, xγ ]xβ − xα[xβ, xγ ]

≡ xγxβxα + [xβ, xγ ]xα + xβ[xα, xγ ] + [xα, xβ]xγ − xγ (xβxα + [xα, xβ])
− [xα, xγ ]xβ − xα[xβ, xγ ]

= [xβ, xγ ]xα + xβ[xα, xγ ] + [xα, xβ]xγ − xγ [xα, xβ]− [xα, xγ ]xβ − xα[xβ, xγ ]
≡ −[xα, [xβ, xγ ]] + [xβ, [xα, xγ ]]− [xγ , [xα, xβ]]
= 0 by Jacobi. �
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3.2.3 Ug is a bialgebra

[8, Lecture 13]

3.26 Definition An algebra over K is a vector space U along with a K-linear “multiplication”
map µ : U ⊗

K
U → U which is associative, i.e. the following diagram commutes:

U ⊗ U ⊗ U U ⊗ U

U ⊗ U U

1U⊗µ

µ⊗1U µ

µ

(3.2.5)

We demand that all our algebras be unital, meaning that there is a linear map e : K→ U such that
the maps U = K ⊗ U e⊗1U→ U ⊗ U µ→ U and U = U ⊗K 1U⊗e→ U ⊗ U µ→ U are the identity maps.
We will call the image of 1 ∈ K under e simply 1 ∈ U .

A coalgebra is an algebra in the opposite category. I.e. it is a vector space U along with a
“comultiplication” map ∆ : U → U ⊗ U so that the following commutes:

U U ⊗ U

U ⊗ U U ⊗ U ⊗ U

∆

∆ 1U⊗∆

∆⊗1U

(3.2.6)

In elements, if ∆x =
∑
x(1) ⊗ x(2), then we demand that

∑
x(1) ⊗∆(x(2)) =

∑
∆(x(1))⊗ x(1). We

demand that our coalgebras be counital, meaning that there is a linear map ε : U → K such that

the maps U ∆→ U ⊗ U
ε⊗1U
K ⊗ U = U and U ∆→ U ⊗ U

1U⊗ε
U ⊗K = U are the identity maps.

A bialgebra is an algebra in the category of coalgebras, or equivalently a coalgebra in the category
of algebras. I.e. it is a vector space U with maps µ : U ⊗ U → U and ∆ : U → U ⊗ U satisfying
equations 3.2.5 and 3.2.6 such that ∆ and ε are (unital) algebra homomorphisms or equivalently such
that µ and e are (counital) coalgebra homomorphism. We have defined the multiplication on U ⊗U
by (x⊗y)(z⊗w) = (xz)⊗(yw), and the comultiplication by ∆(x⊗y) =

∑∑
x(1)⊗y(1)⊗x(2)⊗y(2),

where ∆x =
∑
x(1) ⊗ x(2) and ∆y =

∑
y(1) ⊗ y(2); the unit and counit are e⊗ e and ε⊗ ε.

3.27 Definition Let U be a bialgebra, and x ∈ U . We say that x is primitive if ∆x = x⊗1+1⊗x,
and that x is grouplike if ∆x = x⊗ x. The set of primitive elements of U we denote by primU .

3.28 Proposition Ug is a bialgebra with primUg = g.

Proof To define the comultiplication, it suffices to show that ∆ : g → Ug ⊗ Ug given by x 7→
x⊗1+1⊗x is a Lie algebra homomorphism, whence it uniquely extends to an algebra homomorphism
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by the universal property. We compute:

[x⊗ 1 + 1⊗ x, y ⊗ 1 + 1⊗ y]U⊗U = [x⊗ 1, y ⊗ 1] + [1⊗ x, 1⊗ y] (3.2.7)
= [x, y]⊗ 1 + 1⊗ [x, y] (3.2.8)

To show that ∆ thus defined is coassiciative, it suffices to check on the generating set g, where we
see that ∆2(x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x.

By definition, g ⊆ Ug. To show equality, we use Theorem 3.24. We filter Ug⊗Ug in the obvious
way, and since ∆ is an algebra homomorphism, we see that ∆

Ä
Ug≤1

ä
⊆
Ä
Ug ⊗ Ug

ä
≤1

, whence

∆
Ä
Ug≤n

ä
⊆
Ä
Ug ⊗ Ug

ä
≤n. Thus ∆ induces a map ∆̄ on grUg = Sg, and ∆̄ makes Sg into a

bialgebra.
Let ξ ∈ Ug≤n be primitive, and define its image to be ξ̄ ∈ grn Ug; then ξ̄ must also be primitive.

But Sg⊗ Sg = K[yα, zα], where {xα} is a basis of g (whence Sg = K[xα]), and we set yα = xα ⊗ 1
and zα = 1⊗xα]. We check that ∆̄(xα) = yα+zα, and so if f(x) ∈ Sg, we see that ∆f(x) = f(y+z).
So f ∈ Sg is primitive if and only if f(y + z) = f(y) + f(z), i.e. iff f is homogenoues of degree 1.
Therefore prim grUg = gr1 Ug, and so if ξ ∈ Ug is primitive, then ξ̄ ∈ gr1 Ug so ξ = x+ c for some
x ∈ g and some c ∈ K. Since x is primitive, c must be also, and the only primitive constant is 0.�

3.2.4 Geometry of the Universal Enveloping Algebra

[8, Lecture 14]

3.29 Definition Let X be a space and S a sheaf of functions on X. We define the sheaf D of
grothendieck differential operators inductively. Given U ⊆

open
X, we define D≤0(U) = S (U), and

D≤n(U) = {x : S (U) → S (U) s.t. [x, f ] ∈ D≤(n−1)(U) ∀f ∈ S (U)}, where S (U) y S (U) by
left-multiplication. Then D(U) =

⋃
n≥0 D≤n(U) is a filtered sheaf; we say that x ∈ D≤n(U) is an

“nth-order differential operator on U”.

3.30 Lemma D is a sheaf of filtered algebras, with the multiplication on D(U) inherited from
End(S (U)). For each n, D≤n is a sheaf of Lie subalgebras of D .

3.31 Theorem (Grothendieck Differential Operators) Let X be a manifold, C the sheaf of
smooth functions on X, and D the sheaf of differential operators on C as in Definition 3.29. Then
D(U) is generated as a noncommutative algebra by C (U) and Vect(U), and D≤1 = C (U)⊕Vect(U).

3.32 Proposition Let G be a Lie group, and D(G)G the subalgebra of left-invariant differential
operators on G. The natural map Ug → D(G)G generated by the identification of g with left-
invariant vector fields is an isomorphism of algebras.

3.3 The Baker-Campbell-Hausdorff Formula

[8, Lecture 14]
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3.33 Lemma Let U be a bialgebra with comultiplication ∆. Define ∆̂ : U [[s]] → (U ⊗ U)[[s]] by
linearity; then ∆̂ is an s-adic-continuous algebra homomorphism, and so commutes with formal
power series.

Let ψ ∈ U [[s]] with ψ(0) = 0. Then ψ is primitive term-by-term — ∆̂(ψ) = ψ ⊗ 1 + 1 ⊗ ψ,
if and only if eψ is “group-like” in the sense that ∆̂(eψ) = eψ ⊗ eψ, where we have defined ⊗ :
U [[s]]⊗ U [[s]]→ (U ⊗ U)[[s]] by sn ⊗ sm 7→ sn+m.

Proof eψ ⊗ eψ = (1⊗ eψ)(eψ ⊗ 1) = e1⊗ψeψ⊗1 = e1⊗ψ+ψ⊗1 �

3.34 Lemma Let G be a Lie group, g = Lie(G), and identify Ug with the left-invariant differential
operators on G, as in Proposition 3.32. Let C (G)e be the stalk of smooth functions defined in some
open set around e (we write C for the sheaf of functions on G; when G is analytic, we really mean
the sheaf of analytic functions on G). Then if u ∈ Ug satisfied uf(e) = 0 for each f ∈ C (G)e, then
u = 0.

Proof For g ∈ G, we have uf(g) = u(λg−1f)(e) = λg−1(uf)(e) = 0. �

3.35 Theorem (Baker-Campbell-Hausdorff Formula) 1. Let f be the free Lie algebra on
two generators x, y; recall that U f = T (x, y). Define the formal power series b(tx, sy) ∈
T (x, y)[[s, t]], where s and t are commuting variables, by

eb(tx,sy) def= etxesy (3.3.1)

Then b(tx, sy) ∈ f[[s, t]], i.e. b is a series all of whose coefficients are Lie algebra polynomials
in the generators x and y.

2. If G is a Lie group (in the analytic category), then there are open neighborhoods 0 ∈ U ′ ⊆
open

U ⊆
open

Lie(G) = g and 0 ∈ V ′ ⊆
open

V ⊆
open

G such that U
exp

�
log

V and U ′ � V ′ and such that

b(x, y) converges on U ′ × U ′ to log(expx exp y).

Proof 1. Let ∆̂ : T (x, y)[[s, t]] = U f[[s, t]] → (U f ⊗ U f)[[s, t]] as in Lemma 3.33. Since etxesy is
grouplike —

∆̂(etxesy) = ∆̂(etx) ∆̂(esy) =
Ä
etx ⊗ etx

ä
(esy ⊗ esy) = etxesy ⊗ etxety (3.3.2)

— we see that b(tx, sy) is primitive term-by-term.

2. Let U, V be open neighborhoods of Lie(G) and G respectively, and pick V ′ so that µ : G×G→
G restricts to a map V ′ × V ′ → V ; let U ′ = log(V ′). Define β(x, y) = log(expx exp y); then
β is an analytic function U ′ × U ′ → U ′.

Let x, y ∈ Lie(G) and f ∈ C (G)e. Then
Ä
etxesyf

ä
(e) is the Taylor series expansion of

f(exp tx exp sy), as in the proof of Theorem 3.14. Let β̃ be the formal power series that is the
Taylor expansion of β; then eβ̃(tx,sy)f(e) is also the Taylor series expansion of f(exp tx exp sy).
This implies that for every f ∈ C (G)e, eβ̃(tx,sy)f(e) and etxesyf(e) have the same coefficients.
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But the coefficients are left-invariant differential operators applied to f , so by Lemma 3.34
the series eβ̃(tx,sy) and etxesy must agree. Upon applying the formal logarithms, we see that
b(tx, sy) = β̃(tx, sy).

But β̃ is the Taylor series of the analytic function β, so by shrinking U ′ (and hence V ′) we
can assure that it converges. �

3.4 Lie Subgroups

3.4.1 Relationship between Lie subgroups and Lie subalgebras

[8, Lecture 15]

3.36 Definition Let G be a Lie group. A Lie subgroup of G is a subgroup H of G with its own
Lie group structure, so that the inclusion H ↪→ G is a local immersion. We will write “H ≤ G”
when H is a Lie subgroup of G.

3.37 Theorem (Identification of Lie subalgebras and Lie subgroups) Every Lie subalgebra
of Lie(G) is Lie(H) for a unique connected Lie subgroup H ≤ G.

Proof We first prove uniqueness. If H is a Lie subgroup of G, with h = Lie(H) and g = Lie(G),
then the following diagram commutes:

h g

H G
exp exp (3.4.1)

This shows that expG(h) ⊆ H, and so expG(h) = expH(h), and if H is connected, this generates H.
So H is uniquely determined by h as a group. Its manifold structure is also uniquely determined:
we pick U, V so that the vertical arrows are an isomorphism:

0 ∈ U ⊆ g

e ∈ V ⊆ G
exp log (3.4.2)

Then exp(U ∩ h) ∼→
log

U ∩ h is an immersion into g, and this defines a chart around e ∈ H, which

we can push to any other point h ∈ H by multiplication by h. This determines the topology and
manifold structure of H.

We turn now to the question of existence. We pick U and V as in equation 3.4.2, and then
choose V ′ ⊆

open
V and U ′

def= log V ′ such that:

1. (V ′)2 ⊆ V and (V ′)−1 = V ′

2. b(x, y) converges on U ′ × U ′ to log(expx exp y)
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3. hV ′h−1 ⊆ V for h ∈ V ′

4. eadxy converges on U ′ × U ′ to log
Ä
(expx)(exp y)(expx)−1

ä
5. b(x, y) and eadxy are elements of h ∩ U for x, y ∈ h ∩ U ′

Each condition can be independently achieved on a small enough open set. In condition 4., we
consider extend the formal power series et to operators, and remark that in a neighborhood of
0 ∈ g, if h = expx, then Adh = eadx. Moreover, the following square always commutes:

g g

G G
exp exp

Ad(h)

g 7→hgh−1

(3.4.3)

Thus, we define W = exp(h ∩ U ′), which is certainly an immersed submanifold of G, as h ∩ U ′ is
an open subset of the immersed submanifold h ↪→ g. We define H to be the subgroup generated
by W . Then H and W satisfy the hypotheses of Proposition 3.38. �

3.38 Proposition We use the word “manifold” to mean “object in a particular chosen category
of sheaves of functions”. We use the word “smooth” to mean “morphism in this category”.

Let H be a group and U ⊆ H such that e ∈ U and U has the structure of a manifold. Assume
further that the maps U × U → H, −1 : U → H, and (for each h in a generating set of H)
Ad(h) : U → H mapping u 7→ huh−1 have the following properties:

1. The preimage of U ⊆ H under each map is open in the domain.

2. The restriction of the map to this preimage is smooth.

Then H has a unique structure as a group manifold such that U is an open submanifold.

Proof The conditions 1. and 2. are preserved under compositions, so Ad(x) satisfies both conditions
for any x ∈ H. Let e ∈ U ′ ⊆

open
U so that (U ′)3 ⊆ U and (U ′)−1 = U ′.

For x ∈ H, view each coset xU ′ as a manifold via U ′ x·→ xU ′. For any U ′′ ⊆
open

U ′ and x, y ∈ G,

consider yU ′′∩xU ′; as a subset of xU ′, it is isomorphic to x−1yU ′′∩U ′. If this set is empty, then it
is open. Otherwise, x−1yu2 = u1 for some u2 ∈ U ′′ and u1 ∈ U ′, so y−1x = u2u

−1
1 ∈ (U ′)2 and so

y−1xU ′ ⊆ U . In particular, the {y−1x}×U ′ ⊆ µ−1(U)∩(U×U). By the assumptions, U ′ → y−1xU
is smooth, and so x−1yU ′′∩U ′, the preimage of U ′′, is open in U ′. Thus the topologies and smooth
structures on xU ′ and yU ′ agree on their overlap.

In this way, we can put a manifold structure on H by declaring that S ⊆
open

H if S∩xU ′ ⊆
open

xU ′

for all x ∈ H — the topology is locally the topology of U 3 e, and so is Hausdorff — , and that a
function f on S ⊆

open
H is smooth if its restriction to each S ∩ xU ′ is smooth.

If we were to repeat this story with right cosets rather than left cosets we would get the a similar
structure: all the left cosets xU ′ are compatible, an all the right cosets U ′x are compatible. To
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show that a right coset is compatible with a left coset, it suffices to show that for each x ∈ H, xU ′

and U ′x have compatible smooth structures. We consider xU ′ ∩U ′x ⊆ xU ′, which we transport to
U ′ ∩ x−1U ′x ⊆ U ′. Since we assumed that conjugation by x was a smooth map, we see that right
and left cosets are compatible.

We now need only check that the group structure is by smooth maps. We see that (xU ′)−1 =
(U ′)−1x−1 = U ′x−1, and multiplication is given by µ : xU ′ × U ′y → xUy. Left- and right-
multiplication maps are smooth with respect to the left- and right-coset structures, which are
compatible, and we assumed that µ : U ′ × U ′ → U was smooth. �

3.4.2 Review of Algebraic Topology

[8, Lecture 16]

3.39 Definition A groupoid is a category all of whose morphisms are invertible.

3.40 Definition A space X is connected if the only subsets of X that are both open and closed
are ∅ and X.

3.41 Definition Let X be a space and x, y ∈ X. A path from x to y, which we write as x y, is
a continuous function [0, 1] → X such that 0 7→ x and 1 7→ y. Given p : x  y and q : y  z, we
define the concatenation p · q by

p · q(t) def=
®
p(2t), 0 ≤ t ≤ 1

2
q(2t− 1), 1

2 ≤ t ≤ 1
(3.4.4)

We write x ∼ y if there is a path connecting x to y; ∼ is an equivalence relation, and the equivalence
classes are path components of X. If X has only one path component, then it is path connected.

Let A be a distinguished subset of Y and f, g : Y → X two functions that agree on A. A
homotopy f ∼

A
g relative to A is a continuous map h : Y × [0, 1] → X such that h(0, y) = f(y),

h(1, y) = g(y), and h(t, a) = f(a) = g(a) for a ∈ A. If f ∼ g and g ∼ h, then f ∼ h by
concatenation. The fundamental groupoid π1(X) of X has objects the points of X and arrows
x→ y the homotopy classes of paths x y. We write π1(X,x) for the set of morphisms x→ x in
π1(X). The space X is simply connected if π1(X,x) is trivial for each x ∈ X.

3.42 Example A path connected space is connected, but a connected space is not necessarily path
connected. A path is a homotopy of constant maps {pt} → X, where A is empty.

3.43 Definition Let X be a space. A covering space of X is a space E along with a “projection”
π : E → X such that there is a non-empty discrete space S and a covering of X by open sets
such that for each U in the covering, there exists an isomorphism π−1(U) ∼→ S × U such that the
following diagram commutes:

U

∼= S × Uπ−1(U)

π project
(3.4.5)



3.4. LIE SUBGROUPS 31

3.44 Proposition Let πE : E → X be a covering space.

1. Given any path x  y and a lift e ∈ π−1(x), there is a unique path in E starting at e that
projects to x y.

2. Given a homotopy ∼
A

: Y ⇒ X and a choice of a lift of the first arrow, there is a unique lift of

the homotopy, provided Y is locally compact.

Thus E induces a functor E : π1(X)→ Set, sending x 7→ π−1
E (X).

3.45 Definition A space X is locally path connected if each x ∈ X has arbitrarily small path
connected neighborhoods. A space X is locally simply connected if it has a covering by simply
connected open sets.

3.46 Proposition Assume that X is path connected, locally path connected, and locally simply
connected. Then:

1. X has a simply connected covering space π̃ : X̃ → X.

2. X̃ satisfies the following universal property: Given f : X → Y and a covering π : E → Y ,
and given a choice of x ∈ X, an element of x̃ ∈ π̃−1(x), and an element e ∈ π−1(f(x)), then
there exists a unique f̃ : X̃ → E sending x̃ 7→ e such that the following diagram commutes:

X̃ E

X Y

π̃ π

f̃

f

(3.4.6)

3. If X is a manifold, so is X̃. If f is smooth, so is f̃ .

3.47 Proposition 1. Let G be a connected Lie group, and G̃ its simply-connected cover. Pick a
point ẽ ∈ G̃ over the identity e ∈ G. Then G̃ in its given manifold structure is uniquely a Lie
group with identity ẽ such that G̃→ G is a homomorphism. This induces an isomorphism of
Lie algebras Lie(G̃) ∼→ Lie(G).

2. G̃ satisfies the following universal property: Given any Lie algebra homomorphism α : Lie(G)→
Lie(H), there is a unique homomorphism φ : G̃→ H inducing α.

Proof 1. If X and Y are simply-connected, then so is X × Y , and so by the universal property
G̃× G̃ is the universal cover of G×G. We lift the functions µ : G×G→ G and i : G→ G to
G̃ by declaring that µ̃(ẽ, ẽ) = ẽ and that i(ẽ) = ẽ; the group axioms (equations 1.1.1 to 1.1.3)
are automatic.



32 CHAPTER 3. GENERAL THEORY OF LIE GROUPS

2. Write g = Lie(G) and h = Lie(H), and let α : g→ h be a Lie algebra homomorphism. Then
the graph f ⊆ g × h is a Lie subalgebra. By Theorem 3.37, f corresponds to a subgroup
F ≤ G̃×H. We check that the map F ↪→ G̃×H → G induces the map f→ g on Lie algebras.

G

G̃×H⊆F

f
∼→g

(3.4.7)

F is connected and simply connected, and so by the universal property, F ∼= G̃. Thus F is
the graph of a homomorphism φ : G̃→ H. �

3.5 A dictionary between algebras and groups

[8, Lecture 17]

We have completed the proof of Theorem 3.12, the equivalence between the category of finite-
dimensional Lie algebras and the category of simply-connected Lie groups, subject only to Theo-
rem 4.89. Thus a Lie algebra includes most of the information of a Lie group. We foreshadow a
dictionary, most of which we will define and develop later:



3.5. A DICTIONARY BETWEEN ALGEBRAS AND GROUPS 33

Lie Algebra g Lie Group G (with g = Lie(G))

Subalgebra h ≤ g Connected Lie subgroup H ≤ G

Homomorphism h→ g H̃ → G provided H̃ simply connected

Module/representation g→ gl(V ) Representation G̃→ GL(V ) (G̃ simply connected)

Submodule W ≤ V with g : W →W Invariant subspace G : W →W

V g def= {v ∈ V s.t. gv = 0} V G̃ = {v ∈ V s.t. Gv = v}

ad : g y g via ad(x)y = [x, y] Ad : Gy G via Ad(x)y = xyx−1

An ideal a, i.e. [g, a] ≤ a, i.e. sub-g-module A is a normal Lie subgroup, provided G is connected

g/a is a Lie algebra G/A is a Lie group only if A is closed in G

Center Z(g) = gg Z0(G) the identity component of center; this is closed

Derived subalgebra g′
def= [g, g], an ideal Should be commutator subgroup, but that’s not closed:

the closure also doesn’t work, although if G is compact,
then the commutator subgroup is closed.

Semidirect product g = h⊕ a with If A and H are closed, then A ∩H is discrete, and
hy a and a an ideal G̃ = H̃ n Ã

3.5.1 Basic Examples: one- and two-dimensional Lie algebras

We classify the one- and two-dimensional Lie algebras and describe their corresponding Lie groups.
We begin by working over R.

The only one-dimensional Lie algebra is abelian. Its connected Lie groups are the line R and
the circle S1.

There is a unique abelian two-dimensional Lie algebra, given by a basis {x, y} with relation
[x, y] = 0. This integrates to three possible groups: R2, R× (R/Z), and (R/Z)2.

There is a unique nonabelian Lie algebra up to isomorphism, which we call b. It has a basis
{x, y} and defining relation [x, y] = y:

−x y
ad y

adX

(3.5.1)

We can represent b as a subalgebra of gl(2 by x =
ñ

1 0
0 0

ô
and y =

ñ
0 1
0 0

ô
. Then b
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exponentiates under exp : gl(2→ GL(2 to the group

B =
®ñ

a b
0 1

ô
s.t. a ∈ R+, b ∈ R

´
(3.5.2)

We check that B = R+ nR, and B is connected and simply connected.

3.48 Lemma A discrete normal subgroup A of a connected Lie group G is in the center. In
particular, any discrete normal subgroup is abelian.

3.49 Corollary The group B defined above is the only connected group with Lie algebra b.

Proof Any other must be a quotient of B by a discrete normal subgroup, but the center of B is
trivial. �

We turn now to the classification of one- and two-dimensional Lie algebras and Lie groups over
C. Again, there is only the abelian one-dimensional algebra, and there are two Lie algebras: the
abelian one and the nonabelian one.

The simply connected abelian one-(complex-)dimensional Lie group is C under +. Any quotient
factors (up to isomorphism) through the cylinder C→ C× : z 7→ ez. For any q ∈ C× with |q| 6= 1,
we have a discrete subgroup qZ of C×, by which we can quotient out; we get a torus E(q) = C×/qZ.
For each q, E(q) is isomorphic to (R/Z)2 as a real Lie algebra, but the holomorphic structure
depends on q. This exhausts the one-dimensional complex Lie groups.

The groups that integrate the abelian two-dimensional complex Lie algebra are combinations
of one-dimensional Lie groups: C2,C× E,C× × C×, etc.

In the non-abelian case, the Lie algebra b+ ≤ gl(2 integrates to BC ≤ GL(2 given by:

BC =
®ñ

a b
0 1

ô
s.t. a ∈ C×, b ∈ C

´
= C× nC (3.5.3)

This is no longer simply connected. C y C by z ·w = ezw, and the simply-connected cover of B is

B̃C = Cn C (w, z)(w′, z′) def= (w + ezw′, z + z′) (3.5.4)

This is an extension:
0→ Z→ B̃C → BC → 0 (3.5.5)

with the generator of Z being 2πi. Other quotients are B̃C/nZ.

Exercises

1. (a) Let S be a commutative K-algebra. Show that a linear operator d : S → S is a derivation
if and only if it annihilates 1 and its commutator with the operator of multiplication by
every function is the operator of multiplication by another function.
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(b) Grothendieck’s inductive definition of differential operators on S goes as follows: the
differential operators of order zero are the operators of multiplication by functions; the
space D≤n of operators of order at most n is then defined inductively for n > 0 by
D≤n = {d s.t. [d, f ] ∈ D≤n−1 for all f ∈ S}. Show that the differential operators of all
orders form a filtered algebra D, and that when S is the algebra of smooth functions on
an open set in Rn [or Cn], D is a free left S-module with basis consisting of all monomials
in the coordinate derivations ∂/∂xi.

2. Calculate all terms of degree ≤ 4 in the Baker-Campbell-Hausdorff formula (equation 3.1.5).

3. Let F (d) be the free Lie algebra on generators x1, . . . , xd. It has a natural Nd grading in which
F (d)(k1,...,kd) is spanned by bracket monomials containing ki occurences of each generator Xi.
Use the PBW theorem to prove the generating function identity

∏
k

1

(1− tk11 . . . tkdd )dimF (d)(k1,...,kd)
=

1
1− (t1 + · · ·+ td)

4. Words in the symbols x1, . . . , xd form a monoid under concatentation, with identity the
empty word. Define a primitive word to be a non-empty word that is not a power of a shorter
word. A primitive necklace is an equivalence class of primitive words under rotation. Use the
generating function identity in Problem 3 to prove that the dimension of F (d)k1,...,kd is equal
to the number of primitive necklaces in which each symbol xi appears ki times.

5. A Lyndon word is a primitive word that is the lexicographically least representative of its
primitive necklace.

(a) Prove that w is a Lyndon word if and only if w is lexicographically less than v for every
factorization w = uv such that u and v are non-empty.

(b) Prove that if w = uv is a Lyndon word of length > 1 and v is the longest proper
right factor of w which is itself a Lyndon word, then u is also a Lyndon word. This
factorization of w is called its right standard factorization.

(c) To each Lyndon word w in symbols x1, . . . , xd associate the bracket polynomial pw = xi
if w = xi has length 1, or, inductively, pw = [pu, pv], where w = uv is the right standard
factorization, if w has length > 1. Prove that the elements pw form a basis of F (d).

6. Prove that if q is a power of a prime, then the dimension of the subspace of total degree
k1 + · · · + kq = n in F (q) is equal to the number of monic irreducible polynomials of degree
n over the field with q elements.

7. This problem outlines an alternative proof of the PBW theorem (Theorem 3.24).

(a) Let L(d) denote the Lie subalgebra of T (x1, . . . , xd) generated by x1, . . . , xd. Without
using the PBW theorem—in particular, without using F (d) = L(d)—show that the value
given for dimF (d)(k1,...,kd) by the generating function in Problem 3 is a lower bound for
dimL(d)(k1,...,kd).
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(b) Show directly that the Lyndon monomials in Problem 5(b) span F (d).

(c) Deduce from (a) and (b) that F (d) = L(d) and that the PBW theorem holds for F (d).

(d) Show that the PBW theorem for a Lie algebra g implies the PBW theorem for g/a,
where a is a Lie ideal, and so deduce PBW for all finitely generate Lie algebras from (c).

(e) Show that the PBW theorem for arbitrarty Lie algebras reduces to the finitely generated
case.

8. Let b(x, y) be the Baker-Campbell-Hausdorff series, i.e., eb(x,y) = exey in noncommuting
variables x, y. Let F (x, y) be its linear term in y, that is, b(x, sy) = x+ sF (x, y) +O(s2).

(a) Show that F (x, y) is characterized by the identity

∑
k,l≥0

xk F (x, y)xl

(k + l + 1)!
= exy. (3.5.6)

(b) Let λ, ρ denote the operators of left and right multiplication by x, and let f be the series
in two commuting variables such that F (x, y) = f(λ, ρ)(y). Show that

f(λ, ρ) =
λ− ρ

1− eρ−λ

(c) Deduce that

F (x, y) =
adx

1− e− adx
(y).

9. Let G be a Lie group, g = Lie(G), 0 ∈ U ′ ⊆ U ⊆ g and e ∈ V ′ ⊆ V ⊆ G open neighborhoods
such that exp is an isomorphism of U onto V , exp(U ′) = V ′, and V ′V ′ ⊆ V . Define β :
U ′ × U ′ → U by β(x, y) = log(exp(x) exp(y)), where log : V → U is the inverse of exp.

(a) Show that β(x, (s+ t)y) = β(β(x, ty), sy) whenever all arguments are in U ′.

(b) Show that the series (adx)/(1− e− adx), regarded as a formal power series in the coordi-
nates of x with coefficients in the space of linear endomorphisms of g, converges for all
x in a neighborhood of 0 in g.

(c) Show that on some neighborhood of 0 in g, β(x, ty) is the solution of the initial value
problem

β(x, 0) = x (3.5.7)
d

dt
β(x, ty) = F (β(x, ty), y), (3.5.8)

where F (x, y) =
Ä
(adx)/(1− e− adx)

ä
(y).

(d) Show that the Baker-Campbell-Hausdorff series b(x, y) also satises the identity in part
(a), as an identity of formal power series, and deduce that it is the formal power series
solution to the IVP in part (c), when F (x, y) is regarded as a formal series.
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(e) Deduce from the above an alternative proof that b(x, y) is given as the sum of a series
of Lie bracket polynomials in x and y, and that it converges to β(x, y) when evaluated
on a suitable neighborhood of 0 in g.

