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The mathematical universe is infinitely large. Most of what
mathematicians do is look for regular, repeating, infinite patterns.
Patterns provide ways that the universe is smooth and
comprehensible: the laws of nature in one part of the mathematical
universe are the same as in all other parts.
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But some patterns have exceptions.

Here be dragons

The mathematical universe
is infinitely large. Most of what mathematicians do is look for
regular, repeating, infinite patterns. Patterns provide ways that the
universe is smooth and comprehensible: the laws of nature in one
part of the mathematical universe are the same as in all other parts.

map.gsfc.nasa.gov/media/121238/


How do exceptional objects arise? Imagine plucking two violin
strings that are almost, but not quite, in tune. You will here a
throbbing noise, called a beat.
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At low volumes, the beat is just another repeating pattern. But at
very high volumes, sound waves can scatter off other sound waves.
The “beat” becomes a sonic boom, an exceptional object. Waves
passing by the exceptional object get diffracted and irregularized.

Exceptional objects can be heard far away, with their strange,
irregular calls. Exceptional objects are entertaining and enticing,
like a Siren to Odysseus.



My goal for this talk is to explain the first exceptional object.

Five short chapters:

From fractions to finite groups
Species of finite groups: solvable and simple
How to analyze a finite group I: spin representations
How to analyze a finite group II: diagrams and lattices
Applications of the E8 lattice



From fractions to finite groups
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Its genesis begins in ancient Egypt. The Egyptians were interested
in sums of simple fractions. What are all solutions to
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What are all solutions to

1

a
+

1

b
+

1

c
> 1, a ≤ b ≤ c ∈ {2, 3, 4, . . . }?

One infinite family:

(a, b, c) = (2, 2, c), c ∈ {2, 3, 4, . . . }. “Type D”

Three exceptional solutions:

(2, 3, 3), (2, 3, 4), (2, 3, 5). “Type E”

The lettering is from the 20th century. For later convenience, the
Type D solutions are called “Dn” and the Type E solutions are
called “En”, where n = a + b + c − 2 = b + c . E.g. the solution
(2, 3, 4) is called “E7.”



The Greeks understood these solutions. Given any solution
(a, b, c), take some regular c-gons, and attach them so that b of
them meet at each vertex, and of course a = 2 faces meet at each
edge. Together with their duals (b ↔ c), you will form all the
(possibly degenerate) regular three-dimensional solids.

D8 E6 E7 E8

(shrink squares to edges)
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What are the rotational symmetries of a regular solid (a, b, c)?

I There is a symmetry α of order a = 2 which rotates the solid
around an edge. Which edge? Pick one arbitrarily.

I There is a symmetry β of order b which rotates the solid
around a vertex. Which vertex? One of the ends of the edge
that you picked.

I There is a symmetry γ of order c which rotates the solid
around a face. Which face? One of the sides of the edge that
you picked.

Exercise: α ◦ β ◦ γ = 1.
It turns out that every symmetry of the solid is a composition of
these three symmetries. Furthermore, it turns out that the relation
in the Exercise generates all relations between these symmetries.
I.e. the full group of rotational symmetries is

G = Aut(solid) = 〈α, β, γ|αa = βb = γc = αβγ = 1〉.



So the Egyptian puzzle led us to discover some finite groups.

A group is an abstract collection of “symmetries,” which is closed under
composition. By “abstract,” I mean that the elements don’t have to be
symmetries of anything — what matters is the structural relations between the
different elements of the group.



Species of finite groups
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Solvable groups are built out
of thin abelian layers. The layers are
only loosely attached to each other.

It is impossible to classify all solvable
groups. The problem is that there
are a lot of ways to add a layer to the
top of a solvable group, but the exact
number depends on how all the other
layers are attached to each other.

Solvable groups are flexible, almost liquid. But if you push too
much they shear apart. They feel like blocks of jello.
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Simple groups, on the other
hand, have no layers. They are rigid,
crystalline, and highly structured.

You could try to mix solvable and
simple groups together, by including
simple layers into your solvable jello.

It is near-impossible to layer
a simple group on top of a solvable
group: it sinks towards the bottom.

There are a few ways to layer a solvable group on top of a simple
group, like jello resting on a crystalline foundation.
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The “D” groups G = Aut(D-type solid) are dihedral. They are
solvable with only two layers.

Aut(Dn solid) ∼= Cn−2

top layer

o

layers are minimally attached

C2

bottom layer

cyclic groups

( )

The “E” groups are:

Aut(E6 solid) ∼= C 2
2 o C3 ( )

Aut(E7 solid) ∼= C 2
2 o C3 o C2 ( )

Aut(E8 solid) ∼= Alt(5) ( )

Aut(E8 solid) is the smallest simple group. It has 60 elements.



Simplicity is exceptional among finite groups: if you choose a finite
group at random, with 100% probability you will choose a solvable
group. But the exceptional solutions to the Egyptian fraction
problem led us to discover a simple group!



How to analyze a finite group I



To completely understand a group, you should understand its
representations. A representation of a group is a way of assigning
matrices to group elements, preserving the group law.

