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Abstract

This talk won’t include very many facts, but it will include many almost facts, aka “lies”.
A few lies we will tell: rocks are made of rock atoms, liquid water is a perfect cubic crystal
lattice, and 1 = 2. Using these and similar “facts”, we will derive from first principles the radius
of an atom, the height of a mountain, and the volume of a raindrop. Doing so honestly, even
if we knew all the fundamental equations of the universe, would be impossible; lying makes
everything work out nicely.

1 Introduction

Before I begin, I should give credit where credit is due. Everything I say is from:

P. Goldreich, S. Mahajan, and S. Phinney, Order-of-Magnitude Physics: Understand-
ing the World with Dimensional Analysis, Educated Guesswork, and White Lies, 1999.
Available at http://www.inference.phy.cam.ac.uk/sanjoy/oom/.

What’s available online is only the first half of a textbook, which as far as I know has not been
published. A few more chapters are available as part of Sanjoy Mahajan’s related class at MIT.
The material also appeared in Sanjoy Mahajan’s PhD thesis. We quote his motto from the book:

“When the going gets tough, lower your standards.”

1.1 Units

In physics, there are pure “unitless” numbers, but there are also “unitful” quantities: distances,
lengths of time, energies, and the like. One cannot add unitful numbers unless their units match
— they live in different vector spaces — but one can multiply them; the result lives in the tensor
product of the vector spaces. Moreover, unitful numbers are not in the domains of the mathemati-
cians’ functions: it does not make sense to multiply a number by itself “2 inches”-many times, for
example. We have a rather philosophical axiom:

Axiom 1. Physical theories should never involve unitful constants.
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All this really means is that if your theory includes a unitful constant — the speed of light, for
example, or Plank’s constant — then you should replace it with a letter — c or ~ — and use it as a
variable. There is a bit more depth to this, however. For a physicist, all functions are smooth, and
by treating c and ~ and the like as variables, we can bring to bear all the mathematical theorems
about the behavior of functions. At the end of the day you may specialize to the measured values
of your physical quantities, but the logic you use to derive your formulas should not depend on
quantities taking specific values.

We now “tropicalize” our unitful quantities, considering only the units on that quantity. For
instance, a length we might write as

[l] = cm

for “centimeters”, and an energy as
[E] = g cm2/s2

We’ve used “cgs” units because they make electromagnetism easier, by normalizing ε0 and µ0 to 1.
In particular, in cgs, the units of electric charge are:

[e2] =
g cm3

s2

Here and throughout, e is the charge of the electron — we will never need Euler’s base of the natural
exponential — and we will generally work with e2 rather than e because we don’t particularly like
talking about square roots of grams, and because we can never remember whether the charge of an
electron is supposed to be “positive” or “negative”.

In any case, upon such tropicalization, the only effect of multiplication of unitful quantities is to
add the exponents of the corresponding units. In particular, each vector space worth of quantities
corresponds to a point in a single vector in “unit-space”. For example, if the coordinates of unit
space begin (mass, distance, time, . . . ), then the above amounts are:

[l] = (0, 1, 0, . . . ), [E] = (1, 2,−2, . . . ), and [e2] = (1, 3,−2, . . . )

The following is a basic piece of linear algebra:

Theorem (Buckingham Pi). If we are given n variables taking values in combinations of m basic
independent units, then we should expect to be able to form n−m “dimensionless groups”.

Given l, E, e2 above, the only dimensionless group is El/e2. By Axiom 1, any physical theory
that depended only on the quantities l, E, and e2 must be of the form f(El/e2) = 0 for some
function f . But in physics all functions are invertible, and so this physical theory actually takes
the form El/e2 = constant.