(f) Use part (c) to calculate explicitly the terms of b(x, y) of degree 2 in y.

10. (a) Show that the Lie algebra so(3,C) is isomorphic to sl(2,C).

(b) Construct a Lie group homomorphism SL(2,C) → SO(3,C) which realizes the isomor-
phism of Lie algebras in part (a), and calculate its kernel.

11. (a) Show that the Lie algebra so(4,C) is isomorphic to sl(2,C)× sl(2,C).

(b) Construct a Lie group homomorphism SL(2,C) × SL(2,C) → SO(4,C) which realizes
the isomorphism of Lie algebras in part (a), and calculate its kernel.

12. Show that every closed subgroup H of a Lie group G is a Lie subgroup, so that the inclusion
H ↪→ G is a closed immersion.

13. Let G be a Lie group and H a closed subgroup. Show that G/H has a unique manifold
structure such that the action of G on it is smooth.

14. Show that the intersection of two Lie subgroups H1, H2 of a Lie group G can be given a
canonical structure of Lie subgroup so that its Lie algebra is Lie(H1) ∩ Lie(H2) ⊆ Lie(G).

15. Find the dimension of the closed linear group SO(p, q,R) ⊆ SL(p+q,R) consisting of elements
which preserve a non-degenerate symmetric bilinear form on Rp+q of signature (p, q). When
is this group connected?

16. Show that the kernel of a Lie group homomorphism G→ H is a closed subgroup of G whose
Lie algebra is equal to the kernel of the induced map Lie(G)→ Lie(H).

17. Show that if H is a normal Lie subgroup of G, then Lie(H) is a Lie ideal in Lie(G).
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Chapter 4

General theory of Lie algebras

4.1 Ug is a Hopf algebra

[8, Lecture 18]

4.1 Definition A Hopf algebra over K is a (unital, counital) bialgebra (U, µ, e,∆, ε) along with
a bialgebra map S : U → Uop called the antipode, where Uop is U as a vector space, with the
opposite multiplication and the opposite comultiplication. I.e. we define µop : U ⊗ U → U by
µop(x⊗y) = µ(y⊗x), and ∆op : U → U⊗U by ∆op(x) =

∑
x(2)⊗x(1), where ∆(x) =

∑
x(1)⊗x(2).

The antipode S is required to make the following pentagons commute:

KU

U ⊗ U U ⊗ U

U

U ⊗ U U ⊗ U

ε e

∆

∆

µ

µ

1G⊗S

S⊗1G

(4.1.1)

4.2 Definition An algebra (U, µ, e) is commutative if µop = µ. A coalgebra (U,∆, ε) is cocommu-
tative if ∆op = ∆.

4.3 Example Let G be a finite group and C (G) the algebra of functions on it. Then C (G) is a
commutative Hopf algebra with ∆(f)(x, y) = f(xy), where we have identified C (G) ⊗ C (G) with
C (G×G), and S(f)(x) = f(x−1).

Let G be an algebraic group, and C (G) the algebra of polynomial functions on it. Then
Then C (G) is a commutative Hopf algebra with ∆(f)(x, y) = f(xy), where we have identified
C (G)⊗ C (G) with C (G×G), and S(f)(x) = f(x−1).

Let G be a group and K[G] the group algebra of G, with mutliplication defined by µ(x⊗y) = xy
for x, y ∈ G. Then G is a cocommutative Hopf algebra with ∆(x) = x ⊗ x and S(x) = x−1 for
x ∈ G.

39
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Let g be a Lie algebra and Ug its universal enveloping algebra. We have seen already (Propo-
sition 3.28) that Ug is naturally a bialgebra with ∆(x) = x⊗ 1 + 1⊗ x for x ∈ g; we make Ug into
a Hopf algebra by defining S(x) = −x for x ∈ g.

4.4 Lemma / Definition Let U be a cocommutative Hopf algebra. Then the antipode is an
involution. Moreover, the category of (algebra-) representations of U has naturally the struc-
ture of a symmetric monoidal category with duals. In particular, to each pair of representa-
tions V,W of U , there are natural ways to make V ⊗K W and HomK(V,W ) into U -modules.
Then any (di)natural functorial contruction of vector spaces — for example V ⊗ W ∼= W ⊗ V ,
Hom(U ⊗V,W ) ∼= Hom(U,Hom(V,W ), and W : V 7→ Hom(Hom(V,W ),W ) — in fact corresponds
to a homomorphism of U -modules.

Proof Proving the last part would require we go further into category theory than we would like.
We describe the U -action on V ⊗K W and on HomK(V,W ) when V and W are U -modules. For
u ∈ U , let ∆(u) =

∑
u(1)⊗u(2) =

∑
u(2)⊗u(1), and write the actions of u on v ∈ V and on w ∈W

as u · v ∈ V and u · w ∈W . Let φ ∈ HomK(V,W ). Then we define:

u · (v ⊗ w) def=
∑

(u(1) · v)⊗ (u(2) · w) (4.1.2)

u · φ def=
∑

u(1) ◦ φ ◦ S(u(2)) (4.1.3)

Moreover, the counit map ε : U → K makes K into U -module, and it is the unit of the monoidal
structure. �

4.5 Remark Equation 4.1.2 makes the category of U -modules into a monoidal category for any
bialgebra U . One can define duals via equation 4.1.3, but if U is not cocommutative, then S may not
be an involution, so a choices is required as to which variation of equation 4.1.3 to take. Moreover,
when U is not cocommutative, we do not, in general, have an isomorphism V ⊗W ∼= W ⊗ V . See
[17] and references therein for more discussion of Hopf algebras.

4.6 Example When U = Ug and x ∈ g, then x acts on V ⊗W by v ⊗ w 7→ xv ⊗ w + v ⊗ w, and
on Hom(V,W ) by φ 7→ x ◦ φ− φ ◦ x.

4.7 Definition Let (U, µ, e, ε) be a “counital algebra” over K, i.e. an algebra along with an algebra
map ε : U → K; thus ε makes K into a U -module. Let V be a U -module. An element v ∈ V is
U -invariant if the linear map K→ V given by 1 7→ v is a U -module homomorphism. We write V U

for the vector space of U -invariant elements of V .

4.8 Lemma When U is a cocommutative Hopf algebra, the space HomK(V,W )U of U -invariant
linear maps is the same as the space HomU (V,W ) of U -module homomorphisms.

4.9 Example The Ug-invariant elements of a g-module V is the set V g = {v ∈ V s.t. x · v =
0 ∀x ∈ g}. We shorten the word “Ug-invariant” to “g-invariant”. A linear map φ ∈ HomK(V,W ) is
g-invariant if and only if x ◦ φ = φ ◦ x for every x ∈ g.

4.10 Definition The center of a Lie algebra g is the space of g-invariant elements of g under the
adjoint action: Z(g) def= gg = {x ∈ g s.t. [g, x] = 0}.
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4.2 Structure Theory of Lie Algebras

4.2.1 Many Definitions

[8, Lectures 17 and 18]
As always, we write “g-module” for “Ug-module”.

4.11 Definition A g-module V is simple or irreducible if there is no submodule W ⊆ V with
0 6= W 6= V . A Lie algebra is simple if it is simple as a g-module under the adjoint action. An
ideal of g is a g-submodule of g under the adjoint action.

4.12 Proposition If a and b are ideals in g, then so is [a, b].

4.13 Definition The upper central series of a Lie algebra g is the series g ≥ g1 ≥ g2 ≥ . . . where
g0

def= g and gn+1
def= [g, gn]. The Lie algebra g is nilpotent if gn = 0 for some n.

4.14 Definition The derived subalgebra of a Lie algebra g is the algebra g′
def= [g, g]. The derived

series of g is the series g ≥ g′ ≥ g′′ ≥ . . . given by g(0) def= g and g(n+1) def= [g(n), g(n)]. The Lie
algebra g is solvable if g(n) = 0 for some n. An ideal r in g is solvable if it is solvable as a subalgebra.
By Proposition 4.12, if r is an ideal of g, then so is r(n).

4.15 Example The Lie algebra of upper-triangular matrices in gl(n) is solvable. A converse to
this statement is Corollary 4.38. The Lie algebra of strictly upper triangular matrices is nilpotent.

4.16 Definition A Lie algebra g is semisimple if its only solvable ideal is 0.

4.17 Remark If r is a solvable ideal of g with r(n) = 0, then r(n−1) is abelian. Conversely, any
abelian ideal of g is solvable. Thus it is equivalent to replace the word “solvable” in Definition 4.16
with the word “abelian”.

4.18 Proposition Any nilpotent Lie algebra is solvable. A non-zero nilpotent Lie algebra has
non-zero center.

4.19 Proposition A subquotient of a solvable Lie algebra is solvable. A subquotient of a nilpotent
algebra is nilpotent. If a is an ideal of g and if a and g/a are both solvable, then g is solvable. If
a is an ideal of g and a is nilpotent and if g y a nilpotently, then g is nilpotent. Thus a central
extension of a nilpotent Lie algebra is nilpotent.

Proof The derived and upper central series of subquotients are subquotients of the derived and
upper central series. For the second statement, we start taking the derived series of g, eventually
landing in a (since g/a→ 0), which is solvable. The nilpotent claim is similar.

4.20 Example Let g = 〈x, y : [x, y] = y〉 be the two-dimensional nonabelian Lie algebra. Then
g(1) = 〈y〉 and g(2) = 0, but g2 = [g, 〈y〉] = 〈y〉 so g is solvable but not nilpotent.
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4.21 Definition The lower central series of a Lie algebra g is the series 0 ≤ Z(g) ≤ z2 ≤ . . .
defined by z0 = 0 and zk+1 = {x ∈ g s.t. [g, x] ⊆ zk}.

4.22 Proposition For any of the derived series, the upper central series, and the lower central
series, quotients of consecutive terms are abelian.

4.23 Proposition Let g be a Lie algebra and {zk} its lower central series. Then zn = g for some
n if and only if g is nilpotent.

4.2.2 Nilpotency: Engel’s Theorem and Corollaries

[8, Lecture 19]

4.24 Lemma / Definition A matrix x ∈ End(V ) is nilpotent if xn = 0 for some n. A Lie
algebra g acts by nilpotents on a vector space V if for each x ∈ g, its image under g → End(V )
is nilpotent. If g y V,W by nilpotents, then g y V ⊗W and g y Hom(V,W ) by nilpotents. If
v ∈ V and g y V , define the annihilator of v to be anng(v) = {x ∈ g s.t. xv = 0}. For any v ∈ V ,
ann( v) is a Lie subalgebra of g.

4.25 Theorem (Engel’s Theorem) If g is a finite-dimensional Lie algebra acting on V (possibly
infinite-dimensional) by nilpotent endomorphisms, and V 6= 0, then there exists a non-zero vector
v ∈ V such that gv = 0.

Proof It suffices to look at the image of g in gl(V ) = Hom(V, V ). Then ad : g y g is by nilpotents.
Pick v0 ∈ V so that anng(v0) has maximal dimension and let h = anng(v0). It suffices to show

that h = g; suppose to the contrary that h ( g. By induction on dimension, the theorem holds for
h. Consider the vector space g/h; then hy g/h by nilpotents, so we can find x ∈ g/h nonzero with
hx = 0. Let x̂ be a preimage of x in g. Then x̂ ∈ g r h and [h, x̂] ⊆ h. Then h1

def= 〈x̂〉 + h is a
subalgebra of g.

The space U
def= {u ∈ V s.t. hu = 0} is non-zero, since v0 ∈ U . We see that U is an h1-

submodule of h1 y V : hu = 0 ∈ U for h ∈ h, and h(x̂u) = [h, x̂]u+ x̂hu = 0u+ x̂0 = 0 so x̂u ∈ U .
All of g acts on all of V by nilpotents, so in particular x|U is nilpotent, and so there is some vector
v1 ∈ U with xv1 = 0. But then h1v1 = 0, contradicting the maximality of h = ann(v0). �

4.26 Corollary 1. If g y V by nilpotents and V is finite dimension, then V has a basis in
which g is strictly upper triangular.

2. If adx is nilpotent for all x ∈ g finite-dimensional, then g is a nilpotent Lie algebra.

3. Let V be a simple g-module. If an ideal a ≤ g acts nilpotently on V then a acts as 0 on V .

4.27 Lemma / Definition If V is a finite-dimensional g module, then there exists a Jordan-
Holder series 0 = M0 < M1 < M2 < · · · < M(n) = V such that each Mi is a g-submodule and each
Mi+1/Mi is simple.
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4.28 Corollary Let V be a finite-dimensional g-module and 0 = M0 < M1 < M2 < · · · < M(n) =
V a Jordan-Holder series for V . An ideal a ≤ g acts by nilpotents on V if and only if a acts by 0
on each Mi+1/Mi. Thus there is a largest ideal of g that acts by nilpotents on V .

4.29 Definition The largest ideal of g that acts by nilpotents on V is the nilpotency ideal of the
action g y V .

4.30 Proposition Any nilpotent ideal a ≤ g acts nilpotently on g.

4.31 Corollary Any finite-dimensional Lie algebra has a largest nilpotent ideal: the nilpotency
ideal of ad.

4.32 Remark Not every ad-nilpotent element of a Lie algebra is necessarily in the nilpotency ideal
of ad.

4.33 Definition Let g be a Lie algebra and V a finite-dimensional g-module. Then V defines a
trace form βV : a symmetric bilinear form on g given by βV (x, y) def= trV (x, y). The radical or kernel
of βV is the set kerβV

def= {x ∈ g s.t. βV (x, g) = 0}.

4.34 Remark The more standard notation seems to be radβ for what we call kerβ, c.f. [8]. We
prefer the term “kernel” largely to avoid the conflict of notation with Lemma/Definition 4.36. Any
bilinear form β on V defines two linear maps V → V ∗, where V ∗ is the dual vector space to V ,
given by x 7→ β(x,−) and x 7→ β(−, x). Of course, when β is symmetric, these are the same map,
and we can unambiguously call the map β : V → V ∗. Then kerβV defined above is precisely the
kernel of the map βV : g→ g∗.

The following proposition follows from considering Jordan-Holder series:

4.35 Proposition If and ideal a ≤ g of a finite-dimensional Lie algebra acts nilpotently on a
finite-dimensional vector space V , then a ≤ kerβV .

4.2.3 Solvability: Lie’s Theorem and Corollaries

[8, Lectures 19 and 20]

4.36 Lemma / Definition Let g be a finite-dimensional Lie algebra. Then g has a largest solvable
ideal, the radical rad g.

Proof If ideals a, b ≤ g are solvable, then a + b is solvable, since we have an exact sequence of
g-modules

0→ a→ a + b→ (a + b)/a→ 0 (4.2.1)

which is also an extension of a solvable algebra (a quotient of b) by a solvable ideal. �

4.37 Theorem (Lie’s Theorem) Let g be a finite-dimensional solvable Lie algebra over K of
characteristic 0, and V a non-zero g-module. Assume that K contains eigenvalues of the actions of
all x ∈ g. Then V has a one-dimensional g-submodule.
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Proof Without loss of generality g 6= 0; then g′ 6= g by solvability. Pick any g ≥ h ≥ g′ a
codimension-1 subspace. Since h ≥ g′, h is an ideal of g. Pick x ∈ gr h, whence g = 〈x〉+ h.

Being a subalgebra of g, h is solvable, and by induction on dimension h y V has a one-
dimensional h-submodule 〈w〉. Thus there is some linear map λ : h → K so that h · w = λ(h)w
for each h ∈ h. Let W = K[x]w for x ∈ g r h as above. Then W = U(g)w, as g = h + 〈x〉 and
hw ⊆ Kw.

By induction on m, each 〈1, x, . . . , xm〉w is an h-submodule of W :

h(xmw) = xmhw +
∑

k+l=m−1

xk[h, x]xlw (4.2.2)

= λ(h)xmw + xkh′xlw (4.2.3)

where h′ = [h, x] ∈ h. Thus h′xlw ∈ 〈1, . . . , xl〉w by induction, and so xkh′xlw ∈ 〈1, . . . , xk+l〉w =
〈1, . . . , xm−1〉w.

Moreover, we see that W is a generalized eigenspace with eigenvalue λ(h) for all h ∈ h, and
so trW h = (dimW )λ(h), by working in a basis where h is upper triangular. But for any a, b,
tr[a, b] = 0; thus trW [h, x] = 0 so λ([h, x]) = 0. Then equations 4.2.2 to 4.2.3 and induction on m
show that W is an actual eigenspace.

Thus we can pick v ∈W an eigenvector of x, and then v generates a one-dimensional eigenspace
of x+ h = g, i.e. a one-dimensional g-submodule. �

4.38 Corollary Let g and V satisfy the conditions of Theorem 4.37. Then V has a basis in which
g is upper-diagonal.

4.39 Corollary Let g be a solvable finite-dimensional Lie algebra over an algebraically closed field
of characteristic 0. Then every simple finite-dimensional g-module is one-dimensional.

4.40 Corollary Let g be a solvable finite-dimensional Lie algebra over a field of characteristic 0.
Then g′ acts nilpotently on any finite-dimensional g-module.

4.41 Remark In spite of the condition on the ground field in Theorem 4.37, Corollary 4.40 is
true over any field of characteristic 0. Indeed, let g be a Lie algebra over K and K ≤ L a field
extension. The upper central, lower central, and derived series are all preserved under L⊗K, so
L⊗K g is solvable if and only if g is. Moreover, g y V nilpotently if and only if L⊗K g y L⊗K V
nilpotently. Thus we may as well “extend by scalars” to an algebraically closed field.

4.42 Corollary Corollary 4.31 asserts that any Lie algebra g has a largest ideal that acts nilpo-
tently on g. When g is solvable, then any element of g′ is ad-nilpotent. Hence the set of ad-nilpotent
elements of g is an ideal.

4.2.4 The Killing Form

[8, Lecture 20]
We recall Definition 4.33.
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4.43 Proposition Let g be a Lie algebra and V a g-module. The trace form βV : (x, y) 7→ trV (xy)
on g is invariant under the g-action:

βV
Ä
[z, x], y

ä
+ βV

Ä
x, [z, y]

ä
= 0 (4.2.4)

4.44 Definition Let g be a Lie algebra. The Killing form β
def= β(g,ad) on g is the trace form of the

adjoint representation g y g.

4.45 Proposition Let g be a Lie algebra, V a g-module, and W ⊆ V a g-submodule. Then
βV = βW + βV/W .

4.46 Corollary Let g be a Lie algebra and a ≤ g an ideal. Then β(g/a,ad)|a×g = 0, so β|a×g =
βa|a×g. In particular, the Killing form of a is β|a×a.

4.47 Proposition Let V be a g-module of a Lie algebra g. Then kerβV is an ideal of g.

Proof The invariance of βV implies that the map βV : g→ g∗ given by x 7→ βV (x,−) is a g-module
homomorphism, whence kerβV is a submodule a.k.a. and ideal of g. �

The following is a corollary to Theorem 4.25, using the Jordan-form decomposition of matrices:

4.48 Proposition Let g be a Lie algebra, V a g-module, and a an ideal of g that acts nilpotently
on V . Then a ⊆ kerβV .

4.49 Corollary If the Killing form β of a Lie algebra g is nondegenerate (i.e. if kerβ = 0), then
g is semisimple.

4.2.5 Jordan Form

[8, Lecture 20], [18, page 57]1

4.50 Theorem (Jordan decomposition) Let V be a finite-dimensional vector space over an
algebraically closed field K. Then:

1My notes from MH’s class [8] on the proof Theorem 4.50 are sadly incomplete, and so I have quoted from [18].
The statement of the Jordan decomposition in [8, Proposition 20.3] is stronger than in [18, Lemma 12.4]: in the
former, not only do we assert that s, n ∈ K[x], but that they are in xK[x]. This is probably equivalent, but I haven’t
thought about it enough to be sure.

The two statements in this section are leading towards the statement and proof of Proposition 4.52. It seems that
this theorem requires an unmotivated piece of linear algebra; for us, this is Lemma 4.51. [18, Lemma 12.3] states this
result differently; only by inspecting the proofs are they obviously equivalent:

Lemma Let s be a diagonalizable linear operator on a vector space V over K algebraically closed of characteristic 0.
If s = adiag(λ1, . . . , λn)a−1 for a an invertible matrix over V , and given f : K → K an arbitrary function, we define
f(x) as adiag(f(λ1), . . . , f(λn))a−1. Suppose that tr(xf(x)) = 0 for any Q-linear map f : K → K that restricts to
the identity on Q ↪→ K. Then s = 0.
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1. Every a ∈ gl(V ) has a unique Jordan decomposition a = s + n, where s is diagonalizable, n
is nilpotent, and they commute.

2. s, n ∈ K[a], in the sense that they are linear combinations of powers of a; as a varies, s and
n need not depend polynomially on a.

Proof We write a in Jordan form; since strictly-upper-triangular matrices are nilpotent, existence
of a Jordan decomposition of a is guaranteed. In particular, the diagonal part s clearly commutes
with a, and hence with n = a−s. We say this again more specifically, showing that s, n constructed
this way are polynomials in x:

Let the characteristic polynomial of a be
∏
i(x−λi)ni . In particular, (x−λi) are relatively prime,

so by the Chinese Remainder Theorem, there is a polynomial f such that f(x) = λi mod (x−λi)ni .
Choose a basis of V in which a is in Jordan form; since restricting to a Jordan block b of a is an
algebra homomorphism K[a] � K[b], we can compute f(a) block-by-block. Let b be a block of a
with eigenvalue λi. Then (b− λi)ni = 0, so f(b) = λi. Thus s = f(a) is diagonal in this basis, and
n = a− f(a) is nilpotent.

For uniqueness in part 1., let x = n′ + s′ be any other Jordan decomposition of a. Then n′ and
s′ commut with a and hence with any polynomial in a, and in particular n′ commutes with n and
s′ commutes with s. But n′+ s′ = a = n+ s, so n′−n = s′− s. Since everything commutes, n′−n
is nilpotent and s′ − s is diagonalizable, but the only nilpotent diagonal is 0. �

We now move to an entirely unmotivated piece of linear algebra:

4.51 Lemma Let V be a finite-dimensional vector space over an algebraically closed field K of
characteristic 0. Let B ⊆ A ⊆ gl(V ) be any subspaces, and define T = {x ∈ gl(V ) : [x,A] ⊆ B}.
Then if t ∈ T satisfies trv(tu) = 0 ∀u ∈ T , then t is nilpotent.

We can express this as follows: Let βV be the trace form on gl(V ) y V . Then kerβV |T×T consists
of nilpotents.

Proof Let t = s+n be the Jordan decomposition; we wish to show that s = 0. We fix a basis {ei}
in which s is diagonal: sei = λiei. Let {eij} be the corresponding basis of matrix units for gl(V ).
Then (ad s)eij = (λi − λj)eij .

Now let Λ = Q{λi} be the finite-dimensional Q-vector-subspace of K. We consider an arbitrary
Q-linear functional f : Λ→ Q; we will show that f = 0, and hence that Λ = 0.

By Q-linearity, f(λi) − f(λj) = f(λi − λj), and we chose a polynomial p(x) ∈ K[x] so that
p(λi − λj) = f(λi)− f(λj); in particular, p(0) = 0.

Now we define u ∈ gl(V ) by uei = f(λi)ei, and then (adu)eij = (f(λi)− f(λj))eij = p(ad s)eij .
So adu = p(ad s).

Since ad : g→ gl(g) is a Lie algebra homomorphism, ad t = ad s+adn, and ad s, adn commute,
and ad s is diagonalizable and adn is nilpotent. So ad s+ adn is the Jordan decomposition of ad t,
and hence ad s = q(ad t) for some polynomial q ∈ K[x]. Then adu = (p ◦ q)(ad t), and since every
power of t takes A into B, we have (adu)A ⊆ B, so u ∈ T .

But by construction u is diagonal in the {ei} basis and t is upper-triangular, so tu is upper-
triangular with diagonal diag(λif(λi)). Thus 0 = tr(tu) =

∑
λif(λi). We apply f to this: 0 =∑

(f(λi))2 ∈ Q, so f(λi) = 0 for each i. Thus f = 0. �
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4.2.6 Cartan’s Criteria

[8, Lecture 21]

4.52 Proposition Let V be a finite-dimensional vector space over a field K of characteristic 0.
Then a subalgebra g ≤ gl(V ) is solvable if and only if βV (g, g′) = 0, i.e. g′ ≤ kerβV .

Proof We can extend scalars and assume thatK is algebraically closed, thus we can use Lemma 4.51.
The forward direction follows by Lie’s theorem (Theorem 4.37): we can find a basis of V in

which g acts by upper-triangular matrices, and hence g′ acts by strictly upper-triangular matrices.
For the reverse, we’ll show that g′ acts nilpotently, and hence is nilpotent by Engel’s theorem

(Theorem 4.25). We use Lemma 4.51, taking V = V , A = g, and B = g′. Then T = {t ∈
gl(V ) s.t. [t, g] ≤ g′}, and in particular g ≤ T , and so g′ ≤ T .

So if [x, y] = t ∈ g′, then trV (tu) = trV ([x, y]u) = trV (y[x, u]) by invariance, and y ∈ g and
[x, u] ∈ g′ so trV (y[x, u]) = 0. Hence t is nilpotent. �

The following is a straightforward corollary:

4.53 Theorem (Cartan’s First Criterion) Let g be a Lie algebra over a field of characteristic
0. Then g is solvable if and only if g′ ≤ kerβ.

Proof We have not yet proven Theorem 4.99, so we cannot assume that g ↪→ gl(V ) for some V .
Rather, we let V = g and g̃ = g/Z(g), whence g̃ ↪→ gl(V ) by the adjoint action. Then g is a central
extension of g̃, so by Proposition 4.19 g is solvable if and only if g̃ is. By Proposition 4.52, g̃ is
solvable if and only if βg̃(g̃, g̃′) = 0. But βg facrots through βg̃:

βg = {g× g
/Z(g)−→ g̃× g̃

βg̃→ K} (4.2.5)

Moreover, g′
/Z(g)
� g̃′, and so βg(g, g′) = βg̃(g̃, g̃′). �

4.54 Corollary For any Lie algebra g in characteristic zero with Killing form β, we have that
kerβ is solvable, i.e. kerβ ≤ rad g.

The reverse direction of the following is true in any characteristic (Corollary 4.49). The forward
direction is an immediate corollary of Corollary 4.54.

4.55 Theorem (Cartan’s Second Criterian) Let g be a Lie algebra over characteristic 0, and
β its Killing form. Then g is semisimple if and only if kerβ = 0.

4.56 Corollary Let g be a Lie algebra over characteristic 0. The g is semisimple if and only if
any extension by scalars of g is semisimple.

4.57 Remark For any Lie algebra g, g/ rad g is semisimple. We will see latter (Theorem 4.86)
that in characteristic 0, rad g is a direct summand and g.
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4.3 Examples: three-dimensional Lie algebras

[8, Lecture 21]
The classification of three-dimensional Lie algebras over R or C is long but can be done by

hand, c.f. http://en.wikipedia.org/wiki/Bianchi_classification. The classification of four-
dimensional Lie algebras has been completed, but beyond this it is hopeless: there are too many
extensions of one algebra by another. In Chapter 5 we will classify all semisimple Lie algebras. For
now we list two important Lie algebras:

4.58 Lemma / Definition The Heisenberg algebra is a three-dimensional Lie algebra with a basis
x, y, z, in which z is central and [x, y] = z. The Heisenberg algebra is nilpotent.

4.59 Lemma / Definition We define sl(2) to be the three-dimensional Lie algebra with a basis
e, h, f and relations [h, e] = 2e, [h, f ] = −2f , and [e, f ] = h. So long as we are not working over
characteristic 2, sl(2) is semisimple; simplicity follows from Corollary 4.62.

Proof Just compute the Killing form βsl(2). �

We conclude this section with two propositions and two corollaries; these will play an important
role in Chapter 5.

4.60 Proposition Let g be a Lie algebra such that every ideal a of g and every quotient g/a of g is
semisimple. Then g is semisimple. Conversely, let g be a semisimple Lie algebra over characteristic
0. Then all ideals and all quotients of g are semisimple.

Proof We prove only the converse direction. Let g be semisimple, so that β is nondegenerate. Let
α⊥ be the orthogonal subspace to a with respet to β. Then a⊥ = ker{x 7→ β(−, x) : g→ Hom(a, g)},
so a⊥ is an ideal. Then a ∩ a⊥ = kerβ|a ≤ rad a, and hence it’s solvable and hence is 0. So a is
semisimple, and also a⊥ is. In particular, the projection a⊥

∼→ g/a is an isomorphism of Lie
algebras, so g/a is semisimple. �

4.61 Corollary Every finite-dimensional semisimple Lie algebra g over characteristic 0 is a direct
product g = g1 × · · · × gm of simple nonabelian algebras.

Proof Let a be a minimal and hence simple idea. Then [a, a⊥] ⊆ a ∩ a⊥ = 0. Rinse and repeat.�

4.62 Corollary sl(2) is simple.

4.4 Some Homological Algebra

We will not need too much homological algebra; any standard textbook on the subject, e.g. [3, 6, 19],
will contain fancier versions of many of these constructions.

http://en.wikipedia.org/wiki/Bianchi_classification
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4.4.1 The Casimir

[8, Lectures 21 and 22]
The following piece of linear algebra is a trivial exercise in definition-chasing, and is best checked

in either the physicists’ index notation or Penrose’s graphical language:

4.63 Proposition Let 〈, 〉 be a nondegenerate not-necessarily-symmetric bilinear form on finite-
dimensional V . Let (xi) and (yi) be dual bases, so 〈xi, yj〉 = δij. Then θ =

∑
xi ⊗ yi ∈ V ⊗ V

depends only on the form 〈, 〉. If z ∈ gl(V ) leaves 〈, 〉 invariant, then θ is also invariant.

4.64 Corollary Let β be a nondegenerate invariant (symmetric) form on a finite-dimensional Lie
algebra g, and define cβ =

∑
xiyi to be the image of θ in Proposition 4.63 under the multiplication

map g⊗ g→ Ug. Then cβ is a central element of Ug.