The group SO(3) of three-dimensional rotations can (almost!) be
represented by 2× 2 complex matrices:1 0 0

0 cos θ sin θ
0 − sin θ cos θ

 7→ (
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
x-axis rotation

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 7→ (
cos θ2 ı̇ sin θ

2

ı̇ sin θ
2 cos θ2

)
y -axis rotation

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 7→ (
eı̇θ/2 0

0 e−ı̇θ/2

)
z-axis rotation

formula for arbitrary rotation



It is only an “almost” representation because when θ = 2π, you
get

(−1 0
0 −1

)
. What you can actually represent is a double cover of

SO(3), called “Spin(3)”. Every element in SO(3) corresponds to a
pair of elements in Spin(3). In Spin(3), 360◦ rotation is not trivial,
but 720◦ rotation is trivial.

You can realize Spin(3) by taking an object, and attaching some
stretchy ribbons to it, with the other ends of the ribbons attached
to the walls of the room. (You may use as many ribbons as you
want.) If you rotate the object by 360◦, the ribbons will twist up.
But if you rotate by 720◦, you can untwist the ribbons!

Watch this in action:
https://commons.wikimedia.org/w/index.php?title=File:

Belt_Trick.ogv

https://commons.wikimedia.org/w/index.php?title=File:Belt_Trick.ogv
https://commons.wikimedia.org/w/index.php?title=File:Belt_Trick.ogv


For each group G = Aut(solid), write G̃ for the set of elements in
Spin(3) corresponding to rotations in G . Then G̃ is a double cover
of G : each element of G corresponds to two elements in G̃ .

www.k6-geometric-shapes.com/

rectangular-prisms.html

Example: The D4 solid is very
degenerate. If you expand the degenerate
faces, you get a rectangular prism, with

G (D4) = Aut(D4 solid) ∼= C2 × C2.

Its double cover is the quaternion group

G̃ (D4) ∼= Q8 = {±1,±i ,±j ,±k},
i2 = j2 = k2 = ijk = −1.

www.k6-geometric-shapes.com/rectangular-prisms.html
www.k6-geometric-shapes.com/rectangular-prisms.html


How to analyze a finite group II



Draw a graph whose vertices are the nontrivial indecomposable
representations of G̃ . Draw an edge between V and W if you get a
standard 2× 2 block when you decompose V ⊗W .

Remarkably, you will get a Y-shape graph. If you started with
1
a + 1

b + 1
c > 1, then the arms of the Y have lengths a, b, and c.

· · ·
· · ·

· · ·a

c

b

To decompose a representation, find a basis making all matrices
block-diagonal. The tensor product of representations is:(

A B
C D

)
⊗
(
a b
c d

)
=

(
Aa Ba Ab Bb
Ca Da Cb Db
Ac Bc Ad Bd
Cc Dc Cd Dd

)
.



These are almost all the graphs Γ such that the Cartan matrix

2× (identity matrix)− (adjacency matrix for Γ)

is positive definite.

To get the complete set, you must allow the degenerate case a = 1.
They are called “Type A.” The finite group in this case is cyclic.
The “A” solutions are an infinite, regular, unexceptional family.

An = · · ·
n

, Dn = · · ·
n − 2

,

En = · · ·
n − 3

, n = 6, 7, 8.

A matrix A is positive definite if
∑

ij viAijvj > 0 for all nonzero vectors ~v .



We can picture this as a basis {~α1, . . . , ~αn} of Rn, such that ~αi and
~αj are orthogonal if vertex i is not connected to vertex j , but they
should be at 120◦ if they are connected. Since the dot product is

~αi · ~αj = |~αi | |~αj | cos(angle),

and cos(120◦) = −1
2 , and since I don’t like fractions, I will decide

that each ~αi has length |~αi | =
√

2. Take all vectors that are
integer sums of the ~αs. That set of vectors is the lattice of the
given ADE type.

Example: The A2 lattice is the triangular lattice in R2.

~α1

~α2



The distance between any two vectors in an ADE lattice is ≥
√

2.
Indeed, the distance is always

√
even number. A lattice with this

property is called even.

Fundamental fact: The density of an ADE lattice, i.e. the
number of atoms per unit volume, is

Density =
1

#{one-dimensional representations of G̃}
.

This number is < 1 if G solvable. The number of one-dimensional
representations of a solvable group is equal to the size of its
bottom layer.

But it is exactly 1 when G is simple. And that happens for exactly
one example: the E8 solid (= dodecahedron).



Applications of the E8 lattice
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The E8 lattice is a
crystalline arrangement
in eight dimensions such
that there is one atom
per unit volume, but
any two atoms are at
least

√
2-distance apart.

Each atom is adjacent
to 240 neighbours.
The picture on the
left is the projection of
these 240 neighbours to
a two-dimensional plane.

wikimedia.org/wiki/File:E8Petrie.svg


voyager.jpl.nasa.gov

Error-correcting codes are
used extensively. An ex-
ceptional error-correcting
code, called the Golay
code, was how NASA
communicated with the
Voyager probes. The Go-
lay code is the “beat” that
leads to Monstrous Moon-
shine. For more details,
take my class this week.