To illustrate this “unit analysis” further, we describe the gravity pendulum. Say we’re interested
in computing the period T of a pendulum with length l and mass m, in an environment with ambient
gravitational acceleration g, in terms of the angular amplitude θ. We have:

[T ] = s, [l] = cm, [m] = g, [g] = cm/s2, [θ] = 1
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The dimensionless groups are gT 2/l and θ, and so the physics of a pendulum consists of precisely
a relationship between these two quantities: gT 2/l = F (θ). Solving for the period, we have:

T = f(θ)

√
l

g

where f(θ) =
√
F (θ). Honest physics and differential equations (or, in my case, looking up the

answer on Wikipedia) confirms this and gives the asymptotics of f(θ):

f(θ) = 2π
(

1 +
1
16
θ2 +

11
3072

θ4 + . . .

)
But without any true physics, we can see that the mass of the bob on the end of a pendulum (with
an otherwise massless string; if the string had mass, we’d have another unitful quantity and hence
another dimensionless group) does not affect the period of oscillation.

1.2 Approximate Mathematics

Up to now, the only approximation we have used is to assert that all functions are invertible,
which is at least locally true. We now begin to approximate in earnest. We introduce the following
“mathematical” axiom:

Axiom 2. All unitless numbers are roughly unity, zero, or infinity. Zero and infinity don’t really
count as numbers.

Theorem. The minimum value of f(x) + g(x) occurs when f(x) = g(x).

Proof. All functions are monomials, so f(x) = Axn and g(x) = Bxm. If n and m have the same
sign, then f(x) + g(x) is monotonic. So we assume without loss of generality that m is negative
and n is positive. We will switch m 7→ −m. The minimum occurs at the zero of d

dx

[
f(x) +

g(x)
]

= d
dx

[
Axn + Bx−m

]
= nAxn−1 −mBx−m−1. I.e. it occurs when nAxn−1 = mBx−m−1, i.e.

n f(x) = mg(x). But n/m = 1.

The most important instance of this theorem is:

Corollary (Virial Theorem). In any physical system, total kinetic energy equals total potential
energy.

Proof. By the laws of thermodynamics, physical systems tend towards lowest-energy states. In
essence, if a system is not in a lowest-energy state, it will have a tendency to lose energy to its
environment. Thus, the probability of every coming across a system not in a lowest-energy state is
astronomically small, because such states don’t stick around. Since total energy is exactly kinetic
energy plus potential energy, the result follows from the above theorem.
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We remark that not every function is a monomial, but almost all are. Let f(x) be a function. If
f(x) is smooth near 0, then we can expand f in Taylor series, and only the first few terms survive:
f(x) = f(0) +

∑5
n=1Anx

n. So f ′(x) =
∑5

n=1 nAnx
n−1 =

(
f(x) − f(0)

)
/x, since n = 1 for n ≤ 5.

But functions should not have constant terms, at least not unit-ful constant terms. So f(0) = 0 for
unit-ful functions like Energy, and so generally we can “cancel the ds”:

df

dx
=
f

x

If on the other hand f(x) is smooth near ∞ and has a pole near 0, then we can make a similar
expansion in x−1, and now canceling the ds is correct up to a minus sign:

df

dx
= −f

x

Of course, signs are notoriously hard to do correctly, because there is no good sign convention.
On the other hand, physical intuition is almost always good enough to determine the sign of the
final answer, so it usually suffices to compute only the magnitude of a quantity correctly. Another
motto is extremely important to keep in mind:

The difference between a good mathematician and a bad one
is the parity of the number of sign errors.

2 Atoms

Following Mahajan’s book, we quote the great Richard Feynman (R. Feynman, R.B. Leighton, and
M. Sands. The Feynman Lectures on Physics, vol. I. Addison-Wesley, Reading, MA, 1963, pp.
1–2):

If, in some cataclysm, all of scientic knowledge were to be destroyed, and only one
sentence passed on to the next generations of creatures, what statement would contain
the most information in the fewest words? I believe it is the atomic hypothesis (or the
atomic fact, or whatever you wish to call it) that all things are made of atoms—little
particles that move around in perpetual motion, attracting each other when they are a
little distance apart, but repelling upon being squeezed into one another. In that one
sentence, you will see, there is an enormous amount of information about the world. . . .