4.65 Lemma / Definition Let g be a finite-dimensional Lie algebra and V a g-module so that
the trace form βV is nondegenerate. Define the Casimir operator cV = cβV as in Corollary 4.64.
Then cV has the following properties:

1. cV only depends on βV .

2. cV ∈ Z(U(g))

3. cV ∈ U(g)g, i.e. it acts as 0 on K.

4. trV (cV ) =
∑

trV (xiyi) = dim g.

In particular, cV distinguishes V from the trivial representation.

4.4.2 Review of Ext

[8, Lectures 22 and 23]

4.66 Definition Let C be an abelian category. A complex (with homological indexing) in C is a

sequence A• = . . . Ak
dk→ Ak−1 → . . . of maps in C such that dk◦dk+1 = 0 for every k. The homology

of A• are the objects Hk(A•)
def= ker dk/ Im dk+1. For each k, ker dk is the object of k-cycles, and

Im dk+1 is the object of k-boundaries.
We can write the same complex with cohomological indexing by writing Ak

def= A−k, whence

the arrows go · · · → Ak−1 δk→ Ak → . . . . The cohomology of a complex is Hk(A•) def= H−k(A•) =
ker δk+1/ Im δk. The k-cocycles are ker δk+1 and the k-coboundaries are Im δk.

A complex is exact at k if Hk = 0. A long exact sequence is a complex, usually infinite, that
is exact everywhere. A short exact sequence is a three-term exact complex of the form 0 → A →
B → C → 0. In particular, A = ker(B → C) and C = A/B.

4.67 Definition Let U be an associative algebra and U-mod its category of left modules. A free
module is a module U y F that is isomorphic to a possibly-infinite direct sum of copies of U y U .
Let M be a U -module. A free resolution of M is a complex F• = · · · → F1 → F0 → 0 that
is exact everywhere except at k = 0, where Hk(F•) = M . Equivalently, the augmented complex
F• →M → 0 is exact.
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4.68 Lemma Given any module M , a free resolution F• of M exists.

Proof Let F−1
def= M0

def= M and Mk+1
def= ker(Fk → Fk−1). Define Fk to be the free module on a

generating set of Mk. �

4.69 Lemma / Definition Let U be an associative algebra and M,N two left U modules. Let F•
be a free resolution of M , and construct the complex

HomU (F•, N) = HomU (F0, N) δ1→ HomU (F1, N) δ2→ . . . (4.4.1)

by applying the contravariant functor HomU (−, N) to the complex F•. Define ExtiU (M,N) def=
H i(HomU (F•, N)). Then Ext0

U (M,N) = Hom(M,N). Moreover, ExtiU (M,N) does not depend on
the choice of free resolution F•, and is functorial in M and N .

Proof It’s clear that for each choice of a free-resolution of M , we get a functor Ext•(M,−).
Let M →M ′ be a U -morphism, and F ′• a free resolution of M ′. By freeness we can extend the

morphism M →M ′ to a chain morphism, unique up to chain homotopy:

M

M ′

F0F1· · ·

F ′0F ′1· · ·
(4.4.2)

Chain homotopies induce isomorphisms on Hom, so Ext•(M,N) is functorial in M ; in particular,
letting M ′ = M with a different free resolution shows that Ext•(M,N) is well-defined. �

4.70 Lemma / Definition The functor Hom(−, N) is left-exact but not right-exact, i.e. if 0 →
A → B → C → 0 is a short exact sequence then Hom(A,N) ← Hom(B,N) ← Hom(C,N) ← 0
is exact, but 0 ← Hom(A,N) ← Hom(B,N) is not necessarily exact. Rather, we get a long exact
sequence in Ext:

0Ext0(C,N)Ext0(B,N)Ext0(A,N)

Ext1(C,N)Ext1(B,N)Ext1(A,N)

Ext2(C,N)Ext2(B,N)Ext2(A,N). . .

(4.4.3)

When N = A, the image of 1A ∈ Hom(A,A) = Ext0(A,A) in Ext1(C,A) is the characteristic class
of the extension 0 → A → B → C → 0. The characteristic class determines B up to equivalence;
in particular, when 1A 7→ 0, then B ∼= A⊕ C.
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4.4.3 Complete Reducibility

4.71 Lemma Let g be a Lie algebra over K, Ug its universal enveloping algebra, N a g-module,
and F a free g-module. Then F ⊗K N is free.

Proof Let F =
⊕Ug; then F ⊗ N =

Ä⊕Ug
ä
⊗K N =

⊕
(Ug ⊗K N), so it suffices to show that

G
def= Ug⊗K N is free.
We understand the Ug-action on G: let x ∈ g and u⊗n ∈ G, then x·(u⊗n) = (xu)⊗n+u⊗(x·n)

as ∆x = x⊗ 1 + 1⊗ x. Here xu is the product in Ug and x · n is the action g y N .
We can put a filtration on G by G≤n = Ug≤n ⊗K N . This makes G into a filtered module:

U(g)≤kG≤l ⊆ G≤k+l (4.4.4)

Thus grG is a grUg-module, but grUg = Sg, and S(g) acts through the first term, so S(g)⊗N is
a free S(g)-module, by picking any basis of N .

let {nβ} be a basis of N and {xα} a basis of g. Then {x~αnβ} is a basis of grG = S(g) ⊗ N ,
hence also a basis of U(g) ⊗ N . Thus U(g) ⊗ N is free. We have used Theorem 3.24 implicitly
multiple times. �

4.72 Corollary If M and N are finite-dimensional g-modules, then:

Exti(M,N) ∼= Exti(K,Hom(M,N)) ∼= Exti(Hom(N,M),K) (4.4.5)

Proof It suffices to prove the first equality.
Let F• →M be a free resolution. A U(g)-module homomorphism is exactly a g-invariant linear

map:

HomU(g)(F,N)• = HomK(F•, N)g (4.4.6)

= HomK(F• ⊗K N
∗,K)g (4.4.7)

= Ext•(M ⊗N∗,K) (4.4.8)

Using the finite-dimensionality of N and the lemma that F •⊗N∗ is a free resolution of M ⊗N∗.�

4.73 Lemma If M,N are finite-dimensional g-modules and c ∈ Z(Ug) such that the characteristic
polynomials f and g of c on M and N are relatively prime, then Exti(M,N) = 0 for all i.

Proof By functoriality, c acts Exti(M,N). By centrality, the action of c on Exti(M,N) must satisfy
both the characteristic polynomials: f(c), g(c) annihilate Exti(M,N). If f and g are relatively
prime, then 1 = af + bg for some polynomials a, b; thus 1 annihilates Exti(M,N), which must
therefore be 0. �

4.74 Theorem (Schur’s Lemma) Let U be an algebra and N a simple non-zero U -module, and
let α : N → N a U -homomorphism; then α = 0 or α is an isomorphism.

Proof The image of α is a submodule of N , hence either 0 or N . If Imα = 0, then we’re done. If
Imα = N , then kerα 6= 0, so kerα = N by simplicity, and α is an isom. �
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4.75 Corollary Let M,N be finite-dimensional simple U -modules such that c ∈ Z(U) annihilates
M but not N ; then Exti(M,N) = 0 for every i.

Proof By Theorem 4.74, c acts invertibly on N , so all its eigenvalues (over the algebraic closure)
are non-zero. But the eigenvalues of c on M are all 0, so the characteristic polynomials are relatively
prime. �

4.76 Theorem (Ext1 vanishes over a semisimple Lie algebra) Let g be a semisimple Lie al-
gebra over a field K of characteristic 0, and let M and N be finite-dimensional g-modules. Then
Ext1(M,N) = 0.

Proof Using Corollary 4.72 we may assume that M = K. Assume that N is not a trivial module.
Then g = g1 × · · · × gk by Corollary 4.61 for gi simple, and some gi acts non-trivially on N . Then
βN does not vanish on gi by Theorem 4.55, and so kergi βN = 0 by simplicity. Thus we can find a
Casimir c ∈ Z(Ugi) ⊆ Z(Ug). In particular, trN (c) = dim gi 6= 0, but c annihilates K, and so by
Corollary 4.75 Ext1(K, N) = 0.

If N is a trivial module, then we use the fact that Ext1(K, N) classifies extensions 0 → N →
L → K → 0, which we will classify directly. (See Example 4.82 for a direct verification that
Ext1 classifies extensions in the case of g-modules.) Writing L in block form (as a vector space,

L = N ⊕ K), we see that g acts on L like
ñ
0 ∗
0 0

ô
. Then g acts by nilpotent matrices, but g is

semisimple, so g annihilates L. Thus the only extension is the trivial one, and Ext1(K, N) = 0. �

We list two corollaries, which are important enough to call theorems. We recall the following
definition:

4.77 Definition An object in an abelian category is simple if it has no non-zero proper subobjects.
An object is completely reducible if it is a direct sum of simple objects.

4.78 Theorem (Weyl’s Complete Reducibility Theorem) Every finite-dimensional represen-
tation of a semisimple Lie algebra over characteristic zero is completely reducible.

4.79 Theorem (Whitehead’s Theorem) If g is a semisimple Lie algebra over characteristic
zero, and M and N are finite-dimensional non-isomorphic simple g-modules, then Exti(M,N)
vanishes for all i.

4.4.4 Computing Exti(K, M)

[8, Lecture 23 and 24]

4.80 Proposition Let g be a Lie algebra over K, and K the trivial representation. Then K has a
free Ug resolution given by:

· · · → U(g)⊗K
∧2g

d2→ U(g)⊗K g
d1→ U(g) ε→ K→ 0 (4.4.9)
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The maps dk : U(g)⊗∧kg→ U(g)⊗∧k−1g for k ≤ 1 are given by:

dk(x1 ∧ · · · ∧ xk) =
∑
i

(−1)i−1xi ⊗ (x1 ∧ · · · x̂i · · · ∧ xk)

−
∑
i<j

(−1)i−j+11⊗ ([xi, xj ] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk) (4.4.10)

Proof That dk is well-defined requires only checking that it is antisymmetric. That dk−1 ◦ dk = 0
is more or less obvious: terms cancel either by being sufficiently separated to appear twice with
opposite signs (like in the free resolution of the symmetric polynomial ring), or by syzygy, or by
Jacobi.

For exactness, we quote a general principle: Let F•(t) be a t-varying complex of vector spaces,
and choose a basis for each one. Assume that the vector spaces do not change with t, but that the
matrix coefficients of the differentials dk depend algebraically on t. Then the dimension of H i can
jump for special values of t, but does not fall at special values of t. In particular, exactness is a
Zariski open condition.

Thus consider the complex with the vector spaces given by equation 4.4.9, but with the differ-
ential given by

dk(x1 ∧ · · · ∧ xk) =
∑
i

(−1)i−1xi ⊗ (x1 ∧ · · · x̂i · · · ∧ xk)

− t
∑
i<j

(−1)i−j+11⊗ ([xi, xj ] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk) (4.4.11)

This corresponds to the Lie algebra gt = (g, [x, y]t
def= t[x, y]). When t 6= 0, gt ∼= g, by x 7→ tx, but

when t = 0, g0 is abelian, and the complex consists of polynomial rings and is obviously exact.
Thus the t-varying complex is exact at t = 0 and hence in an open neighborhood of 0. If K is

not finite, then an open neighborhood of 0 contains non-zero terms, and so the complex is exact
for some t 6= 0 and hence for all t. If K is finite, we replace it by its algebraic closure. �

4.81 Corollary Ext•(K,M) is the cohomology of the Chevalley complex with coefficients in M :

0→M
δ1→ HomK(g,M) δ2→ Hom(

∧2g,M)→ . . . (4.4.12)

If g ∈ HomK(
∧k−1g,M), then the differential δkg is given by:

δkg(x1 ∧ · · · ∧ xk) =
∑
i

(−1)i−1xig(x1 ∧ · · · x̂i · · · ∧ xk)

−
∑
i<j

(−1)i−j+1g([xi, xj ] ∧ x1 ∧ · · · x̂i · · · x̂j · · · ∧ xk) (4.4.13)

4.82 Example Let M and N be finite-dimensional g-modules. Then Exti(M,N) is the cohomol-

ogy of · · · δ
k

→ HomK(
∧lg,M∗ ⊗N) δ

k+1

→ · · · . We compute Ext1(M,N).
If φ ∈M∗⊗N and x ∈ g, then the action of x on φ is given by x ·φ = xN ◦φ−φ◦xM = “[x, φ]”.

A 1-cocycle is a map f : g→M∗⊗N such that 0 = δ1f(x∧y) = f([x, y])−
Ä
(x ·f)(y)−(y ·f)(x)

ä
=

“[x, f(y)]− [y, f(x)]”.



54 CHAPTER 4. GENERAL THEORY OF LIE ALGEBRAS

Let 0 → N → V → M → 0 be a K-vector space, and choose a splitting σ : M → V as vector

spaces. Then g acts on M ⊕N by x 7→
ñ
xN f(x)
0 xM

ô
, and the cocycles f exactly classify the possible

ways to put something in the upper right corner.
The ways to change the splitting σ 7→ σ′ = σ + h correspond to K-linear maps h : M → N .

This changes f(x) by xN ◦ h− h ◦ xM = δ1(h).
We have seen that the 1-cocycles classify the splitting, and changing the 1-cocycle by a 1-

coboundary changes the splitting but not the extension. So Ext1(M,N) classifies extensions up to
isomorphism.

4.83 Example Consider abelian extensions of Lie algebras 0 → m → ĝ → g → 0 where m is an
abelian ideal of ĝ. Since m is abelian, the action ĝ y m factors through g = ĝ/m. Conversely, we
can classify abelian extensions 0→ m→ ĝ→ g→ 0 given g and a g-module m.

We pick a K-linear splitting σ : g→ ĝ; then ĝ = {σ(x) +m} as x ranges over g and m over m,
and the bracket is

[σ(x) +m,σ(y) + n] = σ([x, y]) + [σ(x), n]− [σ(y),m] + g(x, y) (4.4.14)

where g is the error term measuring how far off σ is from being a splitting of g-modules. There is
no [m,n] term, because m is assumed to be an abelian ideal of ĝ.

Then g is antisymmetric. The Jacobi identity on ĝ is equivalent to g satisfying:

0 = x g(y ∧ z)− y g(x ∧ z) + z g(x ∧ y)− g([x, y] ∧ z) + g([x, z] ∧ y)− g([y, z] ∧ x) (4.4.15)
= x g(y ∧ z)− g([x, y] ∧ z) + cycle permutations (4.4.16)

I.e. g is a 2-cocycle in HomK(g,m). In particular, the 2-cocycles classify extensions of g by m along
with a splitting. If we change the splitting by f : g→ m, then g changes by (x · f)(y)− (y · f)(x)−
f([x, y]) = δ2(f). We have proved:

4.84 Proposition Ext2
Ug(K,m) classifies abelian extensions 0 → m → ĝ → g → 0 up to isomor-

phism. The element 0 ∈ Ext2 corresponds to the semidirect product ĝ = gnm.

4.85 Corollary Abelian extensions of semisimple Lie groups are semidirect products.

4.86 Theorem (Levi’s Theorem) Let g be a finite-dimensional Lie algebra over characteristic
0, and let r = rad(g). Then g has a Levi decomposition: semisimple Levi subalgebra s ⊆ g such
that g = sn r.

Proof Without loss of generality, r 6= 0, as otherwise g is already semisimple.
Assume first that r is not a minimal non-zero ideal. In particular, let m 6= 0 be an ideal of g

with m ( r. Then r/m = rad(g/m) 6= 0, and by induction on dimension g/m has a Levi subalgebra.
Let s̃ be the preimage of this subalgebra in g/m. Then s̃ ∩ r = m and s̃/m

∼→ (g/m)/(r/m) = g/r.
Hence m = rad(s̃). Again by induction on dimension, s̃ has a Levi subalgebra s; then s̃ = s ⊕ m

and s ∩ r = 0, so s
∼→ g/r. Thus s is a Levi subalgebra of g.

We turn now to the case when r is minimal. Being a radical, r is solvable, so r′ 6= r, and
by minimality r′ = 0. So r is abelian. In particular, the action g y r factors through g/r,
and so 0 → r → g → g/r → 0 is an abelian extension of g/r, and thus must be semidirect by
Corollary 4.85. �
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4.87 Remark We always have Z(g) ≤ r, and when r is minimal, Z(g) is either 0 or r. When
Z(g) = r, then 0 → r → g → g/r → 0 is in fact an extension of g/r-modules, and so is a direct
product by Example 4.82.

We do not prove the following, given as an exercise in [8]:

4.88 Theorem (Malcev-Harish-Chandra Theorem) All Levi subalgebras of a given Lie alge-
bra are conjugate under the action of the group exp ad n ⊆ GL(V ), where n is the largest nilpotent
ideal of g. (In particular, ad : ny g is nilpotent, so the power series for exp terminates.)

We are now ready to complete the proof of Theorem 3.12, with a theorem of Cartan:

4.89 Theorem (Lie’s Third Theorem) Let g be a Lie algebra over R. Then g = Lie(G) for
some analytic Lie group G.

Proof Find a Levi decomposition g = s n r. If s = Lie(S) and r = Lie(R) where S and R are
connected and simply connected, then the action s y r lifts to an action S y R. Thus we can
construct G = S nR, and it is a direct computation that g = Lie(G) in this case.

So it suffices to find groups S and R with the desired Lie algebras. We need not even assure
that the groups we find are simply-connected; we can always take universal covers. In any case,
s is simply connected, so the action s → gl(s) is faithful, and thus we can find S ⊆ GL(s) with
Lie(S) = s.

On the other hand, r is solvable: the chain r ≥ r′ ≥ r′′ ≥ . . . eventually gets to 0. We can
interpolate between r and r′ by one-co-dimensional vector spaces, which are all necessarily ideals of
some r(k), and the quotients are one-dimensional and hence abelian. Thus any solvable Lie algebra
is an extension by one-dimensional algebras, and this extension also lifts to the level of groups. So
r = Lie(R) for some Lie group R. �

4.5 From Zassenhaus to Ado

[8, Lectures 25 and 26]
Ado’s Theorem (Theorem 4.99) normally is not proven in a course in Lie Theory. For example,

[18, page 8] mentions it only in a footnote, referring the reader to [5, Appendix E]. [11] also
relegates Ado’s Theorem to an appendix (B.3). In fact, we will see that Ado’s Theorem is a direct
consequence of Theorem 4.86, although we will need to develop some preliminary facts.

4.90 Lemma / Definition A Lie derivation of a Lie algebra a is a linear map f : a → a such
that f([x, y]) = [f(x), y] + [x, f(y)]. Equivalently, a derivation is a one-cocycle in the Chevalley
complex with coefficients in a.

A derivation of an associative algebra A is a linear map f : A → A so that f(xy) = f(x) y +
x f(x).

The product (composition) of (Lie) derivations is not necessarily a (Lie) derivation, but the
commutator of derivations is a derivation. We write Der a for the Lie algebra of Lie derivations
of a, and DerA for the algebra of associative derivations of A. Henceforth, we drop the adjective
“Lie”, talking about simply derivations of a Lie algebra.

We say that h y a by derivations if the map h→ gl(a) in fact lands in Der a.
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In very general language, let A and B be vector spaces, and a : A⊗n → A and b : B⊗n → B
n-linear maps. Then a homomorphism from (A, a) to (B, b) is a linear map φ : A → B so that
φ ◦ a = b ◦ φ⊗n, and a derivation from (A, a) to (B, b) is a linear map φ : A → B such that
φ ◦ a = b ◦ (

∑n
i=1 φi), where φi

def= 1 ⊗ · · · ⊗ φ ⊗ · · · ⊗ 1, with the φ in the ith spot. Then the
space Hom(A,B) of homomorphisms is not generally a vector space, but the space Der(A,B)
of derivations is. If (A, a) = (B, b), then Hom(A,A) is closed under composition and hence a
monoid, whereas Der(A,A) is closed under the commutator and hence a Lie algebra. The notions
of “derivation” and “homomorphism” agree for n = 1, whence the map φ must intertwine a with
b. The difference between derivations and homomorphisms is the difference between grouplike and
primitive elements of a bialgebra.

4.91 Proposition Let a be a Lie algebra.

1. Every derivation of a extends uniquely to a derivation of U(a).

2. Der a→ DerU(a) is a Lie algebra homomorphism.

3. If hy a by derivations, then h(U(a)) ⊆ U(a) ·h(a) ·U(a) the two-sided ideal of U(a) generated
by the image of the h action in a.

4. If N ≤ U(a) is an h-stable two-sided ideal, so is Nn.

Proof 1. Let d ∈ Der a, and define â
def= Kd ⊕ a; then U(a) ⊆ U(â). The commutative [d,−]

preserves U(a) and is the required derivation. Uniqueness is immediate: once you’ve said how
something acts on the generators, you’ve defined it on the whole algebra.

2. This is an automatic consequence of the uniqueness: the commutator of two derivations is a
derivation, so if it’s unique, it must be the correct derivation.

3. Let a1, . . . , ak ∈ a and h ∈ h. Then h(a1 · · · ak) =
∑k
i=1 a1 · · ·h(ai) · · · ak ∈ U(a) h(a)U(a).

4. Nn is spanned by monomials a1 · · · an where all ai ∈ N . Assuming that h(ai) ∈ N for each
h ∈ h, we see that h(a1 · · · ak) =

∑k
i=1 a1 · · ·h(ai) · · · ak ∈ Nn. �

4.92 Lemma / Definition Let h and a be Lie algebras and let h y a by derivations. The
semidirect product h n a is the vector space h ⊕ a with the bracket given by [h1 + a1, h2 + a2] =
[h1, h2]h + [a1, a2]a + h1 · a2 − h2 · a1, where be h · a we mean the action of h on a. Then hn a is a
Lie algebra, and 0→ a→ hn a→ h→ 0 is a split short exact sequence in LieAlg.

4.93 Proposition Let h y a by derivations, and let g = hna be the semidirect product. Then the
actions h y Ua by derivations and a y Ua by left-multiplication together make a g-action on Ua.

Proof We need only check the commutator of h with a. Let u ∈ U(a), h ∈ h, and a ∈ a. Then
(h ◦ a)u = h(au) = h(a)u + a h(u) = [h, a]u + a h(u). Thus [h, a] ∈ g acts as the commutator of
operators h and a on U(a). �
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4.94 Definition An algebra U is left-noetherian if left ideals of U satisfy the ascending chain
condition. I.e. if any chain of left ideals I1 ≤ I2 ≤ . . . of U stabilizes.

We refer the reader to any standard algebra textbook for a discussion of noetherian rings. For
noncommutative ring theory see [13, 16, 7].

4.95 Proposition Let U be a filtered algebra. If grU is left-noetherian, then so is U .

In particular, U(a) is left-noetherian, since grU(a) is a polynomial ring on dim a generators.

Proof Let I ≤ U be a left ideal. We define I≤n = I ∩ U≤n, and hence I =
⋃
I≤n. We define

gr I =
⊕
I≤n/I≤n−1, and this is a left ideal in grU . If I ≤ J , then gr I ≤ gr J , using the fact that

U injects into grU as vector spaces.
So if we have an ascending chain I1 ≤ I2 ≤ . . . , then the corresponding chain gr I1 ≤ gr I2 ≤ . . .

eventually terminate by assumption: gr In = gr In0 for n ≥ n0. But if gr I = gr J , then by induction
on n, I≤n = J≤n, and so I = J . Hence the original sequence terminates. �

4.96 Lemma Let j = h + n be a finite-dimensional Lie algebra, where h is a subalgebra of j and n

an ideal. Assume that g yW is a finite-dimensional representation such that h, nyW nilpotently.
Then g yW nilpotently.

Proof If W = 0 there is nothing to prove. Otherwise, by Theorem 4.25 there is some w ∈ W n,
where W n is the subspace of W annihilated by n. Let h ∈ h and x ∈ n. Then:

xhw = [x, h]︸ ︷︷ ︸
∈n

w + h xw︸︷︷︸
=0

= 0 (4.5.1)

Thus hw ∈ V n, and so w ∈ V g. By modding out and iterating, we see that g y V nilpotently. �

4.97 Theorem (Zassenhaus’s Extension Lemma) Let h and a be finite-dimensional Lie alge-
bras so that h y a by derivations, and let g = h n a. Moreover, let V be a finite-dimensional
a-module, and let n be the nilpotency ideal of a y V . If [h, a] ≤ n, then there exists a finite-
dimensional g-module W and a surjective a-module map W � V , and so that the nilpotency ideal
m of g yW contains n. If hy a by nilpotents, then we can arrange for m ⊆ h as well.

Proof Consider a Jordan-Holder series 0 = M0 ⊆M1 ⊆ · · · ⊆ M(n) = V . Then n =
⋂

ker(Mi/Mi−1)
by Corollary 4.28. We define N =

⋂
ker
Ä
Ua → End(Mi/Mi−1)

ä
, an ideal of Ua. Then N ⊇ n ⊇

[h, a], and so N is an h-stable ideal of Ua by the third part of Proposition 4.91, and Nk is h-stable
by the fourth part.

Since Ua is left-noetherian (Proposition 4.95), Nk is finitely generated for each k, and hence
Nk/Nk+1 is a finitely generated Ua module. But the action Ua y (Nk/Nk+1) factors through
Ua/N , so in fact Nk/Nk+1 is a finitely generated (Ua/N)-module. But Ua/N ∼=

⊕
Im
Ä
Ua →

End(Mi/Mi−1)
ä
⊆ ⊕End(Mi/Mi−1), which is finite-dimensional. So Ua/N is finite-dimensional,

Nk/Nk+1 a finitely-generated (Ua/N)-module, and hence Nk/Nk+1 is finite-dimensional.
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By construction, N(Mk) ⊆ Mk−1, so Nn annihilates V , where n is the length of the Jordan-
Holder series 0 = M0 ⊆M1 ⊆ · · · ⊆ M(n) = V . Let dimV = d, and define

W
def=

d⊕
i=1

Ua/Nn (4.5.2)

Then W is finite-dimensional since Ua/Nn ∼= Ua/N ⊕ N/N2 ⊕ · · · ⊕ Nn−1/Nn as a vector space,
and each summand is finite-dimensional. To construct the map W � V , we pick a basis {vi}di=1

of V , and send (0, . . . , 1, . . . , 0) 7→ vi, where 1 is the image of 1 ∈ Ua in Ua/Nn, and it is in the
ith spot. By construction Ua≤0 acts as scalars, and so N does not contain Ua≤0; thus the map
is well-defined. Moreover, g y Ua by Proposition 4.91, and N is h-stable and hence g-stable.
Thus g y W naturally, and the action Ua y V factors through Nn, and so W � V is a map of
g-modules.

By construction, N and hence n acts nilpotently on W . But n is an ideal of g: a general element
of g is of the form h+a for h ∈ h and a ∈ a, and [h+a, n] = [h, n]+[a, n] ⊆ [h, a]+[a, n] ⊆ n+n = n.
So m ⊇ n, as m is the largest nilpotency ideal of g yW .

We finish by considering the case when h y a nilpotently. Then h y W nilpotently, and since
[h, a] ⊆ n, h + n is an ideal of g. By Lemma 4.96, h + n acts nilpotently on W , and so is a subideal
of m. �

4.98 Corollary Let r be a solvable Lie algebra over characteristic 0, and let n be its largest nilpotent
ideal. Then every derivation of r has image in n. In particular, if r is an ideal of some larger Lie
algebra g, then [g, r] ⊆ n.

Proof Let d be a derivation of r and h = Kd⊕r. Then h is solvable by Proposition 4.19, and h′ y h

nilpotently by Corollary 4.40. But d(r) ⊆ h′ and r is an ideal of h, and so d(r) acts nilpotently on
r, and is thus a subideal of n.

The second statement follows from the fact that [g,−] is a derivation; this follows ultimately
from the Jacobi identity. �

4.99 Theorem (Ado’s Theorem) Let g be a finite-dimensional Lie algebra over characteristic
0. Then g has a faithful representation g ↪→ gl(V ), and this representation can be chosen so that
the largest nilpotent ideal n ≤ g acts nilpotently on V .2

Proof We induct on dim g. The g = 0 case is trivial, and we break the induction step into cases:

Case I: g = n is nilpotent. Then g 6= g′, and so we choose a subspace a ⊇ g′ of codimensional 1
in g. This is automatically an ideal, and we pick x 6∈ a, and h = 〈x〉. Any one-dimensional
subspace is a subalgebra, and g = h n a. By induction, a has a faithful module V ′ and acts
nilpotently.

The hypotheses of Theorem 4.97 are satisfied, and we get an a-module homomorphism W �
V ′ with g yW nilpotently. As yet, this might not be a faithful representation of g: certainly

2It seems that Ado originally proved a weaker version of Theorem 4.99 over R. The version we present is due to
[9]. The dependence on characteristic is removed in [10].
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a acts faithfully on W because it does so on V ′, but x might kill W . We pick a faithful

nilpotent g/a = K-module W1, e.g. x 7→
ñ

0 1
0 0

ô
∈ gl(2). Then V = W ⊕W1 is a faithful

nilpotent g representation.

Case II: g is solvable but not nilpotent. Then g′ ≤ n � g. We pick an ideal a of codimension
1 in g such that n ⊆ a, and x and h = Kx as before, so that g = hn a. Then n(a) ⊇ n — if a
matrix acts nilpotently on g, then certainly it does so on a, and by construction n ⊆ a — and
we have a faithful module a y V ′ by induction, with n(a) y V ′ nilpotently. Then [h, a] y V ′

nilpotently, since [h, a] ⊆ n(a) by Corollary 4.98, so we use Theorem 4.97 to get g y W and
an a-module map W � V ′, such that n y W nilpotently. We form V = W ⊕W1 as before
so that g y V is faithful. Since n is contained in a and a acts as 0 on W1, n acts nilpotently
on W .