Application 1 (Error correcting codes):
The E8 lattice determines
(and can be built from) Hamming’s
error-correcting code Ham(8, 4). This
is a way of transmitting four bits in an
eight-bit channel. The 24 codewords are:

00000000 11111111

11110000 00001111

11001100 00110011

11000011 00111100

10101010 01010101

10100101 01011010

10011001 01100110

10010110 01101001

voyager.jpl.nasa.gov


Application 2 ((1+1)-dimensional quantum matter):
Start with a (very cold) system of eight fermions ψ1, . . . , ψ8

moving freely on a 1-dimensional wire, with no interactions. Slowly
(“adiabatically”) turn on a quartic potential energy, determined by
the Hamming code:

PE = ψ1ψ2ψ3ψ4 + ψ1ψ2ψ5ψ6 + ψ1ψ2ψ7ψ8 + ψ1ψ3ψ5ψ7

− ψ1ψ3ψ6ψ8 − ψ1ψ4ψ5ψ8 − ψ1ψ4ψ6ψ7 − ψ2ψ3ψ5ψ8

− ψ2ψ3ψ6ψ7 − ψ2ψ4ψ5ψ7 + ψ2ψ4ψ6ψ8 + ψ3ψ4ψ5ψ6

+ ψ3ψ4ψ7ψ8 + ψ5ψ6ψ7ψ8

Each term is a (nontrivial) Hamming-code word. The signs are due
to the fermionic nature of the particles.



Remarkably, this does not force the system to undergo a phase
transition (e.g. from liquid to gas). Even more remarkably, the
interacting system is trivial. This is because G = Aut(E8 solid) is a
simple group; if you started with a different group, the interacting
system would look like the bottom layer of G̃ .

A system of eight (1+1)-dimensional fermions represents the same
phase of matter as the trivial system. This can be seen in the
laboratory.

It leads to myriad examples of 8-fold periodicity in mathematics.
For example, the “homotopy groups” of many important
topological objects exhibit an approximate 8-fold periodicity. It is
only approximate because it is caused by an exceptional object.



www.nature.com/articles/

d41586-018-05913-4

Application 3 ((2+1)-dimensional
quantum matter):
A similar construction in two spatial
dimensions is responsible for the
“thermal quantum Hall effect.”
It can be used to construct
interesting “topological phases
of matter.” These are important
for quantum computing.

www.nature.com/articles/d41586-018-05913-4
www.nature.com/articles/d41586-018-05913-4
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Application 4 (string theory):
Any n-dimensional lattice L determines an
n-dimensional torus T = Rn/L. Consider a
(quantum) string propagating in T . Locally,
any solution to the equations of motion
factorizes into a “chiral” piece and an
“antichiral” piece. Usually this factorization
cannot be done globally. It only works
globally if L is an even lattice of density = 1.

When the factorization works, the chiral piece is a “chiral string
theory.” The E8 chiral string theory is important for the
construction of “heterotic strings.”
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What are the symmetries of the E8 string
theory? There are classical symmetries:
translating along T = R8/(E8 lattice).
There are also quantum symmetries that
convert a state into a superposition of
other states (including states with
nontrivial topology).

It turns out that there is one dimension
of quantum symmetries for each of the
240 neighbouring atoms to a given atom
in the E8 lattice.

Together with the classical symmetries, this produces a
248-dimensional group, called the “E8 Lie group.” It is an
exceptional group, with exceptional properties. For instance, its
smallest representation is itself!

wikimedia.org/wiki/File:E8Petrie.svg
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A Lie group is an infinite group which is also a smooth manifold.
Just like for finite groups, most are solvable (layers of jello) and a
few are simple (crystals). Remarkably, the classification of simple
Lie groups is the same as the classification of solutions to
1
a + 1

b + 1
c > 1, together with some decoration called “folding.”

There are four infinite families:

An, Dn, Cn (folded An), Bn (folded Dn),

and five exceptions:

E6, E7, E8, G2 (folded E6), F4 (folded E7).

E8 is the most exceptional. That exceptional Egyptian “beat”
1
2 + 1

3 + 1
5 > 1 can be heard very far away!



1

2
+

1

3
+

1

5
> 1

Thank you!



Spin(3) is isomorphic to SU(2), which is by definition the (infinite)
group consisting of the following complex matrices:(

λ µ
−µ̄ λ̄

)
, λ, µ ∈ C, |λ|2 + |µ|2 = 1.

Exercise: Check that SU(2) is closed under matrix multiplication.

Consider the function f : SU(2)→ SO(3) which takes

f :

(
λ µ
−µ̄ λ̄

)
7→

 Re(λ2 + µ2) Im(λ2 − µ2) Im(2λµ)
− Im(λ2 + µ2) Re(λ2 − µ2) Re(2λµ)

Im(2λµ̄) −Re(2λµ̄) |λ|2 − |µ|2

 .

Exercise: Show that f (AB) = f (A)f (B) for any two matrices
A,B ∈ SU(2), i.e. show that f is a homomorphism.

return to main slideshow
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