As mathematicians, we formalize this into a (physical) “axiom”:

Axiom 3. All matter is made of atoms. For example, water is made of water atoms, and rock is
made of rock atoms.

Let us compute the important quantities concerning atoms. An atom, as you know, consists of
a dense, heavy nucleus surrounded by a cloud of light electrons. The hydrogen atom is simplest:
the nucleus is a single proton, and there is a single electron.
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2.1 Size of an atom

What quantities might affect the radius r of a hydrogen atom? The masses me and mp of the
electron and the proton, certainly, and the square charge e2, but so far the only dimensionless
group is me/mp ≈ 0. Since this ratio is roughly zero (mp/me = 2000 or so), one of the quantities
is almost certain to drop out; we will argue in a moment that mp does not effect the size of an
atom. But we need another variable. Well, what keeps an electron cloud from collapsing? Quantum
Mechanics must certainly enter the picture, and so we introduce the variable ~. Checking the units,
we have a unique dimensionless group rmee

2/~2, which must be a constant by Axiom 1, and this
constant must be 1 by Axiom 2. Thus:

r =
~2

mee2
= a0

This quantity is called the “Bohr radius” of the hydrogen atom.
Let us justify this with some physics. By the Virial Theorem, we should compute the kinetic

and potential energies of a system. Now, if the atom is at rest, it has total momentum 0, and so
the momenta of the nucleus and of the electron are equal and opposite. But kinetic energy is

KE = p2/m

and so the kinetic energy of the proton is astronomically smaller than the kinetic energy of the
electron. This is why the mass of the proton should not matter for determining the radius of the
atom. Thus, the total kinetic energy is KE = p2/me. On the other hand, the total potential
energy is determined by Coloumb’s Law: PE = e2/r. Lastly, Heisenberg’s uncertainty principle
gives pr = ~, since p = ∆p and r = ∆x, at least up to sign. Thus p = ~/r, and so we solve:

(~/r)2

me
=
e2

r

This yields the same result: r = a0.
More generally, an atom may have n protons and n electrons. Imagine starting with n protons,

and adding the electrons one-by-one. Certainly the first electron will fall much closer to the nucleus;
indeed, from its perspective, the potential energy is ne2/r, and so it will live at height a0/n. But
from the perspective of the second electron, the central charge is partially shielded; it only sees
n− 1 protons. And the last electron sees just one, so we expect it to live at size a0.

To check the numbers, we quote some handy facts. ~c = 2000 eV Å, where “eV” means
“electron-volt”, a unit of energy, and “Å” means “angstrom”, or 10−10 meters. mec

2 = 500 000 eV .
And e2/~c = 0.01 is unitless; this is called the “fine structure constant”. The fact that this (and
also me/mp) violate Axiom 2 is one of the great mysteries of physics, and a leading motivation for
research like String Theory.

Anyway, we see that:

a0 =
~2

mee2
=

~c
mec2

~c
e2

=
2000 eV Å
500 000 eV

1
0.01

= 0.5 Å

In fact, the true radius of Hydrogen and Helium atoms is about 1 Å, Lithium through Neon are
about 2 Å, and all the rest are about 3 Å, so we’re not far off. 6 ≈ 1, in confirmation of Axiom 2.
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2.2 Ionization Energy, Bond Breaking

We compute now the first ionization energy of an atom, because we will need it for later. This
is the energy required to move an electron against a Coloumb force from its atomic radius out to
infinity, equal exactly to e2/r. When r = a0 ≈ 0.5 Å, this is:

e2

r
=
mee

4

~2
= mec

2

(
e2

~c

)2

= 50 eV

Of course, since the true radius is a bit larger than r, this is actually a bit of an over estimate;
ionization energies are closer to 10 eV. True values range from 4 eV at the lowest end (Francium),
to 24 eV (Helium) at the upper end.

To break a bond requires almost as much energy as ionization. Indeed, an atomic bond between
two atoms is as if each has its outermost electron shared with the other atom. Breaking this bond
is like ionizing half an electron from each.