Case III: general. By Theorem 4.86, there is a splitting g = s n r with s semisimple and r

solvable. By Case II, we have a faithful r-representation V ′ with n(r) y V ′ nilpotently. By
Corollary 4.98 the conditions of Theorem 4.97 apply, so we have g yW and an r-module map
W � V ′, and since n ≤ r we have n ≤ n(r) so n y W nilpotently. We want to get a faithful
representation, and we need to make sure it is faithful on s. But s = g/r is semisimple,
so has no center, so ad : s y s is faithful. So we let W1 = s = g/r as g-modules, and
g y V = W ⊕W1 is faithful with n acting as 0 on W1 and nilpotently on W . �

Exercises

1. Classify the 3-dimensional Lie algebras g over an algebraically closed field K of characteristic
zero by showing that if g is not a direct product of smaller Lie algebras, then either

• g ∼= sl(2,K),

• g is isomorphic to the nilpotent Heisenberg Lie algebra h with basis X,Y, Z such that Z
is central and [X,Y ] = Z, or

• g is isomorphic to a solvable algebra s which is the semidirect product of the abelian
algebra K2 by an invertible derivation. In particular s has basis X,Y, Z such that
[Y,Z] = 0, and adX acts on KY +KZ by an invertible matrix, which, up to change of

basis in KY +KZ and rescaling X, can be taken to be either
ñ

1 1
0 1

ô
or
ñ
λ 0
0 1

ô
for

some nonzero λ ∈ K.

2. (a) Show that the Heisenberg Lie algebra h in Problem 1 has the property that Z acts nilpo-
tently in every finite-dimensional module, and as zero in every simple finite-dimensional
module.

(b) Construct a simple infinite-dimensional h-module in which Z acts as a non-zero scalar.
[Hint: take X and Y to be the operators d/dt and t on K[t].]
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3. Construct a simple 2-dimensional module for the Heisenberg algebra h over any field K of
characteristic 2. In particular, if K = K̄, this gives a counterexample to Lie’s theorem in
non-zero characteristic.

4. Let g be a finite-dimensional Lie algebra over K.

(a) Show that the intersection n of the kernels of all finite-dimensional simple g-modules can
be characterized as the largest ideal of g which acts nilpotently in every finite-dimensional
g-module. It is called the nilradical of g.

(b) Show that the nilradical of g is contained in g′ ∩ rad(g).

(c) Let h ⊆ g be a subalgebra and V a g-module. Given a linear functional λ : h → K,
define the associated weight space to be Vλ = {v ∈ V : Hv = λ(H)v for all H ∈ h}.
Assuming char(K) = 0, adapt the proof of Lie’s theorem to show that if h is an ideal
and V is finite-dimensional, then Vλ is a g-submodule of V .

(d) Show that if char(K) = 0 then the nilradical of g is equal to g′ ∩ rad(g). [Hint: assume
without loss of generality that K = K̄ and obtain from Lie’s theorem that any finite-
dimensional simple g-module V has a non-zero weight space for some weight λ on g′ ∩
rad(g). Then use (c) to deduce that λ = 0 if V is simple.]

5. Let g be a finite-dimensional Lie algebra over K, char(K) = 0. Prove that the largest nilpotent
ideal of g is equal to the set of elements of r = rad g which act nilpotently in the adjoint action
on g, or equivalently on r. In particular, it is equal to the largest nilpotent ideal of r.

6. Prove that the Lie algebra sl(2,K) of 2× 2 matrices with trace zero is simple, over a field K
of any characteristic 6= 2. In characteristic 2, show that it is nilpotent.

7. In this exercise, well deduce from the standard functorial properties of Ext groups and their
associated long exact sequences that Ext1(N,M) bijectively classifies extensions 0 → M →
V → N → 0 up to isomorphism, for modules over any associative ring with unity.

(a) Let F be a free module with a surjective homomorphism onto N , so we have an exact
sequence 0→ K → F → N → 0. Use the long exact sequence to produce an isomorphism
of Ext1(N,M) with the cokernel of Hom(F,M)→ Hom(K,M).

(b) Given φ ∈ Hom(K,M), construct V as the quotient of F ⊕M by the graph of −φ (note
that this graph is a submodule of K ⊕M ⊆ F ⊕M).

(c) Use the functoriality of Ext and the long exact sequences to show that the characteristic
class in Ext1(N,M) of the extension constructed in (b) is the element represented by the
chosen φ, and conversely, that if φ represents the characteristic class of a given extension,
then the extension constructed in (b) is isomorphic to the given one.

8. Calculate Exti(K,K) for all i for the trivial representation K of sl(2,K), where char(K) = 0.
Conclude that the theorem that Exti(M,N) = 0 for i = 1, 2 and all finite-dimensional
representations M,N of a semi-simple Lie algebra g does not extend to i > 2.
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9. Let g be a finite-dimensional Lie algebra. Show that Ext1(K,K) can be canonically identified
with the dual space of g/g′, and therefore also with the set of 1-dimensional g-modules, up
to isomorphism.

10. Let g be a finite-dimensional Lie algebra. Show that Ext1(K, g) can be canonically identified
with the quotient Der(g)/ Inn(g), where Der(g) is the space of derivations of g, and Inn(g) is
the subspace of inner derivations, that is, those of the form d(x) = [y, x] for some y ∈ g. Show
that this also classifies Lie algebra extensions ĝ containing g as an ideal of codimension 1.

11. Let g be a finite-dimensional Lie algebra over K, char(K) = 0. The Malcev-Harish-Chandra
theorem says that all Levi subalgebras s ⊆ g are conjugate under the action of the group
exp ad n, where n is the largest nilpotent ideal of g (note that n acts nilpotently on g, so the
power series expression for exp adX reduces to a finite sum when X ∈ n).

(a) Show that the reduction we used to prove Levi’s theorem by induction in the case where
the radical r = rad g is not a minimal ideal also works for the Malcev-Harish-Chandra
theorem. More precisely, show that if r is nilpotent, the reduction can be done using
any nonzero ideal m properly contained in r. If r is not nilpotent, use Problem 4 to show
that [g, r] = r, then make the reduction by taking m to contain [g, r].

(b) In general, given a semidirect product g = hnm, where m is an abelian ideal, show that
Ext1

U(h)(K,m) classifies subalgebras complementary to m, up to conjugacy by the action
of exp ad m. Then use the vanishing of Ext1(M,N) for finite-dimensional modules over
a semi-simple Lie algebra to complete the proof of the Malcev-Harish-Chandra theorem.
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Chapter 5

Classification of Semisimple Lie
Algebras

5.1 Classical Lie algebras over C

5.1.1 Reductive Lie algebras

[8, Lecture 26]
Henceforth every Lie algebra, except when otherwise marked, is finite-dimensional over a field

of characteristic 0.

5.1 Lemma / Definition A Lie algebra g is reductive if (g, ad) is completely reducible.
A Lie algebra is reductive if and only if it is of the form g = s× a where s is semisimple and a

is abelian. Moreover, a = Z(g) and s = g′.

Proof Let g be a reductive Lie algebra; then g =
⊕

ai as g-modules, where each ai is an ideal of
g and [ai, aj ] ⊆ ai ∩ aj = 0 for i 6= j. Thus g =

∏
ai as Lie algebras, and each ai is either simple

non-abelian or one-dimensional. �

5.2 Proposition Any ∗-closed subalgebra of gl(n,C) is reductive.

Proof We define a symmetric real-valued bilinear form (, ) on gl(n,C) by (x, y) =
Ä
tr(xy∗)

ä
. Then

(x, x) =
∑ |xij |2, so (, ) is positive-definite. Moreover:

([z, x], y) = −(x, [z∗, y]) (5.1.1)

so [z∗,−] is adjoint to [−, z].
Let g ⊆ gl(n,C) be any subalgebra and a ≤ g an ideal. Then a⊥ ⊆ g∗ by invariance, where g∗

is the Lie algebra of Hermitian conjugates of elements of g. If g is ∗-closed, then g∗ = g and a⊥ is
an ideal of g. By positive-definiteness, g = a⊕ a⊥, and we rinse and repeat to write g is a sum of
irreducibles. �

63
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5.3 Example The classical Lie algebras sl(n,C) def= {x ∈ gl(n) s.t. trx = 0}, so(n,C) def= {x ∈
gl(n) s.t. x+ xT = 0}, and sp(n,C) def= {x ∈ gl(2n) s.t. jx+ xT j = 0} are reductive. Indeed, since
they have no center except in very low dimensions, they are all semisimple. We will see later that
they are all simple, except in a few low dimensions.

Since a real Lie algebra g is semisimple if g⊗R C is, the real Lie algebras sl(n,R), so(n,R), and
sp(n,R) also are semisimple.

5.1.2 Guiding examples: sl(n) and sp(n) over C

[8, Lectures 27 and 28]
Let g = sl(n) or sp(n). We extract an abelian subalgebra h ⊆ g. For sln we use the diagonal

traceless matrices:

h
def=


 z1

. . .
zn

 s.t.
∑

zi = 0

 (5.1.2)

For sp(n) def= {x ∈ gl(2n) s.t. jx + xT j = 0}, it will be helpful to redefine j. We can use any j
which defines a non-degenerate antisymmetric bilinear form, and we take:

j =



1

0 . ..

1
−1

. .. 0
−1


(5.1.3)

Let aR be the matrix a reflected across the antidiagonal. Then we can define sp(n) in block diagonal
form:

sp(n) =
®ñ

a b

c d

ô
∈ M(2n) = M(2,M(n)) s.t. d = −aR, b = bR, c = cR

´
(5.1.4)

In this basis, we take as our abelian subalgebra

h
def=





z1

. . . 0
zn
−zn

0
. . .

−z1




(5.1.5)

5.4 Proposition Let g = sl(n) or sp(n). For h ≤ g defined above, the adjoint action ad : h y g

is diagonal.
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Proof We make explicit the basis of g. For g = sl(n), the natural basis is {eij}i 6=j ∪ {eii −
ei+1,i+1}n−1

i=1 , where eij is the matrix with a 1 in the (ij) spot and 0s elsewhere. In particular,
{eii − ei+1,i+1}n−1

i=1 is a basis of h. Let h ∈ h be

h =

 z1

. . .
zn

 (5.1.6)

Then [h, eij ] = (zi − zj)eij , and [h, h′] = 0 when h′ ∈ h.
For g = sp(n), the natural basis suggested by equation 5.1.4 is®
aij

def=
ñ
eij 0
0 −en+1−j,n+1−i

ô´
∪
®
bij

def=
ñ

0 eij + en+1−j,n+1−i
0 0

ô
s.t. i+ j ≤ n+ 1

´
∪
®
cij

def=
ñ

0 0
eij + en+1−j,n+1−i 0

ô
s.t. i+ j ≤ n+ 1

´
(5.1.7)

Of course, when i = j, then
®ñ

eii 0
0 −en+1−i,n+1−i

ô´
is a basis of h. Let h ∈ h be given by

h =



z1

. . . 0
zn
−zn

0
. . .

−z1


(5.1.8)

Then [h, aij ] = (zi − zj)aij , [h, bij ] = (zi + zj)bij , and [h, cij ] = (−zi − zj)cij . �

5.5 Definition Let h be a maximal abelian subalgebra of a finite-dimensional Lie algebra g so that
ad : h y g is diagonalizable, so diagonal in an eigenbasis. Write h∗ for the vector space dual to h.
Each eigenbasis element of g defines an eigenvalue to each h ∈ h, and this assignment is linear in
h; thus, the eigenbasis of g picks out a vector α ∈ h∗. The set of such vectors are the roots of the
pair (g, h).

We will refine this definition in Definition 5.41, and we will prove that the set of roots of a semisimple
Lie algebra g is determined up to isomorphism by g (in particular, it does not depend on the
subalgebra h).

5.6 Example When g = sl(n) and h is as above, the roots are {0} ∪ {zi − zj}i 6=j , where {zi}ni=1

are the natural linear functionals h → C. When g = sp(n) and h is as above, the roots are
{0} ∪ {±2zi} ∪ {±zi ± zj}i 6=j .

5.7 Lemma / Definition Let g and h ≤ g as in Definition 5.5. Then the roots break g into
eigenspaces:

g =
⊕

α a root

gα = h⊕
⊕

α 6=0 a root

gα (5.1.9)
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In particular, since h is a maximal abelian subalgebra, the 0-eigenspace of hy g is precisely g0 = h.
Then the spaces gα are the root spaces of the pair (g, h). By the Jacobi identity, [gα, gβ] ⊆ gα+β.

5.8 Lemma When g = sl(n) or sp(n) and h is as above, then for α 6= 0 the root space gα ⊆ g is
one-dimensional. Let hα

def= [gα, g−α]. Then hα = h−α is one-dimensional, and gα ⊕ g−α ⊕ hα is a
subalgebra of g isomorphic to sl(2).

Proof For each root α, pick a basis element g±α ∈ g±α (in particular, we can use the eigenbasis
of h y g given above), and define hα

def= [gα, g−α]. Define α(hα) = a so that [hα, g±α] = ±agα; one
can check directly that a 6= 0. For the isomorphism, we use the fact that C is algebraically closed.�

5.9 Definition Let g and h ≤ g as in Definition 5.5. The rank of g is the dimension of h, or
equivalently the dimension of the dual space h∗.

5.10 Example The Lie algebras sl(3) and sp(2) are rank-two. For g = sl(3), the dual space h∗

to h spanned by the vectors z1 − z2 and z2 − z3 naturally embeds in a three-dimensional vector
space spanned by {z1, z2, z3}, and we choose an inner product on this space in which {zi} is an
orthonormal basis. Let α1 = z1− z2, α2 = z2− z3, and α3 = z1− z3. Then the roots {0,±αi} form
a perfect hexagon:

• 0

•
α2

•
α3

•
α1

•
−α2

•
−α3

•
−α1

(5.1.10)

For g = sp(2), we have h∗ spanned by {z1, z2}, and we choose an inner product in which this is
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an orthonormal basis. Let α1 = z1 − z2 and α2 = 2z2. The roots form a diamond:

•
0

·
z2

·
z1

•
α2

•
α1

•
α2 + α1

•
α2 + 2α1

•

••

•

(5.1.11)

5.11 Lemma Let g, h ≤ g be as in Definition 5.5. Let v ∈ h be chosen so that α(v) 6= 0 for every
root α. Then v divides the roots into positive roots and negative roots according to the sign of
α(v). A simple root is any positive root that is not expressible as a sum of positive roots.

5.12 Example Let g = sl(n) or sp(n), and choose v ∈ h so that z1(v) > z2(v) > · · · > zn(v) > 0.
The positive roots of sl(n) are {zi − zj}i<j , and the positive roots of sp(n) are {zi − zj}i<j ∪ {zi +
zi} ∪ {2zi}. The simple roots of sl(n) are {αi = zi − zi+1}n−1

i=1 , and the simple roots of sp(n) are
{αi = zi − zi+1}n−1

i=1 ∪ {2zn}. In each case, the simple roots are a basis of h∗. Moreover, the roots
are in the Z-span of the simple roots, i.e. the lattice generated by the simple roots, and the positive
roots are in the intersection of this lattice with the positive cone, so that the positive roots are in
the N-span of the simple roots.

We partially order the positive roots by saying that α < β if β − α is a positive root. Under
this partial order there is a unique maximal positive root θ, the highest root; for sl(n) we have
θ = z1 − zn = α1 + · · ·+ αn−1, and for sp(n) we have θ = 2z1 = 2(α1 + · · ·+ αn−1) + αn. We draw
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these partial orders:

•
α1

•
α2

•
α3

· · · •
αn−1

• •
• • • •
• • •
• •

· · ·

•
θ=α1+···+αn−1

•
α1+α2

•
αn−2+αn−1

sl(n)

•
α1

•
α2

· · · •
αn−1

•
αn

• • • •
• • • •
• • • •
• • •
• • •
• •
• •
•
•

•

•

•

•

· · ·

•
θ=2(α1+···+αn−1)+αn

sp(n)

To make this very clear, we draw the rank-three pictures fully labeled (edges by the difference
between consecutive nodes):

•
α1 = z1 − z2

•
α2 = z2 − z3

•
α3 = z3 − z4

•
z1 − z3

•
z2 − z4

•
θ = z1 − z4

α2 α1 α3 α2

α3 α1

sl(4)
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•
α1 = z1 − z2

•
α2 = z2 − z3

•
α3 = 2z3

•
z1 − z3

• z2 + z3

•
z1 + z3

• 2z2

•
z1 + z2

• θ = 2z1

α2 α1 α3 α2

α3 α1

α2 α1

α2

α1

sp(3)

Using these pictures of sl(n) and sp(n), we can directly prove the following:

5.13 Proposition The Lie algebras sl(n,C) and sp(n,C) are simple.

Proof Let g = sl(n) or sp(n), and h, the systems of positive and simple roots, and θ the highest
root as above. Recall that for each root α 6= 0, the root space gα is one-dimensional, and we pick
an eigenbasis {gα}α 6=0 ∪ {hi}rank

i=1 for the action h y g.
Let x ∈ g. It is a standard exercise from linear algebra that hx is the span of the eigenvectros

gα, α 6= 0, for which the coefficient of x in the eigenbasis is non-zero. In particular, if x ∈ g r h,
then [h, x] includes some gα. By switching the roles of positive and negative roots if necessary, we
can assure that α is positive; thus [h, x] ⊇ gα for some positive α.

One can check directly that if α, β, α + β are all nonzero roots, then [gα, gβ] = gα+β. In
particular, for any positive root α, θ − α is a positive root, and so [g, gα] ⊇ [gθ−α, gα] = gθ. In
particular, gθ ∈ [g, x].

But [gθ−α, gθ] = gα, and so [g, gθ] generates all gα for α a positive root. We saw already
(Lemma 5.8) that [gα, g−α] = hα is non-zero, and that [g±α, hα] = g±α. Thus [g, gα] ⊇ g−α, and in
particular gθ generates every gα for α 6= 0, and every hα. Then gθ generates all of g.

Thus x generates all of g for any x ∈ g r h. If x ∈ h, then α(x) 6= 0 for some α, and then
[gα, x] = gα, and we repeat the proof with some nonzero element of gα. Hence g is simple. �

When g = sl(n), let εi refer to the matrix eii, and when g = sp(n), let εi refer to the matrixñ
eii 0
0 −en+1−i,n+1−i

ô
. We construct a linear isomorphism h∗

∼→ h by assigning an element α∨i of

h to each simple root αi as follows: to αi = zi − zi+1 for 1 ≤ i ≤ n − 1 we assign α∨i = εi − εi+1,
and to αn = 2zn a root of sp(n) we assign α∨n = εn. In particular, αi(hi) = 2 for each simple root.
We define the Cartan matrix a by aij

def= αi(hj).
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5.14 Example For sl(n), we have the following (n− 1)× (n− 1) matrix:

a =



2 −1 0 . . . 0

−1 2 −1
...

0 −1
. . . . . . 0

...
. . . 2 −1

0 . . . 0 −1 2


(5.1.12)

For sp(n), we have the following n× n matrix:

a =



2 −1 0 . . . 0 0

−1 2 −1
...

...

0 −1
. . . . . . 0

...
...

. . . 2 −1 0
0 . . . 0 −1 2 −1
0 . . . . . . 0 −2 2


(5.1.13)

To each of the above matrices we associate a Dynkin diagram. This is a graph with a node
for each simple root, and edges assigned by: i and j are not connected if aij = 0; they are

singly connected if aij is a block
ñ

2 −1
−1 2

ô
; we put a double arrow from j to i when the (i, j)-

block is
ñ

2 −1
−2 2

ô
. So for sl(n) we get the graph • • · · · • , and for sp(n) we get

• • · · · •• .

5.15 Lemma / Definition The identification h∗
∼→ h lets us construct reflections of h∗ by si :

α 7→ α−〈α, α∨i 〉α, where 〈, 〉 is the pairing h∗⊗h→ C that we had earlier written as 〈α, β〉 = α(β).
These reflections generated the Weyl group W .

For each of sl(n) and sp(n), let R ⊆ h∗ be the set of roots and W the Weyl group. Then
W y R r {0}. In particular, for sl(n), we have W = Sn the symmetric group on n letters, where
the reflection (i, i+ 1) acts as si; W y Rr{0} is transitive. For sp(n), we have W = Snn (Z/2)n,
the hyperoctahedral group, generated by the reflections si = (i, i+ 1) ∈ Sn and sn the sign change,
and the action W y Rr {0} has two orbits.

We will spend the rest of this chapter showing that the picture of sl(n) and sp(n) in this section
is typical of simple Lie algebras over C.

5.2 Representation Theory of sl(2)

[8, Lectures 28 and 29]
Our hero for this section is the Lie algebra sl(2,C) def= 〈e, h, f : [e, f ] = h, [h, e] = 2e, [h, f ] =

−2f〉 = {x ∈ M(2,C) s.t. trx = 0}.
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5.16 Example As a subalgebra of M(2,C), sl(2) has a tautological representation on C2, given

by E 7→
ñ

0 1
0 0

ô
, F 7→

ñ
0 0
1 0

ô
, and H 7→

ñ
1 0
0 −1

ô
. Let v0 and v1 be the basis vectors of C2.

Then the representation sl(2) y C2 has the following picture:

•v0

•v1

H

H

FE (5.2.1)

This is the infinitesimal verion of the action SL(2) y C2 given by

(exp(−te))
ñ
x
y

ô
=
ñ

1 −t
0 1

ô ñ
x
y

ô
=
ñ
x− ty
y

ô
(5.2.2)

d

dt

∣∣∣∣
t=0

exp(−te) =
®ñ

x
y

ô
7→
ñ
−y
0

ô´
(5.2.3)

d

dt

∣∣∣∣
t=0

exp(−tf) =
®ñ

x
y

ô
7→
ñ

0
−x

ô´
(5.2.4)

5.17 Example Since SL(2) y C2, it acts also on the space of functions on C2; by the previous
calculations, we see that the action is:

e = −y∂x, f = −x∂y, h = −x∂x + y∂y (5.2.5)

These operations are homogenous — they preserve the total degree of any polynomial — and so
the symmetric tensor product Sn(C2) = {homogeneous polynomials of degree n in x and y} is a
submodule of SL(2) y {functions}. Let vi

def=
(n
i

)
xiyn−i be a basis vector in Sn(Cx ⊕ Cy). Then

the action SL(2) y S2(C2) has the following picture:

•yn = v0

•nxyn−1 = v1

•
(n

2

)
x2yn−2 = v2

...

•
( n
n−1

)
xn−1y = vn−1

•xn = vn

h=n

h=n−2

h=n−4

h=2−n

h=−n

f=1

f=2

f=n

n=e

n−1=e

1=e

(5.2.6)

Let us call this module Vn. Then Vn is irreducible, because applying e enough times to any non-zero
element results in a multiple of v0, and v0 generated the module.
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5.18 Proposition Let V be any (n+ 1)-dimensional irreducible module over sl(2). Then V ∼= Vn.

Proof Suppose that v ∈ V is an eigenvector of h, so that hv = λv. Then hev = [h, e]v + ehv =
2ev + λev, so ev is an h-eigenvector with eigenvalue λ + 2. Similarly, fv is an h-eigenvector with
eigenvalue λ − 2. So the space spanned by h-eigenvectors of V is a submodule of V ; by the
irreducibility of V , and using the fact that h has at least one eigenvector, this submodule must be
the whole of V , and so h acts diagonally.

By finite-dimensionality, there is an eigenvector v0 of h with the highest eigenvalue, and so
ev0 = 0. By Theorem 3.24, {fkelhm} spans Usl(2), and so {vi

def= f iv0/i!} is a basis of V (by
irreducibility, V is generated by v0). In particular, vn = fnv0/n!, the (n+1)st member of the basis,
has fvn = 0, since V is (n+ 1)-dimensional.

We compute the action of e by induction, using the fact that hvk = (λ0 − 2k)vk:

ev0 = 0 (5.2.7)
ev1 = efv0 = [e, f ]v0 + fev0 = hv0 = λ0v0 (5.2.8)
ev2 = efv1/2 = [e, f ]v1/2 + fev1/2 = hv1/2 + fλ0v0/2

= (λ0 − 2)v1/2 + λ0v1/2 = (λ0 − 1)v1 (5.2.9)
. . .

evk = efvk−1/k = hvk−1/k + fevk−1/k = (λ0 − 2k + 2)vk−1/k + (λ0 − k + 2)fvk−2/k

=
Ä
(λ0 − 2k + 2)/k + (k − 1)(λ0 − k + 2)/k

ä
vk−1 = (λ0 − k + 1)vk−1 (5.2.10)

But fvn = 0, and so:

0 = efvn = [e, f ]vn + fevn = hvn + (λ0 − n+ 1)fvn−1

= (λ0 − 2n)vn + (λ0 − n+ 1)nvn =
Ä
(n+ 1)λ0 − (n+ 1)n

ä
vn (5.2.11)

Thus λ0 = n and V is isomorphic to Vn defined in equation 5.2.6. �

5.3 Cartan subalgebras

5.3.1 Definition and Existence

[8, Lectures 29 and 30]

5.19 Lemma Let h be a nilpotent Lie algebra over a field K, and h y V a finite-dimensional
representation. For h ∈ h and λ ∈ C, define Vλ,h = {v ∈ V s.t. ∃n s.t. (h− λ)nv = 0}. Then Vλ,h
is an h-submodule of V .

Proof Let ad : h y h be the adjoint action; since h is nilpotent, adh ∈ End(h) is a nilpotent
endomorphism. Define h(m)

def= ker
Ä
(adh)m

ä
; then h(m) = h for m large enough. We will show that

h(m)Vλ,h ⊆ Vλ,h by induction on m; when m = 0, h(0) = 0 and the statement is trivial.
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Let y ∈ h(m), whence [h, y] ∈ h(m−1), and let v ∈ Vλ,h. Then (h− λ)nv = 0 for n large enough,
and so

(h− λ)nyv = y(h− λ)nv + [(h− λ)n, y]v (5.3.1)
= 0 + [(h− λ)n, y]v (5.3.2)

=
∑

k+1=n−1

(h− λ)k[h, y](h− λ)lv (5.3.3)

since [λ, y] = 0. By increasing n, we can assure that for each term in the sum at least one of the
following happens: l is large enough that (h− λ)lv = 0, or k is large enough that (h− λ)kVλ,h = 0.
The large-l terms vanish immediately; the large-k terms vanish upon realizing that (h−λ)Vh,λ ⊆ Vh,λ
by definition and [h, y]Vh,λ ⊆ h(m−1)Vh,λ ⊆ Vh,λ by induction on m. �

5.20 Corollary Let h be a nilpotent Lie algebra over K, h y V a finite-dimensionalrepresentation,
and λ : h→ K a linear map. Then Vλ

def=
⋂
h∈h Vλ(h),h is an h-submodule of V .

5.21 Proposition Let h be a finite-dimensional nilpotent Lie algebra over an algebraically closed
field K of characteristic 0, and V a finite-dimensional h-module. For each λ ∈ h∗, define Vλ as in
Corollary 5.20. Then V =

⊕
λ∈h∗ Vλ.

Proof Let h1, . . . , hk ∈ h, and let Hk ⊆ h be the linear span of the hi. Let W def=
⋂k
i=1 Vλ(hi),hi .

It follows from Theorem 4.37 that W =
⋂
h∈H Vλ(h),h, since we can choose a basis of V in which

h y V by upper-triangular matrices.
We have seen already that W is a submodule of V . Let hk+1 6∈ Hk; then we can decompose W

into generalized eigenspaces of hk+1. We proceed by induction on k until we have a basis of h. �

5.22 Definition For λ ∈ h∗, the space Vλ in Corollary 5.20 is a weight space of V , and V =⊕
λ∈h∗ Vλ the weight space decomposition.

5.23 Lemma Let h be a finite-dimensional nilpotent Lie algebra over an algebraically closed field
of characteristic 0, and let V and W be two finite-dimensional h modules. Then the weight spaces
of V ⊗W are given by (V ⊗W )λ =

⊕
α+β=λ Vα ⊗Wβ.

Proof h(v ⊗ w) = hv ⊗ w + v ⊗ hw �

5.24 Corollary Let g be a finite-dimensional Lie algebra over an algebraically closed field of char-
acteristic 0, and h ⊆ g a nilpotent subalgebra. Then the weight spaces of ad : h y g satisfy
[gα, gβ] ⊆ gα+β.

5.25 Proposition Let g be a finite-dimensional Lie algebra over an algebraically closed field of
characteristic 0, and let h ⊆ g be a nilpotent subalgebra. The following are equivalent:

1. h = N(h) def= {x ∈ g s.t. [x, h] ⊆ h}, the normalizer of h in g.

2. h = g0 is the 0-weight space of ad : hy g.
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Proof Define N (i) def= {x ∈ g s.t. (ad h)ix ⊆ h}. Then N (0) = h and N (1) = N(h), and N (i) ⊆
N (i+1). By finite-dimensionality, the sequence N (0) ⊆ N (1) ⊆ . . . must eventually stabilize. By
definition

⋃
N (i) = g0, so 2. implies 1. But N (i+1) = N(N (i)), and so 1. implies 2. �

5.26 Definition A subalgebra h of g satisfying the equivalent conditions of Proposition 5.25 is a
Cartan subalgebra of g.

5.27 Theorem (Existence of a Cartan Subalgebra) Every finite-dimensional Lie algebra over
an algebraically closed field of characteristic 0 has a Cartan subalgebra.

Before we prove this theorem, we will need some definitions and lemmas.

5.28 Definition Let K be a field; we say that X ⊆ Kn is Zariski closed if X = {x ∈ Kn s.t. pi(x) =
0 ∀i} for some possibly infinite set {pi} of polynomials in K[x1, . . . , xn]. A subset X ⊆ Kn is Zariski
open if Kn rX is Zariski closed.

5.29 Lemma If K is infinite and U, V ⊆ Kn are two non-empty Zariski open subsets, then U ∩ V
is non-empty.

Proof Let Ū def= Kn r U and similarly for V̄ . Let u ∈ U and v ∈ V . If u = v we’re done,
and otherwise consider the line L ⊆ Kn passing through u and v, parameterized K ∼→ L by
t 7→ tu + (1 − t)v. Then L ∩ Ū and L ∩ V̄ are finite, as their preimages under K → L are loci of
polynomials. Since K is infinite, L contains infinitely many points in U ∩ V . �

5.30 Lemma / Definition Let g be a finite-dimensional Lie algebra over an algebraically closed
field of characteristic 0. An element x ∈ g is regular if g0,x has minimal dimension. If x is regular,
then g0,x is a nilpotent subalgebra of g.

Proof We will write h for g0,x. That h is a subalgebra follows from Corollary 5.24. Suppose

that h is not nilpotent, and let U def= {h ∈ h s.t. adh|h if not nilpotent} 6= 0. Then U = {h ∈
h s.t. (adh|h)d 6= 0} is a Zariski-open subset of h. Moreover, V def= {h ∈ h s.t. h acts invertibly on g/h}
is also a non-empty Zariski-open subset of h, where V is the quotient of h-modules; it is non-empty
because x ∈ V . By Lemma 5.29 (recall that any algebraically closed field is infinite), there exists
y ∈ U ∩ V . Then ad y preserves gα,x for every α, as y ∈ h = g0,x, and y acts invertibly on every
gα,x for α 6= 0. Theng0,y ⊆ g0,x = h, but y ∈ U and so g0,y 6= h. This contradicts the minimality of
h. �

Proof (of Theorem 5.27) We let g, x ∈ g, and h = g0,x be as in Lemma/Definition 5.30. Then
h ⊆ g0,h because h is nilpotent, and g0,h ⊆ g0,x = h because x ∈ h. Thus h is a Cartan subalgebra
of g. �

We mention one more fact about the Zariski topology:

5.31 Lemma Let U by a Zariski open set over C. Then U is path connected.
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Proof Let u, v ∈ U and construct the line L as in the proof of Lemma 5.29. Then L ∩ U is
isomorphic to Cr {finite}, and therefore is path connected. �

5.32 Proposition Let g be a finite-dimensional Lie algebra over C. Then all Cartan subalgebras
of g are conjugate by automophisms of g.

Proof Consider ad : g → gl(g). Then ad g ⊆ gl(g) is a Lie subalgebra, and so corresponds to
a connected Lie subgroup Int g ⊆ GL(g) generated by exp(ad g). Since g y g be derivations,
exp(ad g) y g by automorphisms, and so Int g ⊆ Aut g.

Let h ⊆ g be a Cartan subalgebra, and g =
⊕

gα,h the corresponding weight-space decomposi-
tion. Since g is finite-dimensional, the set

Rh
def= {h ∈ h s.t. α(h) 6= 0 if α 6= 0 and gα,h 6= 0} = {h ∈ h s.t. g0,h = h} (5.3.4)

is non-empty and open, since we can take α to range over a finite set (by finite-dimensionality).
Let σ : Int g× g→ g be the canonical action, and consider the restriction to σ : Int g×Rh → g.

Pick y ∈ Rh and let e ∈ Int g be the identity element. We compute the image of the infinitesimal
action dσ

Ä
T(e,y)(Int g×Rh)

ä
⊆ Tyg ∼= g. By construction, varying the first component yields an

action by conjugation: x 7→ [x, y]. Thus the image of Te Int g × {0 ∈ TyRh} is (ad y)(g). Since y
acts invertibly, (ad y)(g) ⊇ ⊕α 6=0 gα,h. By varying the second coordinate (recall that Rh is open),
we see that dσ

Ä
T(e,y)(Int g×Rh)

ä
⊇ h = g0,h also. Thus dσ

Ä
T(e,y)(Int g×Rh)

ä
= g = Tyg, and so

the image (Int g)(Rh) contains a neighborhood of y and therefore is open.
For each y ∈ g, consider the generalized nullspace g0,y; the dimension of g0,y depends on

the characteristic polynomial of y, and the coefficients of the characteristic polynomial depend
polynomially on the matrix entries of ad y. In particular, dim g0,y ≥ r if and only if the last r
coefficients of the characteristic polynomial of ad y are 0, and so {y ∈ g s.t. dim g0,y ≥ r} is Zariski
closed. Therefore y 7→ dim g0,y is upper semi-continuous in the Zariski topology. In particular,
let r be the minimum value of dim g0,y, which exists since dim g0,y takes values in integers. Then

Reg def= {y ∈ g s.t. dim g0,y = r}, the set of regular elements, is Zariski open and therefore dense.
In particular, Reg intersects (Int g)(Rh).

But if y ∈ (Int g)(Rh) then dim g0,y = dim h. Therefore dim h is the minimal value of dim g0,y

and in particular Rh ⊆ Reg. Conversely, Reg =
⋃

h′ a CartanRh′ =
⋃

h′ a Cartan(Int g)Rh′ .
However, Int g is a connected group, Rh is connected being Cn minus some hyperplanes, and

Reg is connected on account of being Zariski open. But the orbits of (Int g)Rh are disjoint, and
their union is all of Reg, so Reg must consist of a single orbit.

To review: h is Cartan and so contains regular elements of g, and any other regular element of g

is in the image under Int g of a regular element of h. Thus every Cartan subalgebra is in (Int g)h.�

5.3.2 More on the Jordan Decomposition and Schur’s Lemma

[8, Lectures 30 and 31]
Recall Theorem 4.50 that every x ∈ End(V ), where V is a finite-dimensional vector spce over

an algebraically closed field, has a unique decomposition x = xs + xn where xs is diagonalizable
and xn is nilpotent. We will strengthen this result in the case when x ∈ g → End(V ) and g is
semisimple.
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5.33 Lemma Let g be a finite-dimensional Lie algebra over an algebraically closed field, and
Der g ⊆ End g the algebra of derivations of g. If x ∈ Der g, then xs, xn ∈ Der g.

Proof For x ∈ Der g, construct the weight-space decomposition g =
⊕

λ gλ,x of generalized
eigenspaces of x. Since x is a derivation, the weight spaces add: [gµ,x, gν,x] ⊆ gµ+ν,x. Let y ∈ End g

act as λ on gλ,x; then y is a derivation by the additive property. But y is diagonalizable and
commutes with x, and x− y is nilpotent because all its eigenvalues are 0 so y = xs. �

We have an immediate corollary:

5.34 Lemma / Definition If g is a semisimple finite-dimensional Lie algebra over an algebraically
closed field K, then every x ∈ g has a unique Jordan decomposition x = xs + xn such that
[xs, xn] = 0, adxs is diagonalizable, and adxn is nilpotent.

Proof If g is semisimple then ad : g → Der g is injective as Z(g) = 0 and surjective because
Der g/ ad g = Ext1(g,K) = 0. �

5.35 Theorem (Schur’s Lemma over an algebraically closed field) Let U be an algebra over
K and algebraically closed field, and let V be an irreducible U -module. Then EndU (V ) = K.

Proof Let φ ∈ EndU (V ) and λ ∈ K an eigenvalue of φ. Then φ − λ is singular and hence 0 by
Theorem 4.74. �

5.36 Proposition Let g be a finite-dimensional semisimple Lie algebra over an algebraically closed
field of characteristic 0, and let σ : g y V be a finite-dimensional g module. For x ∈ g, write xs and
xn as in Lemma/Definition 5.34, and write σ(x)s and σ(x)n for the diagonalizable and nilpotent
parts of σ(x) ∈ gl(g) as given by Theorem 4.50. Then σ(x)s = σ(xs) and σ(x)n = σ(xn).

Proof We reduce to the case when V is an irreducible g-module using Theorem 4.78, and we write
g =

∏
gi a product of simples using Corollary 4.61. Then gi y V as 0 for every i except one, for

which the action gi y V is faithful. We replace g by that gi, whence σ : g ↪→ gl(V ) with g simple.
It suffices to show that σ(x)s ∈ σ(g), since then σ(xs) = σ(s) for some s ∈ g, σ(x)n =

σ(x) − σ(s) = σ(x − s), and s and n = x − s commute, sum to x, and act diagonalizably and
nilpotently since the adjoint action ad : g y g is a submodule of g y gl(V ), so s = xs and n = xn.

By semisimplicity, g = g′ ⊆ sl(V ). By Theorem 5.35, the centralizer of g in gl(V ) consists
of scalars. In characteristic 0, the only scalar in sl(V is 0, so the centralizer of g in sl(V ) is 0.
Define the normalizer N(g) = {x ∈ sl(V ) s.t. [x, g] ⊆ g}; then N(g) is a Lie subalgebra of sl(V )
containing g, and N(g) acts faithfully on g since the centralizer of g in sl(V ) is 0, and this action
is by derivations. But all derivations are inner, as in the proof of Lemma/Definition 5.34, and so
N(g) y g factors through g y g, and hence N(g) = g.

So it suffices to show that σ(x)s ∈ N(g) for x ∈ g. Since σ(x)n is nilpotent, it’s traceless, and
hence in sl(V ); then σ(x)s ∈ sl(V ) as well. We construct a generalized eigenspace decomposition of
V with respect to σ(x) : V =

⊕
Vλ,x. Then σ(x)s acts on Vλ,x by the scalar λ. We also construct

a generalized eigenspace decomposition g =
⊕

gα,x with respect to the adjoint action ad : g y g.
Since g ⊆ gl(V ), we have gα,x = g∩EndK(V )α =

⊕
HomK(Vλ,x, Vλ+α,x), by tracking the eigenvalues

of the right and left actions of g on V .
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Moreover, ad(σ(x)s) = ad(σ(xs)) because both act by α on HomK(Vλ,x, Vλ+α,x) and hence on
gα. Thus σ(x)s fixes g since σ(xs) does. Therefore σ(x)s ∈ N(g). �

5.3.3 Precise description of Cartan subalgebras

[8, Lecture 31]

5.37 Lemma Let g be a semisimple Lie algebra over characteristic 0, h ⊆ g a nilpotent subalgebra,
and g =

⊕
gα the root space decomposition with respect to h. Then the Killing form β pairs gα

with g−α nondegenerately, and β(gα, gα′) = 0 if α+ α′ 6= 0.

Proof Let x ∈ gα and y ∈ gα′ . For any h ∈ h, (adh− α(h))nx = 0 for some n. So

0 = β
Ä
(adh− α(h))n x, y

ä
= β
Ä
x, (− adh− α(h))n y

ä
(5.3.5)

but (− adh− α(h))n is invertible on gα′ unless α′ = −α. Nondegeneracy follows from nondegener-
acy of β on all of g. �

5.38 Corollary If g is a finite-dimensional semisimple Lie algebra over characteristic 0, and let
h ⊆ g a nilpotent subalgebra, then the largest nilpotency ideal in g0 of the action ad : g0 y g is the
0 ideal.

Proof The Killing form β pairs g0 with itself nondegenerately. As β is the trace form of ad : g0 y g,
and ad(g)-nilpotent ideal of g0 must be in kerβ = 0. �

5.39 Proposition Let g be a finite-dimensional semisimple Lie algebra over an algebraically closed
field K of characteristic 0, and let h ⊆ g be a Cartan subalgebra. Then h is abelian and ad : h y g

is diagonalizable.

Proof By definition, h is nilpotent and hence solvable, and by Theorem 4.37 we can find a basis
of g in which h y g by upper triangular matrices. Thus h′ = [h, h] acts by strictly upper triangular
matrices and hence nilpotently on g. But h = g0, and so h′ = 0 by Corollary 5.38. This proves that
h is abelian.

Let x ∈ h. Then adxs = (adx)s acts as α(x) on gα, and in particular xs centralizes h. So
xs ∈ g0 = h and so xn = x − xs ∈ h. But if n ∈ h acts nilpotently on g, then Kn is an ideal
of h, since h is abelian, and acts nilpotently on g, so Kn = 0 by Corollary 5.38. Thus xn = 0
and x = xs. In particular, x acts diagonalizably on g. To show that h acts diagonalizably, we use
finite-dimensionality and the classical fact that if n diagonalizable matrices commute, then they
can by simultaneously diagonalized. �

5.40 Corollary Let g be a finite-dimensional semisimple Lie algebra over an algebraically closed
field of characteristic 0. Then a subalgebra h ⊆ g is Cartan if and only if h is a maximal diagonal-
izable abelian subalgebra.
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Proof We first show the maximality of a Cartan subalgebra. Let h be a Cartan subalgebra and
h1 ⊇ h abelian. Then h1 ⊆ g0 = h because it normalizes h.

Conversely, let h be a maximal diagonalizable abelian subalgebra of g, and write g =
⊕

gα the
weight space decomposition of h y g. We want to show that h = g0, the centralizer of h. Pick
x ∈ g0; then xs, xn ∈ g0, and so xs ∈ h by maximality. In particular, g0 is spanned by h and
ad-nilpotent elements. Thus g0 is nilpotent by Theorem 4.25 and therefore solvable, so g′0 acts
nilpotently on g. But g′0 is an ideal of g0 that acts nilpotently, so g′0 = 0, so g0 is abelian. Then
any one-dimensional subspace of g0 is an ideal of g0, and a subspace spanned by a nilpotent acts
nilpotently, so g0 doesn’t have any nilpotents. Therefore g0 = h. �

5.4 Root systems

5.4.1 Motivation and a Quick Computation

[8, Lectures 31 and 32]
In any semisimple Lie algebra over C we can choose a Cartan subalgebra, to which we assign

combinatorial data. Since all Cartan subalgebras are conjugate, this data, called a root system, will
not depend on our choice. Conversely, this data will uniquely describe the Lie algebra, based on
the representation theory of sl(2).

5.41 Definition Let g be a semisimple Lie algebra over C, and h a Cartan subalgebra. The root
space decomposition of g is the weight decomposition g =

⊕
α gα of ad : h y g; each gα is a root

space, and the set of weights α ∈ h∗ that appear in the root space decomposition comprise the roots
of g. By Proposition 5.32 the structure of the set of roots depends up to isomorphism only on g.

5.42 Lemma / Definition Let g be a semisimple Lie algebra over C with Killing form β, h a
Cartan subalgebra, and xα ∈ gα for α 6= 0. To xα we can associate yα ∈ g−α with β(xα, yα) = −1
and to the root α we associate a coroot hα with β(hα,−) = α. Then {xα, yα, hα} span a subalgebra
sl(2)α of g isomorphic to sl(2).

Proof That hα and yα are well-defined follows from the nondegeneracy of β. For any h ∈ h, x ∈ gα,
and y ∈ g−α, we have

β(h, [x, y]) = β([x, h], y) (5.4.1)
= −α(h)β(x, y) (5.4.2)

Thus [x, y] = −β(x, y)hα. Moreover, since xα ∈ gα, [hα, xα] = α(hα)xα, and since yα ∈ g−α,
[hα, yα] = −α(hα)yα.

Thus xα, yα, hα span a three-dimensional Lie subalgebra of g, which is isomorphic to either
sl(2) or or the Heisenberg algebra. But in every finite-dimensional representation the Heisenberg
algebra acts nilpotently, whereas ad(hα) ∈ End(g) is diagonalizable. Therefore this subalgebra is
isomorphic to sl(2), and α(hα) 6= 0. �

5.43 Corollary Let α be a root of g. Then ±α are the only non-zero roots of g in Cα, and
dim gα = 1. In particular, sl(2)α = gα ⊕ g−α ⊕ Chα.
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Proof We consider jα
def=
⊕

α′∈Cαr{0} gα′ ⊕ Chα; it is a subalgebra of g and an sl(2)α-submodule,
since [gα, gα′ ] ⊆ gα+α′ , and hcα = chα for c ∈ C. Let α′ ∈ Cα r {0} be a root; as a weight of the
sl(2)α representation, we see that α′ ∈ Zα/2. If any half-integer multiple of α actually appears,
then α/2 appears, and by switching α to α/2 if necessary we can assure that jα contains only
representations V2m. But each V2m has contributes a basis vector in weight 0, and the only part
of jα in weight 0 is Chα. Therefore jα is irreducible as an sl(2)α module, contains sl(2)α, and so
equals sl(2)α. �

5.44 Corollary The roots α span h∗, and the coroots hα span h.

Proof We let α range over the non-zero roots. Then⋂
α 6=0

kerα = Z(g) = 0 (5.4.3)

∑
α 6=0

Chα = g′ ∩ h = h (5.4.4)

That β−1 : α 7→ hα is a linear isomorphism h∗ → h completes the proof. �

5.45 Proposition Let g be a finite-dimensional semisimple Lie algebra over C, and h ⊆ g a Cartan
subalgebra. Let R ⊆ h∗ be the set of nonzero roots and R∨ ⊆ h the set of nonzero coroots. Then
α 7→ α∨

def= 2hα
α(hα) defines a bijection ∨ : R→ R∨, and the triple (R,R∨,∨) comprise a root system

in h.

We will define the words “root system” in the next section to generalize the data already computed.

5.4.2 The Definition

[8, Lecture 33]

5.46 Definition A root system is a complex vector space h, a finite subset R ⊆ h∗, a subset
R∨ ⊆ h, a bijection ∨ : R→ R∨, subject to

RS1 〈α, β∨〉 ∈ Z

RS2 R = −R and R∨ = −R∨, with (−α)∨ = −(α∨)

RS3 〈α, α∨〉 = 2

RS4 If α, β ∈ R are not proportional, then (β + Cα) ∩R consists of a “string”:¨
(β + Cα) ∩R,α∨

∂
= {m,m− 2, . . . ,−m+ 2,−m} (5.4.5)

Nondeg R spans h∗ and R∨ spans h

Reduced Cα ∩R = {±α} for α ∈ R.
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Two root systems are isomorphic if there is a linear isomorphism of the underlying vector spaces,
inducing an isomorphism on dual spaces, that carries each root system to the other. The rank of a
root system is the dimension of h.

5.47 Definition Given a root system (R,R∨) on a vector space h, the Weyl group W ⊆ GL(h∗)
is the group generated by the reflections sα : λ 7→ λ− 〈λ, α∨〉α as α ranges over R.

5.48 Proposition 1. It follows from RS3 that s2
α = e ∈W for each root α.

2. It follows from RS4 that WR = R. Thus W is finite. Moreover, W preserves h∗R, the R-span
of R.

3. The W -average of any positive-definite inner product on h∗R is a W -invariant positive-definite
inner product. Let (, ) be a W -invariant positive-definite inner product. Then sα is orthogonal
with respect to (, ), and so sα : λ 7→ λ− 2(λ,α)

(α,α) α. This inner product establishes an isomorphism

h
∼→ h∗, under which α∨ 7→ 2α/(α, α).

4. Therefore Reduced holds with R replaced by R∨ if it holds at all.

5. Let W act on h dual to its action on h∗. Then w(α∨) = (wα)∨ for w ∈W and α ∈ R. Thus
swα = wsαw

−1.

6. If V ⊆ h∗ is spanned by any subset of R, then R ∩ V and its image under ∨ form another
nondegenerate root system.

7. Two root systems with the same Weyl group and lattices are related by an isomorphism.

5.49 Definition Let R be a root system in h∗. Define the weight lattice to be P
def= {λ ∈

h∗ s.t. 〈λ, α∨〉 ∈ Z∀α∨ ∈ R∨} and the root lattice Q to be the Z-span of R. Then RS1 im-
plies that R ⊆ Q ⊆ P ⊆ h∗; by Nondeg, both P and Q are of full rank and so the index P : Q is
finite. We define the coweight lattice to be P∨ and the coroot lattice to be Q∨.

5.4.3 Classification of rank-two root systems

By Reduced, there is a unique rank-one root system up to isomorphism, the root system of sl(2).
Let R be a rank-two root system; then its Weyl group W is a finite subgroup W ⊆ GL(2,R)

generated by reflections. The only finite subgroups of GL(2,R) are the cyclic and dihedral groups;
only the dihedral groups are generated by reflections, and so W ∼= D2m for some m. Moreover, W
preserves the root lattice Q.

5.50 Lemma The only dihedral groups that preserve a lattice are D4, D6, D8, and D12.

Proof Let rθ be a rotation by θ. Its eigenvalues are e±iθ, and so tr(rθ) = 2 cos θ. If rθ preserves
a lattice, its trace must be an integer, and so 2 cos θ ∈ {1, 0,−1,−2}, as 2 cos θ = 2 corresponds
to the identity rotation, and | cos θ| ≤ 1. Therefore θ ∈ {π, 2π/3, π/2, π/3}, i.e. θ = 2π/m for
m ∈ {2, 3, 4, 6}, and the only valid dihedral groups are D2m for these values of m. �
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5.51 Corollary There are four rank-two root systems, corresponding to the rectangular lattice, the
square lattice, and the hexagonal lattice twice:

θ = π θ = 2π/3 θ = π/2 θ = π/3

For each dihedral group, we can pick two reflections α1, α2 with a maximally obtuse angle;
these generate W and the lattice. On the next page we list the four rank-two root systems with
comments on their corresponding Lie groups:
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m Picture Name notes

2
α2

α1
A1 ×A1 = D2 corresponding to the Lie algbera sl(2)× sl(2) = so(4)

3
α2

α1
A2 corresponding to sl(3) acting on the traceless diagonals

4
α2

α1
B2 = C2

so(5) = sp(4). (When we get higher up, the Bs and Cs will
separate, and we will have a new sequence of Ds.)

6
α2

α1
G2

a new simple algebra of dimension 14 = number of roots plus
dimension of root space. We will see later that its smallest
representation has dimension 7. There are many descriptions
of this representation and the corresponding Lie algebra; the
seven-dimensional representation comes from the Octonians,
a non-associative, non-commutative “field”, and G2 is the
automorphism group of the pure-imaginary part of the Oc-
tonians.
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5.52 Lemma / Definition The axioms of a finite root system are symmetric under the inter-
change R↔ R∨. This interchange assigns a dual to each root system.

Proof Only RS4 is not obviously symmetric. We did not use RS4 to classify the two-dimensional
root systems; we needed only a corollary:

RS4’ W (R) = R,

which is obviously symmetric. But RS4 describes only the two-dimensional subspaces of a root
system, and every rank-two root system with RS4’ replacing RS4 in fact satisfies RS4. This
suffices to show that RS4’ implies RS4 for finite root systems. �

We remark that the statement is false for infinite root systems, and we presented the definition
we did to accommodate the infinite case. We will not discuss infinite root systems further.

5.4.4 Positive roots

[8, Lecture 34]1

5.53 Definition A positive root system consists of a (finite) root system R ⊆ h∗R and a vector
v ∈ hR so that α(v) 6= 0 for every root α ∈ R. A root α ∈ R is positive if α(v) > 0, and negative
otherwise. Let R+ be the set of positive roots and R− the set of negative ones; then R = R+ tR−,
and by RS2, R+ = −R−.

The R≥0-span of R+ is a cone in h∗R, and we let ∆ be the set of extremal rays in this cone.
Since the root system is finite, extremal rays are generated by roots, and we use Reduced to identify
extremal rays with positive roots. Then ∆ ⊆ R is the set of simple roots.

5.54 Lemma If α and β are two simple roots, then α− β is not a root. Moreover, (α, β) ≤ 0 for
α 6= β.

Proof If α − β is a positive root, then α = β + (α − β) is not simple; if α − β is negative then β
is not simple.

For the second statement, assume that α and β are any two roots with (α, β) > 0. If α 6= β,
then they cannot be proportional, and we assume without loss of generality that (α, α) ≤ (β, β).
Then sβ(α) = α − 2(α,β)

(β,β) β = α − β, because 2(α, β)/(β, β) = 〈α, β∨〉 is a positive integer strictly
less than 2. Thus α− β is a root if (α, β) > 0. �

5.55 Lemma Let Rn have a positive definite inner product (, ), and suppose that v1, . . . , vn ∈ Rn
satisfy (vi, vj) ≤ 0 if i 6= j, and such that there exists v0 with (v0, vi) > 0 for every i. Then
{v1, . . . , vn} is an independent set.

Proof Suppose that 0 = c1v1+· · ·+cnvn. Renumbering as necessary, we assume that c1, . . . , ck ≥ 0,
and ck+1, . . . , cn ≤ 0. Let v = c1v1 + · · · + ckvk = |ck+1|vk+1 + · · · + |cn|vn. Then 0 ≤ (v, v) =

1I missed a few proofs from class. In particular, the proofs of Lemma 5.54 and Lemma 5.55 are reproduced from
[11, page 156].
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(
∑k
i=1 civi,

∑n
j=k+1−ckvk) =

∑
j,k |cicj |(vi, vj) ≤ 0, which can happen only if v = 0. But then

0 = (v, v0) =
∑k
i=1 ci(vi, v0) > 0 unless all ci are 0 for i ≤ k. Similarly we must have cj = 0 for

j ≥ k + 1, and so {vi} is independent. �

5.56 Corollary In any positive root system, the set ∆ of simple roots is a basis of h∗.

Proof By Lemma 5.54, ∆ satisfies the conditions of Lemma 5.55 and so is independent. But ∆
generates R+ and hence R, and therefore spans h∗. �

5.57 Lemma Let ∆ = {α1, . . . , αn} be a set of vectors in Rm with inner product (, ), and assume
that αi are all on one side of a hyperplane: there exists v such that (αi, v) > 0 ∀i. Let W be the group
generated by reflections Sαi. Let R+ be any subset of R≥0∆ r {0} such that si(R+ r {αi}) ⊆ R+

for each i, and such that the set of heights {(α, v)}α∈R+ ⊆ R≥0 is well-ordered. Then R+ ⊆W (∆).

Proof Let β ∈ R+. We proceed by induction on its height.
There exists i such that (αi, β) > 0, because if (β, αi) ≤ 0 ∀i, then (β, β) = 0 since β is a

positive combination of the αis. Thus si(β) = β − (positive)αi; in particular,
Ä
v, si(β)

ä
< (v, β).

If β 6= αi, then si(β) ∈ R+ by hypothesis, so by induction si(β) ∈ W (∆), and hence β =
si(si(β)) ∈W (∆). If β = αi, it’s already in W (∆). �

5.58 Corollary Let R be a finite root system, R+ a choice of positive roots, and ∆ the correspond-
ing set of simple roots. Then R = W (∆), and the set {sαi}αi∈∆ generates W .

5.59 Corollary Let R be a finite root system, R+ a choice of positive roots, and ∆ the correspond-
ing set of simple roots. Then R ⊆ Z∆ and R+ ⊆ Z≥0∆.

5.60 Proposition Let R be a finite root system, and R+ and R′+ two choices of positive roots.
Then R+ and R′+ are W -conjugate.

Proof Let ∆ be the set of simple roots corresponding to R+. If ∆ ⊆ R′+, then R+ ⊆ R′+. Then
R− ⊆ R′− by negating, and R+ ⊇ R′+ by taking complements, so R+ = R′+.

Suppose αi ∈ ∆ but αi 6∈ R′+, and consider the new system of positive roots si(R′+), where
si = sαi is the reflection corresponding to αi. Then si(R′+)∩R+ ⊇ si(R′+ ∩R+), because a system
of roots that does not contain αi does not lose anything under si. But αi ∈ R′−, so −αi ∈ R′+, and
so αi ∈ si(R′+) and hence in si(R′+) ∩R+. Therefore

∣∣∣si(R′+) ∩R+

∣∣∣ > ∣∣∣R′+ ∩R+

∣∣∣.
If si(R′+) 6= R+, then we can find αj ∈ ∆ r si(R′+). We repeat the argument, at each step

making the set
∣∣∣w(R′+) ∩ R+

∣∣∣ strictly bigger, where w = · · · sjsi ∈ W . Since R+ is a finite set,
eventually we cannot get any bigger; this can only happen when ∆ ⊆ w(R′+), and so R+ = w(R′+).�

5.5 Cartan Matrices and Dynkin Diagrams

5.5.1 Definitions

[8, Lecture 34]
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5.61 Definition A finite-type Cartan matrix of rank n is an n × n matrix aij satisfying the fol-
lowing:

• aii = 2 and aij ∈ Z≤0 for i 6= j.

• a is symmetrizable: there exists an invertible diagonal matrix d with da symmetric.

• a is positive: all principle minors of a are positive.

An isomorphism between Cartan matrices aij and bij is a permutation σ ∈ Sn such that aij = bσi,σj.

5.62 Lemma / Definition Let R be a finite root system, R+ a system of positive roots, and
∆ = {α1, . . . , αn} the corresponding simple roots. The Cartan matrix of R is the matrix aij

def=
〈αj , α∨i 〉 = 2(αi, αj)/(αi, αi).

The Cartan matrix of a root system is a Cartan matrix. It depends (up to isomorphism) only on
the root system. Conversely, a root system is determined up to isomorphism by its Cartan matrix.

Proof That the Cartan matrix depends only on the root system follows from Proposition 5.60.
That the Cartan matrix determines the root system follows from Corollary 5.58.

Given a choice of root system and simple roots, let di
def= (αi, αi)/2, and let dij

def= diδij be the
diagonal matrix with the dis on the diagonal. Then d is invertible because di > 0, and da = (αi, αj)
is obviously symmetric. Let I ⊆ {1, . . . , n}; then the I × I principle minor of da is just

∏
i∈I di

times the corresponding principle minor of a. Since di > 0 for each i and da is the matrix of a
positive-definite symmetric bilinear form, we see that a is positive. �

5.5.2 Classification of finite-type Cartan matrices

[8, Lectures 34 and 35]
We classify (finite-type) Cartan matrices by encoding their information in graph-theoretic form

(“Dynkin diagrams”) and then classifying (indecomposable) Dynkin diagrams.

5.63 Definition Let a be an integer matrix so that every principle 2× 2 sub-matrix has the formñ
2 −k
−l 2

ô
with k, l ∈ Z≥0 and either both k and l are 0 or one of them is 1. Let us call such a

matrix generalized-Cartan.