The volume of an atom is just r3, up to some small constants, so ionization energy per unit
volume is e2/r4. Well, e2/a4

0 = (50 eV)/(0.5 Å)3 = 1014 pascals. However, now the fact that our
theoretical radius and measured radius are off by a factor of roughly 6 really matters: 64 = 1000,
so the ionization energy per volume (of solid or liquid) is roughly 1011 pascals.

3 Mountains

We now have the tools necessary to compute the height of a mountain. Of course, mountains
range in sizes, so really we will compute the height of the tallest mountain. There are too many
parameters involved to simply use dimensional analysis. Rather, we need some physics.

Mountains are built by piling rock up, perhaps by volcanoes, and are shrunk by erosion. But
the tallest mountains at any given time haven’t had a chance to be worn down by erosion — that’s a
slow process, whereas volcanoes are fact. So what keeps them from growing infinitely tall? Gravity
pulls down on the giant pile of rock. And eventually the mountain gets so tall that the force of
compression from all that weight is enough to start to melt the rock at the bottom. Good thing
this didn’t happen in Dr. Seuss’s Yertle the Turtle.

Gravity pushes straight down, so the only part of the mountain that matters for determining
its height is the central column. Let’s consider a column of rock with base b ([b] = cm2), height h,
and density ρ. If a volume V = bη of the rock at the bottom of the column were to melt, it would
allow the whole column to shift down by a distance η. Thus, the gravitational potential energy
released would be ρbh g η = ρV gh.

We’ve computed already the energy required to fully ionize every outer electron in a volume V
of rock. Does melting rock require this energy? We should model rock as a cubic crystal, each atom
bonded to six neighbors, and each bond shared between two atoms. So each atom has three bonds
of its own. So to release every atom, then, requires breaking three bonds per atom. However, to
melt the rock perhaps requires breaking only one one-thousandth of the bonds. Thus, we expect
the energy required to melt a volume V of rock to be roughly 0.003× V × 1011 pascals, since 1011

pascals was the energy per unit volume required to break one bond per atom.
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We set these two energies equal, cancel the V s, and solve for h. We have:

h =
1
ρg
× 3× 108 pascals

Using ρ = 3 g/cm3 and g = 10 m/s2, we have h = 10 kilometers. In fact, Mt. Everest is almost
exactly this height: 8.8 kilometers.

Ok, so I fixed the numbers a bit when writing this talk. I actually have no idea exactly how
many bonds are required to melt rock; I did not distinguish between rock and diamond, and if you
guess that it takes one one-hundredth of the bonds to break before the rock melts, you get an answer
of 100 km. More generally, perhaps the mountain need not actually melt the rock underneath, so
much as break enough bonds that the bottom rock at least stops supporting the mountain. But I
did prove:

Theorem. The height of the tallest mountain on the surface of a planet is inversely proportional
to the strength of gravity.

This, in fact, holds up very well. Mars, for example, has one third the gravity Earth has, and
sure enough Olympus Mons is almost precisely 27 kilometers tall.

Also, it is an easy exercise to check that the gravity on the surface of a rocky planet is propor-
tional to the radius of the planet, and so we have shown:

Corollary. Let R be the radius of a rocky planet, and h the height of its tallest mountain. The
unitful product Rh does not depend on the planet (i.e. it is a constant).

So how large can an asteroid be before it must be roughly spherical? A non-spherical asteroid
is essentially a sphere with a same-sized mountain stuck on the side. Since on Earth, R = 6000 km,
and h = 9 km, we see that Rh = 50 000 km2. If R = h on our nonspherical asteroid, we would must
have R = h =

√
50 000 km2 = 200 km. This is just about what is observed in our solar system.

4 Raindrops

We have described the heights of mountains. We turn now to something much smaller: raindrops.

4.1 Size of a raindrop

What makes a raindrop the size it is? Well, what makes a raindrop try to be large? You may have
heard of “surface tension”, which is the tendency of water to try to clump with other water. What
makes a raindrop try to be small? You may have heard of “wind resistance”; the force of the air
the raindrop falls through tries to break up the droplet. We will address each of these in turn.