5.64 Lemma A Cartan matrix is generalized-Cartan. A generalized-Cartan matrix is not Cartan
if any entry is −4 or less.

Proof Consider a 2× 2 sub-matrix
ñ

2 −k
−l 2

ô
. Then if one of k and l is non-zero, the other must

also be non-zero by symmetrizability. Moreover, kl < 4 by positivity, and so one of k and l must
be 1. �

5.65 Definition Let a be a rank-n generalized-Cartan matrix. Its diagram is a graph on n vertices
with (labeled, directed) edges determined as follows:
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Let 1 ≤ i, j ≤ n, and consider the {i, j} × {i, j} submatrix of a. By definition, either k and l
are both 0, or one of them is 1 and the other is a positive integer. We do not draw an edge between
vertices i and j if k = l = 0. We connect i and j with a single undirected edge if k = l = 1. For

k = 2, 3, we draw an arrow with k edges from vertex i to vertex j if the {i, j} block is
ñ

2 −1
−k 2

ô
.

5.66 Definition A diagram is Dynkin if its corresponding generalized-Cartan matrix is in fact
Cartan.

5.67 Lemma / Definition The diagram of a generalized-Cartan matrix a is disconnected if and
only if a is block diagonal, and connected components of the diagram correspond to the blocks of
a. A block diagonal matrix a is Cartan if and only if each block is. A connected diagram is
indecomposable. We write “×” for the disjoint union of Dynkian diagrams.

5.68 Example There is a unique indecomposable rank-1 diagram, and it is Dynkin: A1 = •.
The indecomposable rank-2 Dynkin diagrams are:

A2 = • •
B2 = C2 = • •

G2 = • •

5.69 Lemma / Definition A subdiagram of a diagram is a subset of the vertices, with edges
induced from the parent diagram. Subdiagrams of a Dynkin diagram correspond to principle sub-
matrices of the corresponding Cartan matrix. Any subdiagram of a Dynkin diagram is Dynkin.

By symmetrizability, if we have a triangle
•
k • l

•m

, then the multiplicities must be related:

m = kl. So k or l is 1, and you can check that the three possibilities all have determinant ≤ 0.
Moreover, a triple edge cannot attach to an edge, and two double edges cannot attach, again by
positivity. As such, we will never need to discuss the triple-edge again.

5.70 Example The are three indecomposable rank-3 Dynkin diagrams:

A3 = • • •
B3 = • • •
C3 = • • •

5.71 Definition Let a be a generalized-Cartan rank-n matrix. We can specify a vector in Rn by
assigning a “weight” to each vertex of the corresponding diagram. The neighbors of a vertex are
counted with multiplicity: an arrow leaving a vertex contributes only one neighbor to that vertex,
but an arrow arriving contributes as many neighbors as the arrow has edges. Naturally, each vertex
of a weighted diagram has some number of “weighted neighbors”: each neighbor is counted with
multiplicity and multiplied by its weight, and these numbers are summed.
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5.72 Lemma Let a be a generalized-Cartan matrix, and think of a vector ~x as a weighting of the
corresponding diagram. With the weighted-neighbor conventions in Definition 5.71, the multiplica-
tion a~x can be achieved by subtracting the number of weighted neighbors of each vertex from twice
the weight of that vertex.

Thus, a generalized-Cartan matrix is singular if its corresponding diagram has a weighting such
that each vertex has twice as many (weighted) neighbors as its own weight.

5.73 Corollary A ring of single edges, and hence any diagram with a ring as a subdiagram, is not
Dynkin.

Proof We assign weight 1 to each vertex; this shows that the determinant of the ring is 0:

·

•

•

••

•

•

• •
· ·

·

1

1

1
1

1

1

1
1

· ·

a

( )
= 0

�

5.74 Corollary The following diagrams correspond to singular matrices and hence are not Dynkin:

· · ·• • •

•

•

•

•

•

•

•

•

•

· · ·• • •

•

•

•

· · ·• • •

•

•

•

· · ·• • •• •



88 CHAPTER 5. CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS

· · ·• • •• •

· · ·• • •• •

• • • • •

• • • • •

Proof For example, we can show the last two as singular with the following weightings:

1 2 3 2 1

2 4 3 2 1 �

5.75 Lemma The following diagrams are not Dynkin:

•

• •

•
det = −4

•

•
•

•

•
det = −4

•

• •

•
det = −8

•

• •

•
not symmetrizable

5.76 Corollary The indecomposable Dynkin diagrams with double edges are the following:

Bn = • • · · · • •
Cn = • • · · · • •
F4 = • • • •

Proof Any indecomposable Dynkin diagram with a double edge is a chain. The double edge must
come at the end of the chain, unless the diagram has rank 4. �

5.77 Lemma Consider a Y -shaped indecomposable diagram. Let the lengths of the three arms,
including the middle vertex, be k, l,m. Then the diagram is Dynkin if and only if 1

k + 1
l + 1

m > 1.

Proof One can show directly that the determinant of such a diagram is klm( 1
k + 1

l + 1
m − 1). We

present null-vectors for the three “Egyptian fraction” decompositions of 1 — triples k, l,m such
that 1

k + 1
l + 1

m = 1:

321

2 1

2 1 4

3 2

2

1

3 2 1

6

3

42 5 4 3 2 1 �
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5.78 Corollary The indecomposable Dynkin diagrams made entirely of single edges are:

An = • • · · · •

Dn = • • · · · •

•

•

E6 = • • •

•

• •

E7 = • • •

•

• • •

E8 = • • •

•

• • • •

All together, we have proven:

5.79 Theorem (Classification of indecomposable Dynkin diagrams) A diagram is Dynkin
if and only if it is a disjoint union of indecomposable Dynkin diagrams. The indecomposable Dynkin
diagrams comprise four infinite families and five “sporadic” cases:

An = • • · · · •

Dn = • • · · · •

•

•
Bn = • • · · · • •
Cn = • • · · · • •

E6 = • • •

•

• •

E7 = • • •

•

• • •

E8 = • • •

•

• • • •
F4 = • • • •
G2 = • •
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5.80 Example We mention the small-rank coindidences. We can continue the E series for smaller
n: E4 = A4, E5 = D5. E3 is not defined. The B, C, and D series make sense for n ≥ 2, whence
B2 = C2 and D2 = A1 × A1 and D3 = A3. Some diagrams have nontrivial symmetries: for n ≥ 1,
the symmetry group of An has order 2, and similarly for Dn for n 6= 4. The diagram D4 has an
unexpected symmetry: its symmetry group is S3, with order 6. The symmetry group of E6 is
order-2.

5.6 From Cartan Matrix to Lie Algebra

[8, Lectures 36 and 37]
In Theorem 5.79, we classified indecomposable finite-type Cartan matrices, and therefore all

finite-type Cartan matrices. We can present generators and relations showing that each indecompos-
able Cartan matrix is the Cartan matrix of some simple Lie algebra — indeed, the infinite families
An, Bn, Cn, and Dn correspond respectively to the classical Lie algebras sl(n,C), so(2n + 1,C),
sp(n,C), and so(2n,C) — and it is straightforward to show that a disjoint union of Cartan matrices
corresponds to a direct product of Lie algebras.

In this section, we explain how to construct a semisimple Lie algebra for any finite-type Cartan
matrix, and we show that a semisimple Lie algebra is determined by its Cartan matrix. This
will complete the proof of the classification of semisimple Lie algebras. Most, but not all, of the
construction applies to generalized-Cartan matrices; the corresponding Lie algebras are Kac-Moody,
which are infinite-dimensional versions of semisimple Lie algebras. We will not discuss Kac-Moody
algebras here.

5.81 Lemma / Definition Let ∆ be a rank-n Dynkin diagram with vertices labeled a basis {α1, . . . , αn}
of a vector space h∗, and let aij be the corresponding Cartan matrix. Since aij is nondegenerate, it
defines a map ∨ : h∗ → h by aij = 〈αj , α∨i 〉. We define g̃ = g̃∆ to be the Lie algebra generated by
{ei, fi, hi}ni=1 subject to the relations

[hi, ej ] = aijej (5.6.1)
[hi, fj ] = −aijfj (5.6.2)
[ei, fj ] = δijhi (5.6.3)
[hi, hj ] = 0 (5.6.4)

For each i, we write sl(2)i for the subalgebra spanned by {ei, fi, hi}; clearly sl(2)i ∼= sl(2).
Let Q = Z∆ be the root lattice of ∆. Then the free Lie algebra generated by {ei, fi, hi}ni=1 has a

natural Q-grading, by deg ei = αi, deg fi = −αi, and deg hi = 0; under this grading, the relations
are homogeneous, so the grading passes to the quotient g̃∆.

Let h̃ ⊆ g̃ be the subalgebra generated by {hi}ni=1; then it is abelian and spanned by {hi}ni=1. The
adjoint action ad : h y g̃ is diagonalized by the grading: hi acts on anything of degree q ∈ Q by
〈q, α∨i 〉.

Let ñ+ be the subalgebra of g̃ generated by {ei}ni=1 and let ñ− be the subalgebra of g̃ generated
by {fi}ni=1; the algebras ñ± are called the “upper-” and “lower-triangular” subalgebras.
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5.82 Proposition Let ∆, g̃, h̃, ñ± be as in Lemma/Definition 5.81. Then g̃ = ñ−⊕ h̃⊕ ñ+ as vector
spaces; this is the “triangular decomposition” of g̃.

Proof That ñ−, h̃, ñ+ intersect trivially follows form the grading, so it suffices to show that g̃ =
ñ− + h̃ + ñ+. By inspecting the relations, we see that (ad fi)ñ− ⊆ ñ−, (ad fi)h̃ ⊆ 〈fi〉 ⊆ ñ−, and
(ad fi)ñ+ ⊆ h̃+ ñ+. Therefore ad fi preserves ñ−+ h̃+ ñ+, h̃ does so obviously, and ad ei does so by
the obvious symmetry fi ↔ ei. Therefore ñ− + h̃ + ñ+ is an ideal of g̃ and therefore a subalgebra,
but it contains all the generators of g̃. �

5.83 Proposition Let ∆, g̃ be as in Lemma/Definition 5.81, and let λ ∈ h∗. Write C〈f1, . . . , fn〉
for the free algebra generated by noncommuting symbols f1, . . . , fn and Mλ

def= C〈f1, . . . , fn〉vλ for
its free module generated by the symbol vλ. Then there exists an action of g̃ on Mλ such that:

fi
Ä∏

fjkvλ
ä

=
Ä
fi
∏

fjk
ä
vλ (5.6.5)

hi
Ä∏

fjkvλ
ä

=

(
λ(hi)−

∑
k

ai,jk

) Ä∏
fjkvλ

ä
(5.6.6)

ei
Ä∏

fjkvλ
ä

=
∑

k s.t. jk=i

fj1 · · · fjk−1
hifjk+1

· · · fjl vλ (5.6.7)

Proof We have only to check that the action satisfies the relations equations 5.6.1 to 5.6.4. The
Q-grading verifies equations 5.6.1, 5.6.2, and 5.6.4; we need only to check equation 5.6.3. When
i 6= j, the action by ei ignores any action by fj , and so we need only check that [ei, fi] acts by hi.
Write f for some monomial fj1 · · · fjn . Then eifi(fvλ) = ei(fifvλ) = hifvλ + fiei(fvλ), clear by
the construction. �

5.84 Definition The g̃-module Mλ defined in Proposition 5.83 is the Verma module of g̃ with
weight λ.

5.85 Corollary The map h → h̃ is an isomorphism, so h ↪→ h̃. The upper- and lower-triangular
algebras ñ− and ñ+ are free on {fi} and {ei} respectively.

5.86 Proposition Assume that ∆ is an indecomposable system of simple roots, in the sense that
the Dynkin diagram of the Cartan matrix of ∆ is connected. Construct g̃ as in Lemma/Definition 5.81.
Then any proper ideal of g̃ is graded, contained in ñ− + ñ+, and does not contain any ei or fi.

Proof The grading on g̃ is determined by the adjoint action of h = h̃. Let a be an ideal of g̃ and
a ∈ a. Let a =

∑
aqgq where gq are homogeneous of degree q ∈ Q. Then [hi, a] =

∑〈q, α∨i 〉aqgq, and
so [h, a] has the same dimension as the number of non-zero coefficients aq; in particular, gq ∈ [h, a].
Thus a is graded.

Suppose that a has a degree-0 part, i.e. suppose that there is some h ∈ h∩ a. Since the Cartan
matrix a is nonsingular, there exists αi ∈ ∆ with αi(h) 6= 0. Then [fi, h] = αi(h)fi 6= 0, and so
fi ∈ a.

Now let a be any ideal with fi ∈ a for some i. Then hi = [ei, fi] ∈ a and ei = −1
2 [ei, hi] ∈ a.

But let αj be any neighbor of αi in the Dynkin diagram. Then aij 6= 0, and so [fj , hi] = aijfj 6= 0;
then fj ∈ a. Therefore, if the Dynkin diagram is connected, then any ideal of g̃ that contains some
fi (or some ei by symmetry) contains every generator of g̃. �
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5.87 Corollary Under the conditions of Proposition 5.86, g̃ has a unique maximal proper ideal.

Proof Let a and b be any two proper ideals of g̃. Then the ideal a + b does not contain h or any
ei or fi, and so is a proper ideal. �

5.88 Definition Let ∆ be a system of simple roots with connected Dynkin diagram, and let g̃ = g̃∆

be defined as in Lemma/Definition 5.81. We define g = g∆ as the quotient of g̃ by its unique
maximal proper ideal. Then 〈hi, ei, fi〉 ↪→ g, where by 〈hi, ei, fi〉 we mean the linear span of the
generators of g̃. Since we quotiented by a maximal ideal, g is simple.

5.89 Theorem (Serre Relations) Let g be as in Definition 5.88, and ei, fi the images of the
corresponding generators of g̃. Then:

(ad ej)1−ajiei = 0 (5.6.8)

(ad fj)1−ajifi = 0 (5.6.9)

Proof We will check equation 5.6.9; equation 5.6.8 is exactly analogous. Let s be the left-hand-side
of equation 5.6.9, interpreted as an element of g̃. We will show that the ideal generated by s is
proper.

When i = j, s = 0, and when i 6= j, aji ≤ 0, and so the degree of s is −αi − (≥ 1)αj . In
particular, bracketing with fk and hk only moves the degree further from 0. Therefore, the claim
follows from the following equation:

[ek, s]g̃ = 0 for any k (5.6.10)

When k 6= i, j, [ek, fi] = [ek, fj ] = 0. So it suffices to check equation 5.6.10 when k = i, j. Let
m = −aji. When k = j, we compute:

(ad ej)(ad fj)1+mfi =
î
ad ej , (ad fj)1+m

ó
fi + (ad fj)1+m(ad ej)fi (5.6.11)

=
î
ad ej , (ad fj)1+m

ó
fi + 0 (5.6.12)

=
m∑
l=0

(ad fj)m−l
Ä
ad[ej , fj ]

ä
(ad fj)lfi (5.6.13)

=
m∑
l=0

(ad fj)m−l(adhj)(ad fj)lfi (5.6.14)

=
m∑
l=0

Ä
l(−〈αj , α∨j 〉)− 〈αi, α∨j 〉

ä
(ad fj)mfi (5.6.15)

=

(
m∑
l=0

Ä
−2l +m

ä)
(ad fj)mfi (5.6.16)

=
Ç
−2

m(m+ 1)
2

+ (m+ 1)m
å

(ad fj)mfi = 0 (5.6.17)

where equation 5.6.12 follows by [ei, fj ] = 0, equation 5.6.13 by the fact that ad is a Lie algebra
homomorphism, and the rest is equations 5.6.2 and 5.6.3, that m = −aji, and arithmetic.
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When k = i, ei and fj commute, and we have:

(ad ei)(ad fj)1+mfi =
î
ad ej , (ad fj)1+m

ó
fi + (ad fj)1+m(ad ei)fi (5.6.18)

= 0 + (ad fj)1+m(ad ei)fi (5.6.19)

= (ad fj)1+mhi = 0 (5.6.20)

provided that m ≥ 1. When m = 0, we use the symmetrizability of the Cartan matrix: if aji = 0
then aij = 0. Therefore

(ad ei)(ad fj)1−ajifi = (ad ei)[fj , fi] = −(ad ei)(ad fi)1−aijfj (5.6.21)

which vanishes by the first computation. �

We have defined for each indecomposable Dynkin diagram ∆ a simple Lie algebra g∆. If
∆ = ∆1 ×∆2 is a disjoint union of Dynkin diagrams, we define g∆

def= g∆1 × g∆2 .

5.90 Definition Let V be a (possibly-infinite-dimensional) g-module. An element v ∈ V is inte-
grable if for each i, the sl(2)i-submodule of V generated by v is finite-dimensional. We write I(V )
for the set of integrable elements of V .

5.91 Lemma Let V be a g-module. Then I(V ) is a g-submodule.

Proof Let N ⊆ V be an (n + 1)-dimensional irreducible representation of sl(2)i; then it is iso-
morphic to Vn defined in Example 5.17. It suffices to show that ejN is contained within some
finite-dimensional sl(2)i submodule of V for i 6= j; the rest follows by switching e ↔ f and per-
muting the indices, using the fact that {ej , fj} generate g.

Then N is spanned by {fikv0}nk=0 where v0 ∈ N is the vector annihilated by ei; in particular,
fi
n+1v0 = 0. Since ej and fi commute, ejN is spanned by {fikejv0}nk=0. It suffices to compute

the sl(2)i module generated by ejv0, or at least to show that it is finite-dimensional. The action
of hi on ejv0 is hiejv0 = ([hi, ej ] + ejhi)v0 = (aij + n)ejv0. For k 6= n + 1, fki ejv0 = ejf

k
i v0 = 0.

Moreover, by Theorem 5.89, eki ejv0 = [eki , ej ]v0 + eje
k
i v0 = (ad ei)k(ej)v0 + 0, which vanishes for

large enough k. Then the result follows by Theorem 3.24 and the fact that [ei, fi] = hi. �

5.92 Corollary Let ∆ be a Dynkin diagram and define g as above. Then g is ad-integrable.

Proof Since {ek, fk} generate g, it suffices to show that ek and fk are ad-integrable for each k.
But the sl(2)i-module generated by fk has fk as its highest-weight vector, since [ei, fk] = 0, and is
finite-dimensional, since (ad fi)nfk = 0 for large enough n by Theorem 5.89. �

5.93 Corollary The non-zero weights R of ad : g y g form a root system.

Proof Axioms RS1, RS2, RS3, RS4, and Nondeg of Definition 5.46 follow from the ad-
integrability. Axiom Reduced and that R is finite follow from Lemma 5.57. �

5.94 Theorem (Classification of finite-dimensional simple Lie algebras) The list given in
Theorem 5.79 classifies the finite-dimensional simple Lie algebras over C.
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Proof A Lie algebra with an indecomposable root system is simple, because any such system has
a highest root, and linear combination of roots generates the highest root, and the highest root
generates the entire algebra. So it suffices to show that two simple Lie algebras with isomorphic
root systems are isomorphic.

Let ∆ be an indecomposable root system, and define g̃ and g as above. Let g1 be a Lie algebra
with root system ∆. Then the relations defining g̃ hold in g1, and so there is a surjection g̃� g1; if
g1 is simple, then the kernel of this surjection is a maximal ideal of g̃. But g̃ has a unique maximal
ideal, and g is the quotient by this ideal; thus g1

∼= g. �

5.95 Example The families ABCD correspond to the classical Lie algebras: An ↔ sl(n + 1),
Bn ↔ so(2n+ 1), Cn ↔ sp(n), and Dn ↔ so(2n). We recall that we have defined sp(n) as the Lie
algebra that fixes the nondegenerate antisymmetric 2n × 2n bilinear form: sp(n) ⊆ gl(2n). The
EFG Lie algebras are new.

The coincidences in Example 5.80 correspond to coincidences of classical Lie algebras: so(6) ∼=
sl(4), so(5) ∼= sp(2), and so(4) ∼= sl(2) × sl(2). The identity so(3) ∼= sl(2) suggests that we define
B1 = A1 = •, but sl(2) is not congruent to sp(1) or to so(2), so we do not assign meaning to C1 or
D1, and justifying the name B1 for • but not C1 is ad hoc.

Exercises

1. (a) Show that SL(2,R) is topologically the product of a circle and two copies of R, hence it
is not simply connected.

(b) Let S be the simply connected cover of SL(2,R). Show that its finite-dimensional com-
plex representations, i.e., real Lie group homomorphisms S → GL(n,C), are determined
by corresponding complex representations of the Lie algebra Lie(S)C = sl(2,C), and
hence factor through SL(2,R). Thus S is a simply connected real Lie group with no
faithful finite-dimensional representation.

2. (a) Let U be the group of 3 × 3 upper-unitriangular complex matrices. Let Γ ⊆ U be the
cyclic subgroup of matrices  1 0 m

0 1 0
0 0 1

 ,
where m ∈ Z. Show that G = U/Γ is a (non-simply-connected) complex Lie group that
has no faithful finite-dimensional representation.

(b) Adapt the solution to Set 4, Problem 2(b) to construct a faithful, irreducible infinite-
dimensional linear representation V of G.

3. Following the outline below, prove that if h ⊆ gl(n,C) is a real Lie subalgebra with the
property that every X ∈ h is diagonalizable and has purely imaginary eigenvalues, then the
corresponding connected Lie subgroup H ⊆ GL(n,C) has compact closure (this completes
the solution to Set 1, Problem 7).

(a) Show that adX is diagonalizable with imaginary eigenvalues for every X ∈ h.
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(b) Show that the Killing form of h is negative semidefinite and its radical is the center of
h. Deduce that h is reductive and the Killing form of its semi-simple part is negative
definite. Hence the Lie subgroup corresponding to the semi-simple part is compact.

(c) Show that the Lie subgroup corresponding to the center of h is a dense subgroup of a
compact torus. Deduce that the closure of H is compact.

(d) Show that H is compact — that is, closed — if and only if it further holds that the
center of h is spanned by matrices whose eigenvalues are rational multiples of i.

4. Let Vn = Sn(C2) be the (n+ 1)-dimensional irreducible representation of sl(2,C).

(a) Show that for m ≤ n, Vm ⊗ Vn ∼= Vn−m ⊕ Vn−m+2 ⊕ · · · ⊕ Vn+m, and deduce that the
decomposition into irreducibles is unique.

(b) Show that in any decomposition of V ⊗n1 into irreducibles, the multiplicity of Vn is equal
to 1, the multiplicity of Vn−2k is equal to

(n
k

)
−
( n
k−1

)
for k = 1, . . . , bn/2c, and all other

irreducibles Vm have multiplicity zero.

5. Let a be a symmetric Cartan matrix, i.e. a is symmetric with diagonal entries 2 and off-
diagonal entries 0 or −1. Let Γ be a subgroup of the automorphism group of the Dynkin
diagram D of a, such that every edge of D has its endpoints in distinct Γ orbits. Define the
folding D′ of D to be the diagram with a node for every Γ orbit I of nodes in D, with edge
weight k from I to J if each node of I is adjacent in D to k nodes of J . Denote by a′ the
Cartan matrix with diagram D′.

(a) Show that a′ is symmetrizable and that every symmetrizable generalized Cartan matrix
(not assumed to be of finite type) can be obtained by folding from a symmetric one.

(b) Show that every folding of a finite type symmetric Cartan matrix is of finite type.

(c) Verify that every non-symmetric finite type Cartan matrix is obtained by folding from
a unique symmetric finite type Cartan matrix.

6. An indecomposable symmetrizable generalized Cartan matrix a is said to be of affine type if
det(a) = 0 and all the proper principal minors of a are positive.

(a) Classify the affine Cartan matrices.

(b) Show that every non-symmetric affine Cartan matrix is a folding, as in the previous
problem, of a symmetric one.

(c) Let h be a vector space, αi ∈ h∗ and α∨i ∈ h vectors such that a is the matrix 〈αj , α∨i 〉.
Assume that this realization is non-degenerate in the sense that the vectors αi are linearly
independent. Define the affine Weyl group W to be generated by the reflections sαi , as
usual. Show that W is isomorphic to the semidirect product W0 nQ where Q and W0

are the root lattice and Weyl group of a unique finite root system, and that every such
W0 nQ occurs as an affine Weyl group.

(d) Show that the affine and finite root systems related as in (c) have the property that the
affine Dynkin diagram is obtained by adding a node to the finite one, in a unique way if
the finite Cartan matrix is symmetric.
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7. Work out the root systems of the orthogonal Lie algebras so(m,C) explicitly, thereby verifying
that they correspond to the Dynkin diagrams Bn if m = 2n + 1, or Dn if m = 2n. Deduce
the isomorphisms so(4,C) ∼= sl(2,C)× sl(2,C), so(5,C) ∼= sp(4,C), and so(6,C) ∼= sl(4,C).

8. Show that the Weyl group of type Bn or Cn (they are the same because these two root
systems are dual to each other) is the group Sn n (Z/2Z)n of signed permutations, and that
the Weyl group of type Dn is its subgroup of index two consisting of signed permutations
with an even number of sign changes, i.e., the semidirect factor (Z/2Z)n is replaced by the
kernel of Sn-invariant summation homomorphism (Z/2Z)n → Z/2Z

9. Let (h, R,R∨) be a finite root system, ∆ = {α1, . . . , αn} the set of simple roots with respect
to a choice of positive roots R+, si = sαi the corresponding generators of the Weyl group W .
Given w ∈W , let l(w) denote the minimum length of an expression for w as a product of the
generators si.

(a) If w = si1 . . . sir and w(αj) ∈ R−, show that for some k we have αik = sik+1
. . . sir(αj),

and hence siksik+1
. . . sir = sik+1

. . . sirsj . Deduce that l(wsj) = l(w)− 1 if w(αj) ∈ R−.

(b) Using the fact that the conclusion of (a) also holds for v = wsj , deduce that l(wsj) =
l(w) + 1 if w(αj) 6∈ R−.

(c) Conclude that l(w) = |w(R+) ∪ R−| for all w ∈ W . Characterize l(w) in more explicit
terms in the case of the Weyl groups of type A and B/C.

(d) Assuming that h is over R, show that the dominant cone X = {λ ∈ h : 〈λ, α∨i 〉 ≥
0 for all i} is a fundamental domain for W , i.e., every vector in h has a unique element
of X in its W orbit.

(e) Deduce that |W | is equal to the number of connected regions into which h is separated
by the removal of all the root hyperplanes 〈λ, α∨〉, α∨ ∈ R∨.

10. Let h1, . . . , hr be linear forms in variables x1, . . . , xn with integer coefficients. Let Fq denote
the finite field with q = pe elements. Prove that except in a finite number of “bad” charac-
teristics p, the number of vectors v ∈ Fnq such that hi(v) = 0 for all i is given for all q by a
polynomial χ(q) in q with integer coefficients, and that (−1)nχ(−1) is equal to the number
of connected regions into which Rn is separated by the removal of all the hyperplanes hi = 0.

Pick your favorite finite root system and verify that in the case where the hi are the root
hyperplanes, the polynomial χ(q) factors as (q − e1) . . . (q − en) for some positive integers ei
called the exponents of the root system. In particular, verify that the sum of the exponents
is the number of positive roots, and that (by Problem 9(e)) the order of the Weyl group is∏
i(1 + ei)

11. The height of a positive root α is the sum of the coefficients ci in its expansion α =
∑
i ciαi

on the basis of simple roots.

Pick your favorite root system and verify that for each k ≥ 1, the number of roots of height
k is equal to the number of the exponents ei in Problem 10 for which ei ≥ k.
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12. Pick your favorite root system and verify that if h denotes the height of the highest root
plus one, then the number of roots is equal to h times the rank. This number h is called
the Coxeter number. Verify that, moreover, the multiset of exponents (see Problem 10) is
invariant with respect to the symmetry ei 7→ h− ei.

13. A Coxeter element in the Weyl group W is the product of all the simple reflections, once each,
in any order. Prove that a Coxeter element is unique up to conjugacy. Pick your favorite
root system and verify that the order of a Coxeter element is equal to the Coxeter number
(see Problem 12).

14. The fundamental weights λi are defined to be the basis of the weight lattice P dual to the
basis of simple coroots in Q∨, i.e., 〈λi, α∨j 〉 = δij .

(a) Prove that the stabilizer in W of λi is the Weyl group of the root system whose Dynkin
diagram is obtained by deleting node i of the original Dynkin diagram.

(b) Show that each of the root systems E6, E7, and E8 has the property that its highest root
is a fundamental weight. Deduce that the order of the Weyl group W (Ek) in each case
is equal to the number of roots times the order of the Weyl group W (Ek−1), or W (D5)
for k = 6. Use this to calculate the orders of these Weyl groups.

15. Let e1, . . . , e8 be the usual orthonormal basis of coordinate vectors in Euclidean space R8. The
root system of type E8 can be realized in R8 with simple roots αi = ei − ei+1 for i = 1, . . . , 7
and

α8 =
Å
−1

2
,−1

2
,−1

2
,
1
2
,
1
2
,
1
2
,
1
2
,
1
2

ã
.

Show that the root lattice Q is equal to the weight lattice P , and that in this realization, Q
consists of all vectors β ∈ Z8 such that

∑
i βi is even and all vectors β ∈

Ä
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

ä
+

Z8 such that
∑
i βi is odd. Show that the root system consists of all vectors of squared length

2 in Q, namely, the vectors ±ei ± ej for i < j, and all vectors with coordinates ±1
2 and an

odd number of coordinates with each sign.

16. Show that the root system of type F4 has 24 long roots and 24 short roots, and that the roots
of each length form a root system of type D4. Show that the highest root and the highest
short root are the fundamental weights at the end nodes of the diagram. Then use Problem
14(a) to calculate the order of the Weyl group W (F4). Show that W (F4) acts on the set of
short (resp. long roots) as the semidirect product S3 nW (D4), where the symmetric group
S3 on three letters acts on W (D4) as the automorphism group of its Dynkin diagram.

17. Pick your favorite root system and verify that the generating function W (t) =
∑
w∈W tl(w) is

equal to
∏
i (1 + t+ · · ·+ tei), where ei are the exponents as in Problem 10.

18. Let S be the subring of W -invariant elements in the ring of polynomial functions on h. Pick
your favorite root system and verify that S is a polynomial ring generated by homogeneous
generators of degrees ei + 1, where ei are the exponents as in Problem 10.
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Chapter 6

Representation Theory of Semisimple
Lie Groups

6.1 Irreducible Lie-algebra representations

[8, Lectures 38 and 39] [18, Lectures 18 and 19]1

Any representation of a Lie group induces a representation of its Lie algebra, so we start our story
there. We recall Theorem 4.78: any finite-dimensional representation of a semisimple Lie algebra is
the direct sum of simple representations. In section 5.2 we computed the finite-dimensional simple
representations of sl(2); we now generalize that theory to arbitrary finite-dimensional semisimple
Lie algebras.

6.1 Lemma / Definition Let g be a semisimple Lie algebra with Cartan subalgebra h and root
system R, and choose a system of positive roots R+. Let n± =

⊕
α∈R± gα be the upper- and lower-

triangular subalgebras; then g = n− ⊕ h⊕ n+ as a a vector space. We define the Borel subalgebra
b = h⊕ n+, and n+ is an ideal of b with h = b/n+.

Pick λ ∈ h∗; then b has a one-dimensional module Cvλ, where hvλ = λ(h) vλ for h ∈ h and
n+vλ = 0.

As a subalgebra, b acts on g from the right, and so we define the Verma module of g with weight
λ by:

Mλ
def= Ug⊗Ub Cvλ (6.1.1)

As a vector space, Mλ
∼= Un− ⊗C Cvλ. It is generated as a g-module by vλ with the relations

hvλ = λ(h)vλ, n+vλ = 0, and no relations on the action of n− except those from g.

Proof The explicit description of Mλ follows from Theorem 3.24: Ug = Un−⊗Uh⊗Un+ as vector
spaces. �

1I was absent for Lecture 39 in Mark Haiman’s class, and so those notes are missing from [8]. To prepare this
document, I thus turned to [18] for the proof of the Weyl Character Formula (Theorem 6.15). The presentation of this
material there is quite good, although differs from the presentation in [8]; in particular, [18] includes more motivation
and examples, and discusses ch (Definition 6.10) in terms of group characters of the corresponding simply-connected
Lie group. See also Footnote 1 in [18, page 106].

99
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6.2 Corollary Any module with highest weight λ is a quotient of Mλ.

6.3 Lemma Let ∆ = {α1, . . . , αn} be the simple roots of g, and let Q def= Z∆ be the root lattice
and Q+

def= Z≥0∆. Then the weight grading given by the action of h on the Verma module Mλ is:

Mλ =
⊕
β∈Q+

(Mλ)λ−β (6.1.2)

Moreover, let N ⊆Mλ be a proper submodule. Then N ⊆⊕β∈Q+r{0} (Mλ)λ−β.

Proof The description of the weight grading follows directly from the description of Mλ given
in Lemma/Definition 6.1. Any submodule is graded by the action of h. Since (Mλ)λ = Cvλ is
one-dimensional and generates Mλ, a proper submodule cannot intersect (Mλ)λ. �

6.4 Corollary For any λ ∈ h∗, the Verma module Mλ has a unique maximal proper submodule.
The quotient Mλ � Lλ is an irreducible g-module. Conversely, any irreducible g-module with
highest weight λ is isomorphic to Lλ, since it must be a quotient of Mλ by a maximal ideal.

6.5 Definition Let g be a semisimple Lie algebra and ∆ = {α1, . . . , αn}. We recall the root lattice
Q

def= Z∆ and the weight lattice P def= {λ ∈ h∗ s.t. 〈λ,Q∨〉 ⊆ Z}. A dominant integral weight is an
element of P+

def= {λ ∈ P s.t. 〈λ, α∨i 〉 ≥ 0 ∀i}.

We recall Definition 5.90.

6.6 Proposition If λ ∈ P+, then Lλ consists of integrable elements.

Proof Since Lλ is irreducible, its submodule of integrable elements is either 0 or the whole module.
So it suffices to show that if λ ∈ P+, then vλ is integrable. Pick a simple root αi. By construction,
eivλ = 0 and hivλ = 〈λ, α∨i 〉vλ. Since λ ∈ P+, 〈λ, α∨i 〉 = m ≥ 0 is an integer. Consider the sl(2)i-
submodule of Mλ generated by vλ; if m is a nonnegative integer, from the representation theory
of sl(2) we know that eifm+1

i vλ = 0. But if j 6= i, then ejf
m+1
i vλ = fm+1

i ejvλ = 0. Recalling the
grading, we see then that fm+1

i vλ generates a submodule of Mλ, and so fm+1
i vλ 7→ 0 in Lλ. Hence

the sl(2)i-submodule of Lλ generated by vλ is finite, and so vλ is integrable. �

6.7 Definition Let g be a semisimple Lie algebra. We define the category Ô to be a full subcategory
of the category g-mod of (possibly-infinite-dimensional) g modules. The objects X ∈ Ô are required
to satisfy the following conditions:

• The action h y X is diagonalizable.

• For each λ ∈ h∗, the weight space Xλ is finite-dimensional.

• There exists a finite set S ⊆ h∗ such that the weights of X lie in S + (−Q+).

6.8 Lemma The category Ô is closed under submodules, quotients, extensions, and tensor prod-
ucts.
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Proof The h-action grades subquotients of any graded module, and acts diagonally. An extension
of graded modules is graded, with graded components extensions of the corresponding graded
components. Since g is semisimple, any extension of finite-dimensional modules is a direct sum,
and so the h-action is diagonal on any extension of objects in O. Finally, tensor products are
handled by Lemma 5.23. �

6.9 Definition Write the additive group h∗ multiplicatively: λ 7→ xλ. The group algebra Z[h∗] is
the algebra of “polynomials”

∑
cix

λi, with the obvious addition and multiplication. I.e. Z[h∗] is the
free abelian group

⊕
λ∈h∗ Zxλ, with multiplication given on a basis by xλxµ = xλ+µ.

Let Z[−Q+] be the subalgebra of Z[h∗] generated by {xλ s.t. − λ ∈ Q+}. This has a natural
topology given by setting ‖x−αi‖ = c−αi for αi a simple root and c some real constant with c > 1.
We let Z[[−Q+]] be the completion of Z[−Q+] with respect to this topology. Equivalently, Z[[−Q+]]
is the algebra of formal power series in the variables x−α1 , . . . , x−αn with integer coefficients.

Then Z[−Q+] is a subalgebra of both Z[h∗] and Z[[−Q+]]. We will write Z[h∗,−Q+]] for the
algebra Z[h∗]⊗Z[−Q+] Z[[−Q+]].

The algebra Z[h∗,−Q+]] is a formal gadget, consisting of formal fractional Laurant series. We use
it as a space of generating functions.

6.10 Definition Let X ∈ Ô. We define ch(X) ∈ Z[h∗,−Q+]] by:

ch(X) def=
∑

λ a weight of X

dim(Xλ)xλ (6.1.3)

We remark that every coefficient of ch(X) is a nonnegative integer, and if Y is a subquotient

6.11 Example Let Mλ be the Verma module with weight λ, and let R+ be the set of positive
roots of g. Then

ch(Mλ) =
xλ∏

α∈R+
(1− x−α)

def= xλ
∏
α∈R+

∞∑
l=0

x−lα (6.1.4)

This follows from Theorem 3.24, the explicit description of Mλ
∼= Un−⊗Cvλ, and some elementary

combinatorics.

6.12 Proposition Let g be simple Lie algebra, P+ the set of dominant integral weights, and W
the Weyl group. Let λ ∈ P+, and Lλ the irreducible quotient of Mλ given in Corollary 6.4. Then:

1. ch(Lλ) is W -invariant.

2. If µ is a weight of Lλ, then µ ∈W (ν) for some ν ∈ P+ ∩ (λ−Q+).

3. Lλ is finite-dimensional.

Conversely, every finite-dimensional irreducible g-module is Lλ for a unique λ ∈ P+.

Proof 1. We use Proposition 6.6: Lλ consists of integrable elements. Let αi be a root of
g; then Lλ splits as an sl(2)i module: Lλ =

⊕
Va, where each Va is an irreducible sl(2)i
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submodule. In particular, Va = Cva,m ⊕ Cva,m−2 · · · ⊕ Cva,−m for some m depending on a,
where hi acts on Cva,l by l. But ch(Lλ) =

∑
a ch(Va) =

∑
a
∑
j=−m,−m+2,...,m ch(Cva,m). Let

ch
Ä
C(va)l

ä
= xµa,l ; then 〈µa,l, α∨i 〉 = l by definition, and va,l−2 ∈ fiCva,l, and so siµa,l = µa,−l.

This shows that ch(Va) is fixed under the action of si, and so ch(Lλ) is also si-invariant. But
the reflections si generate W , and so ch(Lλ) is W -invariant.

2. We partially order P : ν ≤ µ if µ− ν ∈ Q+. In particular, the weights of Lλ are all less than
or equal to λ.

Let λ ∈ P . Then si(λ) = λ−〈λ, α∨i 〉αi, and so W (λ) ⊆ λ+Q. If λ ∈ P+ then 〈λ, α∨i 〉 ≥ 0 for
every i and so si ≤ λ; if λ ∈ P r P+ then there is some i with 〈λ, α∨i 〉 < 0, i.e. some i with
si(λ) > λ. But W is finite, so for any λ ∈ P , W (λ) has a maximal element, which must be
in P+. This proves that P = W (P+).

Thus, if µ is a weight of Lλ, then µ ∈W (ν) for some ν ∈ P+. But by 1., ν is a weight of Lλ,
and so ν ≤ λ. This proves statements 2.

Moreover, the W -invariance of ch(Lλ) shows that if λ ∈ P+, then W (λ) ⊆ λ − Q+, and
moreover that P+ is a fundamental domain of W .

3. The Weyl group W is finite. Consider the two cones R≥0P+ and −R≥0Q+. Since the inner
product (the symmetrization of the Cartan matrix) is positive definite and by construction
the inner product of anything in R≥0P+ with anything in −R≥0Q+ is negative, the two cones
intersect only at 0. Thus there is a hyperplane separating the cones: i.e. there exists a linear
functional η : h∗R → R such that its value is positive on P+ but negative on −Q+. Then
λ−Q+ is below the η = η(λ) hyperplane. But −Q+ is generated by −αi, each of which has
a negative value under η, and so λ−Q+ contains only finitely many points µ with η(µ) ≥ 0.
Thus P+ ∩ (λ−Q+) is finite, and hence so is its image under W .

For the converse statement, let L be a finite-dimensional irreducible g-module, and let v ∈ L
be any vector. Then consider n+v, the image of v under repeated application of various eis. By
finite-dimensionality, n+v must contain a vector l ∈ n+v so that eil = 0 for every i. By the sl(2)
representation theory, l must be homogeneous, and indeed a top-weight vector of L, and by the
irreducibility l generates L. Let the weight of l be λ; then the map vλ → l generates a map Mλ � L.
But Mλ has a unique maximal submodule, and since L is irreducible, this maximal submodule must
be the kernel of the map Mλ � L. Thus L ∼= Lλ. �

6.13 Lemma / Definition Let g be a semisimple Lie algebra, h its Cartan subalgebra, and ∆ =
{α1, . . . , αn} its simple root system. For each i = 1, . . . , n, we define a fundamental weight Λi ∈ h∗

by 〈Λi, α∨j 〉 = δij. Then P+ = Z≥0{Λ1, . . . ,Λn}.
The following are equivalent, and define the Weyl vector ρ:

1. ρ =
∑n
i=1 Λi. I.e. 〈ρ, α∨j 〉 = 1 for every j.

2. ρ = 1
2

∑
α∈R+

α.

Proof Let ρ2 = 1
2

∑
α∈R+

α. Since si(R+r{αi}) = R+ but si(αi) = −αi, we see that si(ρ̃) = ρ̃−αi,
and so 〈ρ̃, α∨i 〉 = 1 for every i. The rest is elementary linear algebra. �
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6.14 Definition Let λ ∈ P+. We define the character χλ of λ to be ch(Lλ).

6.15 Theorem (Weyl Character Formula) Let ε : W → {±1} be given by ε(w) = dethw; i.e.
ε is the group homomorphism generated by si 7→ −1 for each i. Let λ ∈ P+. Then χλ can be
computed as follows:

χλ =

∑
w∈W

ε(w)xw(λ+ρ)−ρ

∏
α∈R+

(1− x−α)
=

∑
w∈W

ε(w)xw(λ+ρ)

∏
α∈R+

(xα/2 − x−α/2)
(6.1.5)

The equality of fractions follows simply from the description ρ = 1
2

∑
α∈R+

α.

6.16 Remark The sum in equation 6.1.5 is finite.
Indeed, the numerator and denominator on the right-hand-side fraction are obiously antisym-

metric in W , and so the whole expression is W -invariant. The numerator on the left-hand-side frac-
tion is a polynomial, and each (1− x−α) is invertible as a power series: (1− x−α)−1 =

∑∞
n=0 x

−nα.
So the fraction is a W -invariant power series, and hence a polynomial.

To prove Theorem 6.15 we will need a number of lemmas. In Example 6.11 we computed the
character of the Verma module Mλ. Then Theorem 6.15 asserts that:

ch(Lλ) =
∑
w∈W

ε(w) ch
Ä
Mw(λ+ρ)−ρ

ä
(6.1.6)

As such, we will begin by understanding Mλ better. We recall Lemma/Definition 4.65: Let (, ) be
the Killing form on g, and {xi} any basis of g with dual basis {yj}, i.e. (xi, yj) = δij for every i, j;
then c =

∑
xiyi ∈ Ug is central, and does not depend on the choice of basis.

6.17 Lemma Let λ ∈ h∗ and Mλ the Verma module with weight λ. Let c ∈ Ug be the Casimir,
corresponding to the Killing form on g. Then c acts on Mλ by multiplication by (λ, λ+ 2ρ).

Proof Let g have rank n. Write R for the set of roots of g, R+ for the positive roots, and ∆ for
the simple roots, as we have previously.

Recall Lemma 5.37. We construct a basis of g as follows: we pick an orthonormal basis {ui}ni=1

of h. For each α a non-zero root of g, the space gα is one-dimensional; let xα be a basis vector in
gα. Then the dual basis to {ui}ni=1 ∪ {xα}α∈Rr{0} is {ui}ni=1 ∪ {yα}α∈Rr{0}, where yα = x−α

(xα,x−α) .
Then:

c =
n∑
i=1

u2
i +

∑
α∈Rr{0}

xαyα =
n∑
i=1

u2
i +

∑
α∈Rr{0}

xαx−α
(xα, x−α)

=
n∑
i=1

u2
i +

∑
α∈R+

xαx−α + x−αxα
(xα, x−α)

(6.1.7)

Since Mλ is generated by its highest weight vector vλ, and c is central, to understand the action
of c on Mλ it suffices to compute cvλ. We use the fact that for α ∈ R+, xαvλ = 0; then

xαx−αvλ = hαvλ + x−αxαvλ = hαvλ = λ(hα) vλ (6.1.8)
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where for each α ∈ R+ we have defines hα ∈ h by hα = [xα, x−α]. Moreover, (, ) is g-invariant, and
[hα, xα] = α(hα)xα, where α(hα) 6= 0. So:

(xα, x−α) =
1

α(hα)

Ä
[hα, xα], x−α

ä
=

1
α(hα)

Ä
hα, [xα, x−α]

ä
=

(hα, hα)
α(hα)

(6.1.9)

We also have that uivλ = λ(ui)vλ, and since {ui} is an orthonormal basis, (λ, λ) =
∑n
i=1

Ä
λ(ui)

ä2
.

Thus:

cvλ =
n∑
i=1

Ä
λ(ui)

ä2
vλ +

∑
α∈R+

λ(hα)
(hα,hα)
α(hα)

vλ =

Ñ
(λ, λ) +

∑
α∈R+

λ(hα)α(hα)
(hα, hα)

é
vλ (6.1.10)

We recall that hα is proportional to α∨, that (α, α) = 4/(α∨, α∨), and that λ(α∨) = (λ, α)/(α, α).
Then λ(hα)α(hα)

(hα,hα) = (λ, α), and so:

(λ, λ) +
∑
α∈R+

λ(hα)α(hα)
(hα, hα)

= (λ, λ) +
∑
α∈R+

(λ, α) = (λ, λ+ 2ρ) (6.1.11)

Thus c acts on Mλ by multiplication by (λ, λ+ 2ρ). �

6.18 Lemma / Definition Let X be a g-module. We weight vector v ∈ X is singular if n+v = 0.
In particular, any highest-weight vector is singular, and conversely any singular vector is the highest
weight vector in the submodule it generates.

6.19 Corollary Let λ ∈ P , and Mλ the Verma module with weight λ. Then Mλ contains finitely
many singular vectors, in the sense that their span is finite-dimensional.

Proof Let Cλ be the set Cλ def= {µ ∈ P s.t. (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ)}. Then Cλ is a sphere
in P centered at −ρ, and in particular it is a finite set. On the other hand, since (µ+ ρ, µ+ ρ) =
(µ, µ+ 2ρ) + (ρ, ρ), we see that:

Cλ = {µ ∈ P s.t. c acts on Mµ by (λ, λ+ 2ρ)} (6.1.12)

Recall that any module with highest weight µ is a quotient of Mµ. Let v ∈ Mλ be a non-zero
singular vector with weight µ. Then on the one hand cv = (λ, λ+ 2ρ)v, since v ∈ Mλ, and on the
other hand cv = (µ, µ+ 2ρ), since v is in a quotient of Mµ. In particular, µ ∈ Cλ. But the weight
spaces (Mλ)µ of Mλ are finite-dimensional, and so the dimension of the space of singular vectors is
at most

∑
µ∈Cλ dim

Ä
(Mλ)µ

ä
<∞. �

6.20 Corollary Let λ ∈ P . Then there are nonnegative integers bλ,µ such that

chMλ =
∑

bλ,µ chLµ (6.1.13)

and bλ,µ = 0 unless µ ≤ λ and µ ∈ Cλ. Moreover, bλ,λ = 0.
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Proof We construct a filtration on Mλ. Since Mλ has only finitely many non-zero singular vectors,
we choose w1 a singular vector of minimal weight µ1, and let F1Mλ be the submodule of Mλ

generated by w1. Then F1Mλ is irreducible with highest weight µ1. We proceed by induction,
letting wi be a singular vector of minimal weight in Mλ/Fi−1Mλ, and FiMλ the primage of the
subrepresentation generated by wi. This filters Mλ:

0 = F0Mλ ⊆ F1Mλ ⊆ . . . (6.1.14)

Moreover, since Mλ has only finitely many weight vectors all together, the filtration must terminate:

0 = F0Mλ ⊆ F1Mλ ⊆ · · · ⊆ FkMλ = Mλ (6.1.15)

By construction, the quotients are all irreducible: FiMλ/Fi−1Mλ = Lµi for some µi ∈ Cλ, µi ≤ λ.
We recall that ch is additive for extensions. Therefore

chMλ =
k∑
i=1

ch(FiMλ/Fi−1Mλ) =
k∑
i=1

chLµi (6.1.16)

Then bλ,µ is the multiplicity of µ appearing as the weight of a singular vector of Mλ, and we have
equation 6.1.13. The conditions stated about bλ,µ are immediate: we saw that µ can only appear
as a weight of Mλ if µ ∈ Cλ and µ ≤ λ; moreover, Lλ appears as a subquotient of Mλ exactly once,
so bλ,λ = 1. �

6.21 Definition The coefficients bλ,µ in equation 6.1.13 are the Kazhdan-Luztig multiplicities.

6.22 Lemma If λ ∈ P+, µ ≤ λ, µ ∈ Cλ, and µ+ ρ ≥ 0, then µ = λ.

Proof We have that (µ + ρ, µ + ρ) = (λ + ρ, λ + ρ) and that λ − µ =
∑n
i=1 kiαi, where all ki are

nonnegative. Then

0 = (λ+ ρ, λ+ ρ)− (µ+ ρ, µ+ ρ)

=
Ä
(λ+ ρ)− (µ+ ρ), (λ+ ρ) + (µ+ ρ)

ä
= (λ− µ, λ+ µ+ 2ρ)

=
n∑
i=1

ki(α, λ+ µ+ 2ρ)

But λ, µ + ρ ≥ 0, and (αi, ρ) > 0, so (α, λ + µ + 2ρ) > 0, and so all ki = 0 since they are
nonnegative. �

Proof (of Theorem 6.15) We have shown (Corollary 6.20) that chMλ =
∑
bλ,µ chLµ, were bλ,µ

is a lower-triangular matrix on Cλ = Cµ with ones on the diagonal. Thus it has a lower-triangular
inverse with ones on the diagonal:

chLλ =
∑

µ≤λ,µ∈Cλ
cλ,µ chMµ (6.1.17)
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But by equation 6.1.8 statement 1., chLλ is W -invariant, provided that λ ∈ P+, thus so is∑
cλ,µ chMµ. We recall Example 6.11:

chMµ =
xµ∏

α∈R+
(1− x−α)

=
xµ+ρ∏

α∈R+
(xα/2 − x−α/2)

(6.1.18)

Therefore

chLλ =
∑
µ≤λ,µ∈Cλ cλ,µx

µ+ρ∏
α∈R+

(xα/2 − x−α/2)
(6.1.19)

But the denominator if W -antisymmetric, and so the numerator must be as well:∑
µ≤λ,µ∈Cλ

cλ,µx
w(µ+ρ) =

∑
µ≤λ,µ∈Cλ

ε(w)cλ,µxµ+ρ for every w ∈W (6.1.20)

This is equivalent to the condition that cλ,µ = ε(w)cλ,w(µ+ρ)−ρ. By the proof of equation 6.1.8
statement 2., we know that P+ is a fundamental domain of W ; since cλ,λ = 1, if µ+ ρ ∈W (λ+ ρ),
then cλ,µ = ε(w), and so:

∑
µ≤λ,µ∈Cλ

cλ,µx
µ+ρ =

∑
w∈W

á
xw(λ+ρ) +

∑
µ<λ,µ∈Cλ
µ+ρ∈P+

cλ,µx
w(µ+ρ)

ë
(6.1.21)

But the rightmost sum is empty by Lemma 6.22. �

6.23 Remark Specializing to the trivial representation L0, Theorem 6.15 says that

1 =
∑
w∈W ε(w)xw(ρ)∏

α∈R+
(xα/2 − x−α/2)

(6.1.22)

So we can rewrite equation 6.1.5 as

χλ =
∑
w∈W ε(w)xw(λ+ρ)∑
w∈W ε(w)xw(ρ)

(6.1.23)

The following is an important corollary:

6.24 Theorem (Weyl Dimension Formula) Let λ ∈ P+. Then dimLλ =
∏
α∈R+

(α, λ+ ρ)
(α, ρ)

.

Proof The formula ch(Lλ) =
∑

w∈W ε(w)xw(λ+ρ)∏
α∈R+

(xα/2−x−α/2)
is a polynomial in x. In particular, it defines a

real-valued function on R>0×h given by xα 7→ aα(h) — when a = 1 or h = 0, the formula as written
is the indeterminate form 0

0 , but the function clearly returns
∑
µ dim

Ä
(Lλ)µ

ä
= dimLλ. We will

calculate this value of the function by taking a limit, using l’Hôpital’s rule.
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In particular, letting xα 7→ et(α,λ+ρ) in equation 6.1.22 gives∏
α∈R+

Ä
et(α/2,λ+ρ) − e−t(α/2,λ+ρ)

ä
=
∑
w∈W

ε(w)et(w(ρ),λ+ρ) =
∑
w∈W

ε(w)et(ρ,w(λ+ρ)) (6.1.24)

where the second equality comes from w 7→ w−1 and (w−1x, y) = (x,wy). On the other hand, we
let xα 7→ et(α,ρ) in equation 6.1.5. Then

chLλ|x=etρ =
∑
w∈W ε(w)et(w(λ+ρ),ρ)∏

α∈R+

(
et(α/2,ρ) − e−t(α/2,ρ)

) (6.1.25)

=
∏
α∈R+

Ä
et(α/2,λ+ρ) − e−t(α/2,λ+ρ)

ä
∏
α∈R+

(
et(α/2,ρ) − e−t(α/2,ρ)

) (6.1.26)

=
∏
α∈R+

Ä
et(α/2,λ+ρ) − e−t(α/2,λ+ρ)

ä
(
et(α/2,ρ) − e−t(α/2,ρ)

) (6.1.27)

Therefore

dimLλ = lim
t→0

∏
α∈R+

Ä
et(α/2,λ+ρ) − e−t(α/2,λ+ρ)

ä
(
et(α/2,ρ) − e−t(α/2,ρ)

) (6.1.28)

=
∏
α∈R+

lim
t→0

Ä
et(α/2,λ+ρ) − e−t(α/2,λ+ρ)

ä
(
et(α/2,ρ) − e−t(α/2,ρ)

) (6.1.29)

l’H=
∏
α∈R+

lim
t→0

Ä
(α/2, λ+ ρ)et(α/2,λ+ρ) + (α/2, λ+ ρ)e−t(α/2,λ+ρ)

ä
(
(α/2, ρ)et(α/2,ρ) + (α/2, ρ)e−t(α/2,ρ)

) (6.1.30)

=
∏
α∈R+

(α, λ+ ρ)
(α, ρ)

(6.1.31)
�

6.25 Example Let us compute the dimensions of the irreducible representations of g = sl(n+ 1).
We work with the standard the simple roots be ∆ = {α1, . . . , αn}, whence R+ = {αi +αi+1 + · · ·+
αj}1≤i<j≤n. Let us write λ and ρ in terms of the fundamental weights Λi, defined by (Λi, αj) = δij :
ρ =

∑n
i=1 Λi and λ+ ρ =

∑n
i=1 aiΛi. Then:

dimLλ =
∏
α∈R+

(λ+ ρ, α)
(ρ, α)

(6.1.32)

=
∏

1≤i≤j≤n

ai + ai+1 + · · ·+ aj−1 + aj
j − i+ 1

(6.1.33)

=
1
n!!

∏
1≤i≤j≤n

j∑
k=i

ak (6.1.34)

where we have defined n!! def= n! (n − 1)! · · · 3! 2! 1!. For example, the irrep of sl(3) with weight
λ+ ρ = 3Λ1 + 2Λ2 has dimension 1

2!!2 · 3 · (2 + 3) = 15.
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6.2 Algebraic Lie Groups

We have classified the representations of any semisimple Lie algebra, and therefore the represen-
tations of its simply connected Lie group. But a Lie algebra corresponds to many Lie groups,
quotients of the simply connected group by (necessarily central) discrete subgroups, and a repre-
sentation of the Lie algebra is a representation of one of these groups only if the corresponding
discrete normal subgroup acts trivially in the representation. We will see that the simply connected
Lie group of any semisimple Lie algebra is algebraic, and that its algebraic quotients are determined
by the finite-dimensional representation theory of the Lie algebra.

6.2.1 Guiding example: SL(n) and PSL(n)

[8, Lecture 40]
Our primary example, as always, is the Lie algebra sl(2,C), consisting of traceless 2×2 complex

matrices. It is the Lie algebra of SL(2,C), the group of 2 × 2 complex matrices with determinant
1.

6.26 Lemma / Definition The group SL(2,C) has a non-trivial center: Z(SL(2,C)) = {±1}.
We define the projective special linear group to be PSL(2,C) def= SL(2,C)/{±1}. Equivalently,
PSL(2,C) = PGL(2,C) def= GL(2,C)/{scalars}, the projective general linear group.

6.27 Proposition The group SL(2,C) is connected and simply connected. The kernel of the map
ad : SL(2,C)→ GL(sl(2,C)) is precisely the center, and so PSL(2,C) is the connected component of
the group of automorophisms of sl(2,C). The groups SL(2,C) and PSL(2,C) are the only connected
Lie groups with Lie algebra sl(2,C).

Proof The only nontrivial statement is that SL(2,C) is simply connected. Consider the subgroup

U
def=
®ñ

1 ∗
0 1

ô
∈ SL(2,C)

´
. Then U is the stabilizer of the vector

ñ
1
0

ô
∈ C2 r {0}, and SL(2,C)

acts transitively on C2 r {0}. Thus the space of left cosets SL(2,C)/U is isomorphic to the space
C2r{0} ∼= R4r{0} as a real manifold. But U ∼= C, so SL(2,C) is connected and simply connected.�

6.28 Lemma The groups SL(2,C) and PSL(2,C) are algebraic.

Proof The determinant of a matrix is a polynomial in the coefficients, so {x ∈ M(2,C) s.t. detx =
1} is an algebraic group. Any automorphism of sl(2,C) preserves the Killing form, a nondegenerate
symmetric pairing on the three-dimensional vector space sl(2,C). Thus PSL(2,C) is a subgroup
of O(3,C). It is connected, and so a subgroup of SO(3,C), and three-dimensional, and so is all of
SO(3,C). Moreover, SO(3,C) is algebraic: it consists of matrices x ∈ M(3,C) that preserve the
nondegenerate form (a system of quadratic equations in the coefficients) and have unit determinant
(a cubic equation in the coefficients). �

Recall that any irreducible representation of sl(2,C) looks like a chain: e moves up the chain,
f down, and h acts diagonally with eigenvalues changing by 2 from m at the top to −m at the
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bottom:

•v0

•v1

•v2

...

•vm−1

•vm

h=m

h=m−2

h=m−4

h=2−m

h=−m

f=1

f=2

f=m

m=e

m−1=e

1=e

(6.2.1)

The exponential map exp : sl(2,C) → SL(2,C) acts on the Cartan by th =
ñ
t
−t

ô
7→
ñ
et

e−t

ô
.

Let T = exp(h); then the kernel of exp : h → T is 2πiZh. On the other hand, when t = πi,
exp(th) = −1, which maps to 1 under SL(2,C)� PSL(2,C); therefore the kernel of the exponential
map h→ PSL(2,C) is just πiZh.