We can understand surface tension in terms of the atomic hypothesis:

Theorem. A water atom would prefer to be surrounded by other water atoms, rather than having
one side exposed.

The proof requires only the discussion of bond-breaking from previously.
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Proof. Water, like all other materials, forms a cubic lattice: each water atom in the interior of a
droplet is bonded to six neighbors. However, a water atom on the surface of a droplet has only
five neighbors. Thus, to create more atom worth of surface area requires breaking one bond. This
creates πr2-much surface area, where r is the radius of an atom. Then the energy cost per unit
surface area to a droplet of water is:

e2

r

1
πr2

=
e2

πr3
=

~c× (e2/~c)
π r3

=
2000 eV Å× 0.01

π (3 Å)3
= 0.25 eV/Å2 = 4000 erg/cm2 = 4000 g/s2

This is actually too large by a factor of about 50. This is because water is actually molecules, not
atoms. The molecules are bonded much more loosely to each other, lowering the energy required
to break a bond, and are larger (say twice the radius), lowering the number of bonds required to
create a given area. Anyway, so let’s call the above number γ, for “surface tension”.

Let us now calculate the drag force caused by the air resistance. In general, calculating drag
force is very difficult: it depends on the speed of the object and on the geometry. But we can skip
this difficulty by assuming that the raindrop is traveling at terminal velocity. Then the drag force,
which pushes up, must equal the gravitational force pulling down. This gravitational force is a
constant 4

3πR
3ρg, where ρ is the density ρ = 1 g/cm3 of water, and g is the constant acceleration

due to gravity g = 1000 cm/s2. So the drag force at terminal velocity on a raindrop is precisely
4
3πR

3ρg ≈ R3ρg.
We could convert this into an energy cost of having too large of a raindrop. But instead we will

convert the surface tension energy into a force. The surface tension γ is energy per unit area, but
this is also force per unit length. So the surface-tension force is just γR, since R is the only length
dimension. We set these two forces equal and solve for R:

R3ρg = γR and so R =
√
γ/ρg

Another way to say this is: we’ve figured out that the size R of a raindrop should be determined
by the dimensionful parameters ρ, g, and γ, with units [ρ] = g/cm3, [g] = cm/s2, and [γ] = g/s2.
The only dimensionless group is R2ρg/γ, and so this must be a constant by Axiom 1, which must
be roughly 1 by Axiom 2.

We remark that γ is inside the square root, so any error isn’t too bad. Using our calculated
γ = 4000 g/s2, we have:

R =

√
4000 g s−2

1 g cm−3 × 1000 cm s−2
= 2 cm

The measured γ is fifty times smaller, and
√

50 = 7; the actual size of a raindrop really is just
about a quarter of a centimeter.

4.2 Raindrop speed

Lastly, let’s compute the terminal velocity. The terminal velocity v of an object depends on its
radius R, the force of gravity g, the densities ρair of the fluid the object is moving through and ρwater

of the object, and the viscosity ν of the fluid. But in the high-speed limit, one can prove that the
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viscosity does not matter. Indeed, a raindrop goes fast enough that the air is simply shoved out of
the way; only in the slow limit does momentum dissipate viscosity. In any case, the dimensionless
groups are ρwater/ρair and v2/gR; thus:

v2

gR
= f

(
ρwater

ρair

)
for some function f . Certainly f(x) must be xn for some positive n, since the terminal velocity
increases with the density of the object. We guess the simplest such function — f(x) = x — and
more honest physics, which we will not describe here, verifies that this is the right guess.

We quote the fact that ρwater/ρair = 1000. Thus:

v =
√
gR

ρwater

ρair
=
√

1000 cm s−2 × 0.25 cm× 1000 = 500 cm/s ≈ 10 mph

This is very reasonable: when you drive slowly, rain falls at a 45◦ angle.

5 Conclusion

In conclusion, physics is cool, and much easier than math.
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