In particular, the (m + 1)-dimensional representation Vm of sl(2,C) is a representation of
PSL(2,C) if and only if m is even, because −1 ∈ SL(2,C) acts on Vm as (−1)m. We remark
that ker{exp : h → SL(2,C)} is precisely 2πiQ∨, where Q∨ is the coroot lattice of sl(2), and
ker{exp : h→ PSL(2,C)} is precisely the coweight lattice 2πiP∨

6.29 Remark This will be the model for any semisimple Lie algebra g with Cartan subalgebra h.
We will understand the exponential map from h to the simply connected Lie group G corresponding
to g, and we will also understand the map to G/Z(G), the simplest quotient. Every group with
Lie algebra g is a quotient of G, and hence lies between G and G/Z(G). The kernels of the maps
h → G and h → G/Z(G) will be precisely 2πiQ∨ and 2πiP∨, respectively, and every other group
will correspond to a lattice between these two.

Let us consider one further example: SL(n,C). It is simply-connected, and its center is
Z(SL(n,C)) = {nth roots of unity}. We define the projective special linear group to be PSL(n,C) def=
SL(n,C)/Z(SL(n,C)); the groups with Lie algebra sl(n,C) live between these two, and so corre-
spond to subgroups of Z(SL(n,C)) ∼= Z/n, the cyclic group with n elements.

We now consider the Cartan h ⊆ sl(n,C), thought of as the space of traceless diagonal matrices:
h = {〈z1, . . . , zn〉 ∈ Cn s.t.

∑
zi = 0}. In particular, sl(n,C) is of A-type, and so we can identify

roots and coroots: αi = α∨i = 〈0, . . . , 0, 1,−1, 0, . . . , 0〉, where the non-zero terms are in the (i, i+
1)th spots. Then the coroot latticeQ∨ is the span of α∨i : if

∑
zi = 0, then we can write 〈z1, . . . , zn〉 ∈

Zn as z1α1 + (z1 + z2)α2 + · · · + (z1 + · · · + zn−1)αn−1, since zn = −(z1 + · · · + zn−1). The
coweight lattice P∨, on the other hand, is the lattice of vectors 〈z1, . . . , zn〉 with

∑
zi = 0 and with

zi − zi+1 an integer for each i ∈ {1, . . . , n− 1}. In particular,
∑
zi = z1 +

Ä
z1 + (z2 − z1)

ä
+ · · ·+Ä

z1 + (z2 − z1) + · · · + (zn − zn−1)
ä

= nz1 + integer. Therefore z1 ∈ Z 1
n , and zi ∈ z1 + Z. So
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P∨ = Q∨ t (〈 1
n , . . . ,

1
n〉+Q∨) t · · · t (〈n−1

n , . . . , n−1
n 〉+Q∨). In this way, P∨/Q∨ is precisely Z/n,

in agreement with the center of SL(n,C).

6.2.2 Definition and General Properties of Algebraic Groups

[8, Lecture 41]
We have mentioned already (Definition 1.3) the notion of an “algebraic group”, and we have

occasionally used some algebraic geometry (notably in the proof of Theorem 5.27), but we have
not developed that story. We do so now.

6.30 Definition A subset X ⊆ Cn is an affine variety if it is the vanishing set of a set P ⊆
C[x1, . . . , xn] of polynomials:

X = V (P ) def= {x ∈ Cn s.t. p(x) = 0 ∀p ∈ P} (6.2.2)

Equivalently, X is Zariski closed (see Definition 5.28). To any affine variety X with associate an
ideal I(X) def= {p ∈ C[x1, . . . , xn] s.t. p|X = 0}. The coordinate ring of, or the ring of polynomial
functions on, X is the ring O(X) def= C[x]/I(X).

6.31 Lemma If X is an affine variety, then I(X) is a radical ideal. If I ⊆ J , then V (I) ⊇ V (J),
and conversely if X ⊆ Y then I(X) ⊇ I(Y ). It is clear from the definition that if X is an affine
varienty, then V (I(X)) = X; more generally, we can define I(X) for any subset X ⊇ Cn, whence
V (I(X)) is the Zariski closure of X.

6.32 Definition A morphism of affine varieties is a function f : X → Y such that the coordinates
on Y are polynomials in the coordinates of X. Equivalently, any function f : X → Y gives a
homomorphism of algebras f# : Fun(Y ) → Fun(X), where Fun(X) is the space of all C-valued
functions on X. A function f : X → Y is a morphism of affine varieties if f# restricts to a map
f# : O(Y )→ O(X).

6.33 Lemma / Definition Any point a ∈ Cn gives an evaluation map eva : p 7→ p(a) : C[x1, . . . , xn]→
C. If X is an affine variety, then a ∈ X if and only if I(X) ⊆ ker eva if and only if eva : O(X)→ C
is a morphism of affine varieties.

6.34 Corollary The algebra O(X) determines the set of evaluation maps O(X)→ C, and if O(X)
is presented as a quotient of C[x1, . . . , xn], then it determines X ⊆ Cn. A morphism f of affine
varieties is determined by the algebra homomorphism f# of coordinate rings, and conversely any
such algebra homomorphism determines a morphism of affine varieties. Thus the category of affine
varieties is precisely the opposite category to the category of finitely generated commutative algebras
over C.

6.35 Lemma / Definition The category of affine varieties contains all finite products. The prod-
uct of affine varieties X ⊆ Cm and Y ⊆ Cl is X × Y ⊆ Cm+l with O(X × Y ) ∼= O(X)⊗C O(Y ).
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Proof The maps O(X),O(Y )→ O(X×Y ) are given by the projections X×Y → X,Y . The map
O(X)⊗O(Y )→ O(X ×Y ) is an isomorphism because all three algebras are finitely generated and
the evaluation maps separate functions. �

We recall Definition 1.3:

6.36 Definition An affine algebraic group is a group object in the category of affine varieties.
We will henceforth drop the adjective “affine” from the term “algebraic group”, as we will never
consider non-affine algebraic groups.

Equivalently, an algebraic group is a finitely generated commutative algebra O(G) along with
algebra maps

comultiplication ∆ : O(G)→ O(G)⊗C O(G) dual to the multiplication G×G→ G

antipode S : O(G)→ O(G) dual to the inverse map G→ G

counit ε = eve : O(G)→ C

The group axioms equations 1.1.1 to 1.1.3 are equivalent to the axioms of a commutative Hopf
algebra (Definition 4.1).

6.37 Lemma / Definition Let A be a Hopf algebra. An algebra ideal B ⊆ A is a Hopf ideal if
∆(B) ⊆ B⊗A+A⊗B ⊆ A⊗A. An ideal B ⊆ A is Hopf if and only if the Hopf algebra structure
on A makes the quotient B/A into a Hopf algebra.

6.38 Definition A commutative but not necessarily reduced Hopf algebra is a group scheme.

6.39 Definition An affine variety X over C is smooth if X is a manifold.

6.40 Proposition An algebraic group is smooth.

Proof Let E = ker ε. Since e · e = e, we see that the following diagram commutes:

O(G) O(G)⊗ O(G)

C C⊗ C

∆

ε ε⊗ε

∼
(6.2.3)

In particular,
∆E ⊆ E ⊗ O(G) + O(G)⊗ E, (6.2.4)

and so E is a Hopf ideal, and O(G)/E is a Hopf algebra. Moreover, equation 6.2.4 implies
that ∆(En) ⊆ ∑

k+l=nE
k ⊗ El, and so ∆ and S induce maps ∆̃ and S̃ on R = grE O(G) def=⊕

k∈NE
k/Ek+1. In particular, R is a graded Hopf algebra, and is generated as an algebra by

R1 = E/E2. Moreover, if x ∈ R1, then x is primitive: ∆x = x⊗ 1 + 1⊗ x.
Since R1 = E/E2 is finitely dimensional, R is finitely generated; let R = C[y1, . . . , yn]/J

where n = dimG and J is a Hopf ideal of the Hopf algebra C[y1, . . . , yn] with the generators
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yi all primitive. We can take the yis to be a basis of R1, and so J1 = 0. We use the fact
that C[y1, . . . , yn] ⊗ C[y1, . . . , yn] = C[y1, . . . , yn, z1, . . . , zn], and that the antipode ∆ is given by
∆ : f(y) 7→ f(y + z). Then a minimal-degree homogeneous element of J must be primitive, so
f(y + z) = f(y) + f(z), which in characteristic zero forces f to be homogeneous of degree 1. A
similar calculation with the antipode forces the minimal-degree homogeneous elements f ∈ J to
satisfy Sf = −f .

In particular, grE O(G) is a polynomial ring. We leave out the fact from algebraic geometry
that this is equivalent to G being smooth at e. But we have shown that the Hopf algebra maps are
smooth, whence G is smooth at every point. �

6.41 Corollary An algebraic group over C is a Lie group.

Recall that if G is a Lie group with C (G) the algebra of smooth functions on G, and if g =
Lie(G), then Ug acts on C (G) by left-invariant differential operators, and indeed is isomorphic to
the algebra of left-invariant differential operators.

6.42 Definition Let G be a group. A subalgebra S ⊆ Fun(G) is left-invariant if for any s ∈ S
and any g ∈ G, the function h 7→ s(g−1h) is an element of S. Equivalently, we define the action
Gy Fun(G) by gs = s ◦ g−1; then a subalgebra is left-invariant if it is fixed by this action.

6.43 Lemma Let S ⊆ Fun(G) be a left-invariant subalgebra, and let s ∈ S be a function such
that ∆s = {(x, y) 7→ s(xy)} ⊆ Fun(G ×G) is in fact an element of S ⊗ S ⊆ Fun(G) ⊗ Fun(G) ↪→
Fun(G × G). Then let ∆s =

∑
s1 ⊗ s2, where we suppress the indices of the sum. The action

Gy S is given by
g : s 7→

∑
s1(g−1)s2 (6.2.5)

6.44 Corollary Let u be a left-invariant differential operator and s ∈ S as in Lemma 6.43, where
S ⊆ C (G) is a left-invariant algebra of smooth functions. Then us ∈ S.

Proof The left-invariance of u implies that u(gs) = g u(s). Since s(g−1) ∈ C, we have:

u(gs)(h) = u
Ä∑

s1(g−1)s2

ä
(h) =

∑
s1(g−1)u(s2)(h) (6.2.6)

Let h = e. Then
∑
s1(g−1)u(s2)(e) = u(gs)(e) = g(us)(e) = (us)(g−1). In particular:

(us)(g) =
∑

s1(g)u(s2)(e) (6.2.7)

But (us2)(e) are numbers. Thus us ∈ S. �

6.45 Corollary Let G be an algebraic group, with Lie algebra g = Lie(G). Then Ug acts on O(G)
by left-invariant differential operators.

Since a differential operator is determined by its action on polynomials, we have a natural
embedding Ug ↪→ O(G)∗ of vector spaces.

6.46 Lemma Let u, v ∈ Ug, where G is an algebraic group. Then uv s =
∑
u(s1) v(s2)(e).
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Proof This follows from equation 6.2.7. �

6.47 Corollary For each differential operator u ∈ Ug, let λu ∈ O(G)∗ be the map λu : s 7→ u(s)(e).
Then λuv(s) =

∑
λu(s1)λv(s2).

6.48 Lemma Let A be any (counital) coalgebra, for example a Hopf algebra. Then A∗ is naturally
an algebra: the map A∗ ⊗ A∗ → A∗ is given by 〈µν, a〉 def= 〈µ ⊗ ν,∆a〉, and ε : A → C is the unit
ε ∈ A∗.

6.49 Remark The dual to an algebra is not necessarily a coalgebra; if A is an algebra, then it
defines a map ∆ : A∗ → (A⊗A)∗, but if A is infinite-dimensional, then (A⊗A)∗ properly contains
A∗ ⊗A∗.

6.50 Remark Following the historical precedent, we take the pairing (A∗ ⊗ A∗)⊗ (A⊗ A) to be
〈µ ⊗ ν, a ⊗ b〉 = 〈µ, a〉〈ν, b〉. This is in some sense the wrong pairing — it corresponds to writing
(A ⊗ B)∗ = A∗ ⊗ B∗ for finite-dimensional vector spaces A,B, whereas B∗ ⊗ A∗ would be more
natural — and is “wrong” in exactly the same way that the “−1” in the definition of the left action
of G on Fun(G) is wrong.

6.51 Proposition The embedding Ug ↪→ O(G)∗ is given by the map u 7→ λu in Corollary 6.47,
and is an algebra homomorphism.

6.52 Definition Let G be any group; then we define the group algebra C[G] of G to be the free
vector space on the set G, with the multiplication given on the basis by the multiplication in G. The
unit e ∈ G becomes the unit 1 · e ∈ C[G].

6.53 Lemma If G is an algebraic group, then C[G] ↪→ O(G)∗ is an algebra homomorphism given
on the basis g 7→ evg.

6.2.3 Constructing G from g

[8, Lectures 42 and 43]
A Lie algebra g does not determine the group G with g = Lie(G). We will see that the correct

extra data consists of prescribed representation theory. Throughout the discussion, we gloss the
details, merely waving at the proofs of various statements.

6.54 Lemma / Definition Let G be an algebraic group. A finite-dimensional module G y V is
algebraic if the map G→ GL(V ) is a morphism of affine varieties.

Any finite-dimensional algebraic (left) action G y V of an algebraic group G gives rise to a
(left) coaction V ∗ → O(G)⊗ V ∗:

V ∗ O(G)⊗ V ∗

O(G)⊗ V ∗ O(G)⊗O(G)⊗ V ∗

coact

coact

id ⊗ coact

comult ⊗ id (6.2.8)
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This in turn gives rise to a (left) action O(G)∗ y V , which specializes to the actions G y V and
Ug y V under G ↪→ C[G] ↪→ O(G)∗ and Ug ↪→ O(G)∗.

We will take the following definition, referring the reader to [4] for the connections between
rigid categories and Hopf algebras, and [1] and references therein for a thorough category-theoretic
discussion.

6.55 Definition A rigid category is an abelian category M with a (unital) monoidal product and
duals. We will write the monoidal product as ⊗.

A rigid subcategory ofM is a full subcategory that is a tensor category with the induced abelian
and tensor structures. I.e. it is a full subcategory containing the zero object and the monoidal unit,
and closed under extensions, tensor products, and duals.

6.56 Definition A rigid categoryM is finitely generated if for some finite set of objects V1, . . . , Vn ∈
M, any object is a subquotient of some tensor product of Vis (possibly with multiplicities). Of course,
by letting V0 = V1 ⊕ · · · ⊕ Vn, we see that any finitely generated rigid category is in fact generated
by a single object.

6.57 Example For any Lie algebra g, the category g-mod of finite-dimensional representations of
g is a tensor category; indeed, if U is any Hopf algebra, then U-mod is a tensor category.

6.58 Definition Let g be a finite-dimensional Lie algebra over C, and letM be a rigid subcategory
of g-mod. By definition, for each V ∈ M, we have a linear map Ug → EndV . Thus for each
linear map φ : EndV → C we can construct a map {Ug→ EndV

φ→ C} ∈ Ug∗; we let AM ⊆ Ug∗

be the set of all such maps. Then AM is the set of matrix coefficients of M. Indeed, for each V ,
the maps Ug→ EndV → C are the matrix coefficients of the action g y V . In particular, for each
V ∈M, the space (EndV )∗ is naturally a subspace of AM, and AM is the union of such subspaces.

6.59 Lemma If M is a rigid subcategory of g-mod, then AM is a subalgebra of the commutative
algebra Ug∗. Moreover, AM is a Hopf algebra, with comultiplication dual to the multiplication in
Ug⊗ Ug→ Ug.

Proof The algebra structure on A = AM is straightforward: the multiplication and addition stem
from the rigidity of M, the unit is ε : Ug → C ∼→ C, and the subtraction is not obvious but is
straightforward; it relies on the fact that M is abelian, and so contains all subquotients.

We will explain where the Hopf structure on A comes from — since Ug is infinite-dimensional,
Ug∗ does not have a comultiplication in general. But M consists of finite-dimensional representa-
tions; if V ∈ M, then we send {Ug → EndV

φ→ C} ∈ A to {(EndV ⊗ EndV )
multiply−→ EndV

φ→
C} ∈ (EndV )∗ ⊗ (EndV )∗ ⊆ A⊗A.

That this is dual to the multiplication in Ug comes from the fact that Ug→ EndV is an algebra
homomorphism. �

6.60 Corollary The map Ug→ A∗ dual to A ↪→ Ug∗ is an algebra homomorphism.

6.61 Proposition Let M be a finitely-generated rigid subcategory of g-mod. Then AM = O(G)
for some algebraic group G.
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Proof If M is finitely generated, then there is some finite-dimensional representation V0 ∈ M so
that (EndV0)∗ generates AM. Then AM is a finitely generated commutative Hopf algebra, and so
O(G) for some algebraic group G. �

6.62 Lemma Let g be a finite-dimensional Lie algebra, M a finitely-generated rigid subcategory
of g-mod , and G the algebraic group corresponding to the algebra AM of matrix coefficients of
M. We will henceforth write O(G) for AM. Then G acts naturally on each V ∈M.

Proof Let {v1, . . . , vn} be a basis of V and {ξ1, . . . , ξn} the dual basis of V ∗. For each i, we
define λi : V → O(G) by v 7→ {u 7→ 〈ξi, uv〉} where v ∈ V and u ∈ EndV . Then we define
σ : V → V ⊗O(G) a right coaction of O(G) on V by v 7→∑n

i=1 v
i ⊗ λi(v). It is a coaction because

uv =
∑n
i=1 v

iλi(v)(u) by construction. In particular, it induces an action Gy V . �

6.63 Proposition LetM be a finitely-generated rigid subcategory of g-mod that contains a faithful
representation of g. Then the map Ug→ A∗M is an injection.

Proof Let σ : Gy V as in the proof of Lemma 6.62. Then the induced representation Lie(G) y V
is by contracting σ with point derivations. But g y V and the map Ug→ O(G)∗ maps x ∈ g to a
point derivation since x ∈ g is primitive. Thus the following diagram commutes for each V ∈M:

g O(G)∗

Lie(G) gl(V )

(6.2.9)

The map g → Lie(G) does not depend on V . Thus, if M contains a faithful g-module, then
Ug ↪→ U Lie(G) ↪→ O(G)∗. �

6.64 Example Let g = C be one-dimensional, and letM be generated by one-dimensional repre-
sentations Vα and Vβ, where the generator x ∈ g acts on Vα by multiplication by α, and on Vβ by

β. Then M is generated by Vα ⊕ Vβ, and x acts as the diagonal matrix
ñ
α

β

ô
. Let α, β 6= 0, and

let α 6∈ Qβ. Then Lie(G) will contain all diagonal matrices, since α/β 6∈ Q, but g ↪→ Lie(G) as a
one-dimensional subalgebra. The group G is the complex torus, and the subgroup corresponding
to g ⊆ Lie(G) is the irrational line.

6.65 Proposition Let V0 be the generator of M satisfying the conditions of Proposition 6.61, and
let W be a neighborhood of 0 ∈ g. Then the image of exp(W ) is Zariski dense in G.

Proof Assume that M contains a faithful representation of g; otherwise, mod out g by the kernel
of the map g→ Lie(G). Thus, we may consider g ⊆ Lie(G), and let H ⊆ G be a Lie subgroup with
g = Lie(H). Let f ∈ O(G) and u ∈ Ug; then the pairing Ug⊗O(G)→ C sends u⊗f 7→ u(f |H)(e). In
particular, the pairing depends only on a neighborhood of e ∈ H, and hence only on a neighborhood
W 3 0 in g. But the pairing is nondegenerate; if the Zariski closure of expW in G were not all of
G, then we could find f, g ∈ O(G) that agree on expW but that have different behaviors under the
pairing. �
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6.66 Definition Let M be a finitely-generated rigid subcategory of g-mod, and let G be the cor-
responding algebraic group as in Proposition 6.61. Then g is algebraically integrable with respect
to M if the map g → Lie(G) is an isomorphism. In particular, M must contain a faithful repre-
sentation of g.

6.67 Example Let g be a finite-dimensional abelian Lie algebra over C, and let X ⊆ g∗ be a
lattice of full rank, so that X ⊗Z C = g∗. Let {ξ1, . . . , ξn} be a Z-basis of X and hence a C-basis of
g∗, and let M = {⊕Cλ s.t. λ ∈ X}, where g y Cλ by z 7→ λ(z)×. Then V0 =

⊕Cξi is a faithful
representation of g in M and generates M.

Then G ⊆ GL(V0) is the Zariski closure if exp g, and for z ∈ g, exp(z1, . . . , zn) is the diagonal
matrix whose (i, i)th entry is eξi(z). Thus G is a torus T ∼= (C×)n, with O(T ) = C[t±1

1 , . . . , t±1
n ]. In

particular, g is algebraically integrable with respect to M, since X is a lattice.

6.68 Proposition Let g be a finite-dimensional Lie algebra and M a finitely generated rigid sub-
category of g-mod containing a faithful representation. Suppose that g =

⊕r
i=1 gi as a vector

space, where each gi is a Lie subalgebra of g; then M embeds in gi-mod for each i. If each gi is
algebraically integrable with respect to (the image of) M, then so is g.

Proof Let G, Gi be the algebraic groups corresponding to g yM and to gi yM. Then for each
i we have a map Gi → G. Let H ⊆ G be the subgroup of G corresponding to g ⊆ Lie(G). Consider
the map m : G1× · · ·×Gr → G be the function that multiplies in the given order; it is not a group
homomorphism, but it is a morphism of affine varieties. Since each Gi → G factors through H,
and since H is a subgroup of G, the map m factors through H. Indeed, the differential of m at the
identity is the sum map

⊕
gi → g.

Thus we have an algebraic map m, with Zariski dense image. But it is a general fact that any
such map (a dominant morphism) is dimension non-increasing. Therefore dimG ≤ dim(G1 × · · · ×
Gr) = dim g, and so g = Lie(G). �

6.69 Theorem (Semisimple Lie algebras are algebraically integrable) Let g be a semisim-
ple finite-dimensional Lie algebra over C, and let h ⊆ g be its Cartan subalgebra and Q and P the
root and weight lattices. Let X be any lattice between these: Q ⊆ X ⊆ P . Let M be the category
of finite-dimensional g-modules with highest weights in X. Then M is finitely generated rigid and
contains a faithful representation of g, and g is algebraically integrable with respect to M.

Proof Let V ∈ M; then its highest weights are all in X, and so all its weights are in X since
X ⊇ Q. Moreover, the decomposition of V into irreducible g-modules writes V =

⊕
Lλ, where

each λ ∈ P+ ∩ X. This shows that M is rigid. It contains a faithful representation because the
representation of g corresponding to the highest root is the adjoint representation, and the highest
root is an element of Q and hence of X. Moreover, M = {⊕Vλ s.t. λ ∈ P+ ∩ X} is finitely
generated: P+ ∩X is Z≥0-generated by finitely many weights.

We recall the triangular decomposition (c.f. Proposition 5.82) of g: g = n− ⊕ h ⊕ n+. Then
h is abelian and acts on modules in M diagonally; in particular, h is algebraically integrable by
Example 6.67. On the other hand, on any g-module, n+ and n− act by strict upper- and strict
lower-triangular matrices, and the matrix exponential restricted to strict upper- (lower-) triangular
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matrices is a polynomial. In particular, by finding a faithful generator ofM (for example, the sum
of the generators plus the adjoint representation), we see that n± are algebraically integrable. The
conclusion follows by Proposition 6.68. �

6.70 Theorem (Classification of Semisimple Lie Groups over C) Let g be a finite-dimensional
semisimple Lie algebra over C. Any connected Lie group G with Lie(G) is semisimple; in particular,
the algebraic groups constructed in Theorem 6.69 comprise all integrals of g.

Proof Let G̃ be the connected and simply connected Lie group with Lie(G) = g; then any integral
of g is a quotient of G̃ be a discrete and hence central subgroup of G̃, and the integrals are classified
by the kernels of these quotients and hence by the subgroups of the center Z(G̃). Let GX be the
algebraic group corresponding to X. Since Z(GP ) = P/Q, it suffices to show that GP is connected
and simply connected.

We show first that GX is connected. It is an affine variety; GX is connected if and only if
O(GX) is an integral domain. Since GX is the Zariski closure of expW for a neighborhood W of
0 ∈ g, and expW is connected, so is GX .

Let U± be the image of exp(n±) in GX , and let T = exp(h). But exp : n± → U± is the matrix
exponential on strict triangular matrices, and hence polynomial with polynomial inverse; thus U±
are simply connected.

We quote a fact from algebraic geometry: the image of an algebraic map contains a set Zariski
open in its Zariski closure. In particular, since the image of U−×T×U+ is Zariski dense, it contains
a Zariski open set, and so the complement of the image must live inside some closed subvariety of
GX with complex codimension at least 1, and hence real codimension at least 2, since locally this
subvariety is the vanishing set of some polynomials in Cn. So in any one-complex-dimensional slice
transverse to this subvariety, the subvariety consists of just some points. Therefore any path in GX
can be moved off this subvariety and hence into the image of U− × T × U+.

It suffices to consider paths in GX from e to e, and by choosing for each such path a nearby path
in U−TU+, we get a map π1(U−TU+) � π1(GX). On the other hand, by the LU decomposition
(see any standard Linear Algebra textbook, e.g. [15]), the map U− × T × U+ → U−TU+ is an
isomorphism. Since U± are isomorphic as affine varieties to n±, we have:

π1(U−TU+) = π1(U− × T × U+) = π1(T ) (6.2.10)

And π1(T ) = X∗, the co-lattice to X, i.e. the points in g on which all of X takes integral values.
Thus, it suffices to show that the map π1(T )� π1(GP ) collapses loops in T when X = P . But

then π1(T ) = P ∗ = Q∨ is generated by the simple coroots α∨i . For each generator α∨i = hi, we take
sl(2)i ⊆ g and exponentiate to a map SL(2,C) → G. Then the loops in exp(Rhi), which generate
π1(T ), go to loops in SL(2,C) before going to G. But SL(2,C) is simply connected. This shows
that the map π1(T )� π1(GP ) collapses all such loops, and GP is simply connected. �

6.3 Conclusion

[8, Lecture 44]
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In Chapter 5, we put semisimple Lie algebras over C into bijection with possibly-disconnected
Dynkin diagrams, and classified all such diagrams. In the current chapter, we described how to
compute the representation theory of any such diagram: the finite-dimensional irreducible repre-
sentations correspond to elements of the weight lattice of the diagram. Then we showed that the
integrals of any semisimple Lie algebra are algebraic, and correspond to lattices between the weight
and root lattice: the simply connected group corresponds to the weight lattice, and the adjoint
group corresponds to the root lattice. The category of representations of the Lie group correspond-
ing to a given lattice is precisely the category of representations whose highest (and hence all)
weights lie in the lattice. We remark that the index of the weight lattice on the root lattice — the
size of the quotient — is precisely the determinant of the Cartan matrix.

The story we have told can be generalized. We will not justify it, but only sketch how it goes.
We recall Lemma/Definition 5.1. We say that a complex Lie group G is reductive if it is linear

and if its finite-dimensional representations are completely reducible. We demand linearity to assure
that the group have finite-dimensional representations: for example, an elliptic curve is a complex
Lie group but it is compact, so any holomorphic function is constant, so its only finite-dimensional
representations are trivial. Let G be a reductive Lie group and g = Lie(G) its Lie algebra. Then
we have a Levi decomposition g = s ⊕ r, and if G is reductive, then r = z is abelian and is the
center of g, so g is reductive as a Lie algebra.

Let g be a reductive Lie algebra. Then the Cartan subalgebra h of g is hs ⊕ z, where hs is the
Cartan subalgebra s. We have a coroot lattice Q∨ ⊆ hs, and we pick a lattice X∗ ⊇ Q∨ such that
X ⊇ Q and X∗ spans h. Then letM be the category of finite-dimensional representations of g with
weights in X and on which h acts diagonally — this is an extra condition, because z need not act
diagonally on a representation of g. Then the entire story of algebraic integrals applies. For any
root datum — a choice of roots α and coroots α∨ satisfying natural conditions — we get a Cartan
matrix, the Cartan matrix of s.

In particular, as we will not explain here, the root data (X,αi ∈ X,α∨i ∈ X∗) classify:

1. reductive Lie groups over C

2. reductive Lie algebras over C

3. compact real Lie groups

4. reductive algebraic groups over any algebraically closed field in any characteristic

5. group schemes, or “algebraic groups over Z”, and therefore Chevalley groups, the tensor
products of group schemes with finite fields

6. finite groups of Lie type, essentially the source of the finite simple groups

Some of this story is outlined but mostly not proved in [18]. It would make a good second
semester for this one-semester course, but in fact the second semester will tell a different story of
quantum groups [17].



6.3. CONCLUSION 119

Exercises

1. Show that the simple complex Lie algebra g with root system G2 has a 7-dimensional matrix
representation with the generators shown below.

e1 =



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


f1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0



e2 =



0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


f2 =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0



(6.3.1)

2. (a) Show that there is a unique Lie group G over C with Lie algebra of type G2.

(b) Find explicit equations of G realized as the algebraic subgroup of GL(7,C) whose Lie
algebra is the image of the matrix representation in Problem 1.

3. Show that the simply connected complex Lie group with Lie algebra so(2n,C) is a double
cover Spin(2n,C) of SO(2n,C), whose center Z has order four. Show that if n is odd, then
Z is cyclic, and there are three connected Lie groups with this Lie algebra: Spin(2n,C),
SO(2n,C) and SO(2n,C)/{±I}. If n is even, then Z ∼= (Z/2Z)2, and there are two more Lie
groups with the same Lie algebra.

4. If G is an affine algebraic group, and g its Lie algebra, show that the canonical algebra
homormorphism Ug → O(G)∗ identies Ug with the set of linear functionals on O(G) whose
kernel contains a power of the maximal ideal m = ker(eve).

5. Show that there is a unique Lie group over C with Lie algebra of type E8. Find the dimension
of its smallest matrix representation.

6. Construct a finite dimensional Lie algebra over C which is not the Lie algebra of any algebraic
group over C. [Hint: the adjoint representation of an algebraic group on its Lie algebra is
algebraic.]
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