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1. Is equivariant elliptic cohomology the light that Moonshine reflects?

Summary: Yes and no. Certainly Moonshine selects equivariant elliptic cohomology classes,
and some of the Moonshine statements are natural from this language. However, Moonshine also
involves three aspects that go beyond plain equivariant elliptic cohomology:

(1) Moonshine involves certain genus-zero phenomena, or equivalently optimal growth condi-
tions.

(2) Moonshine involves Atkih–Lehner involutions and other symmetries that go beyond SL(2,Z).
(3) Moonshine involves positivity, analogous to asking that a K-theory class be not just the

class of a virtual representation, but actually be represented by an actual representation.

We will handle these aspects by:

(1) designing a bespoke version of equivariant Tmf that incorporates optimal growth;
(2) restricting to cases where Atkih–Lehner involutions don’t occur;
(3) simply ignoring all aspects of positivity.

1.1. Classical modular forms. I first review some standard vocabulary. Probably I won’t say
any of this in my lectures.

LetM =M(C) denote the moduli stack of C-analytic elliptic curves. In other words,M = h/Γ,
where:

• h = {τ ∈ C : =(τ) > 0} is the upper half plane
• Γ = SL(2,Z)
• γ =

(
a b
c d

)
acts by

γ · τ =
aτ + b

cτ + d
Note that this action factors through PSL(2,Z). However, the elliptic curve Eτ has an involution

z 7→ −z, and so the correct moduli stack uses SL(2,Z) and not PSL(2,Z). By convention, an elliptic
curve comes with a basepoint, undoing the stackiness by Eτ itself.

Actually, later I’ll use a slightly different group. Namely, I will most likely want to talk about
spin elliptic curves, i.e. elliptic curves equipped with a spin structure. There are two topological
types of a spin elliptic curve: the spin structure might bound or it might not. The non-bounding
spin structure on T 2 is (näıvely) invariant under all of SL(2,Z). More precisely, it is invariant
under the double cover Mp(2,Z). The bounding spin structure is invariant under a certain double
of Γ0(2). So the moduli stack of non-bounding spin elliptic curves is h/Mp(2,Z).

By construction, M is naturally a noncompact complex curve. A holomorphic function on M
is called a weak modular function. By construction, this is a holomorphic function f : h→ C such
that for each γ ∈ Γ, we have f(γ · τ) = f(τ). It is conventional to write the (right) action of Γ on
O(h) with a slash:

(f |γ)(τ) := f(γ · τ).

Generalizing the modular functions, a (weak) modular form of weight w is a function f(τ) such

that f(τ)(dτ)w/2 descends to M. Note that

d(γ · τ) = d

(
aτ + b

cτ + d

)
=

(a dτ)(cτ + d)− (aτ + b)(c dτ)

(cτ + d)2
=

(ad− bc) dτ

(cτ + d)2

and that ad − bc = det(γ) = 1. So f(τ) is a weight-w modular form if it is invariant under the
action

f 7→ (f |wγ)(τ) := (cτ + d)−wf(γ · τ).

Another generalization are vector valued modular forms. Pick a representation V of Γ. A vector
valued (weak) modular form is a holomorphic function f : h → V which is equivariant for the
Γ-action. Note that this is more than a section of a vector bundle over M. It is a section of a
vector bundle over M, together with a trivialization of that vector bundle when pulled back along



TOPOLOGICAL UMBRAL MOONSHINE 3

h→M. If you pick V , then you can talk about “V -valued modular forms of weight w” by adjusting
the action by the weight-w action.

An example is the following. Let me write “Pic” for the invertible vector bundles, so that
Pic(G) = {1D representations of G} = hom(G,C×). Recall that

Pic(PSL(2,Z)) = Z/6, Pic(SL(2Z)) = Z/12, Pic(Mp(2,Z)) = Z/24.

Actually, these are really easy calculations if you are willing to quote the following presentation:

SL(2,Z) = 〈S, T : S2 = (ST )3 is central of order 2〉.

If you change that “2” to a “1” or a “4”, you get the other two groups. The generators are:

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
.

So SL(2,Z) is almost a free product. It is the pushout (in Groups)

SL(2,Z) = Z/4 ∗
Z/2

Z/6

Cohomology turns pushouts into pullbacks (in Sp), and also you can compute cohomology prime-
by-prime. So it’s easy to read off things like H1(G;C×) = Z/4 ×

Z/2
Z/6 = Z/12. The generator is

the representation where S 7→ e(1/4) and T 7→ e(−1/12), where e(x) := exp(2πix).
Anyway, a V -valued modular form with V invertible is called a modular form with multiplier,

since obviously it is like a modular form, except instead of being invariant under the action of Γ,
it is an eigenform with some prescribed eigenvalues. Now, there is a line bundle over M whose
sections are weight-w modular forms. This line bundle is isomorphic to the line bundle you get
by taking V = [w mod 12] ∈ Z/12 = Pic(SL(2,Z)). But modular forms of weight w are not the
same as modular functions with multiplier [w mod 12]. They almost are, but the trivializations
are different. The difference is a factor of the function η(τ)2w where

η(τ) = q1/24
∏
m≥1

(1− qm), q = e(τ).

These differences matter for the following reason. So far, I haven’t put any analytic control over
the behaviour of f(τ) as τ approaches the boundary of h. Let’s put that control in now. M has
a Deligne-Mumford compactification M, constructed as follows. The boundary of h is a copy of
P 1(R). The subset P 1(Q) ⊂ P 1(R) is stable under the SL(2,Z)-action — it is the orbit of τ = i∞.
By definition,

M = (h ∪ P 1(Q))/Γ,

with h ∪ P 1(Q) topologized as a subset of the closed upper half plane. As a set, M =M∪ {i∞}.
The added point is called the cusp. Its stabilizer under SL(2,Z) is the stabilizer of a point in
P 1(Q), i.e. it is the upper Borel subgroup. This group is a copy of Z × Z/2 = 〈T, S2〉. A weak
modular form f will extend over this cusp only if f(τ) stays bounded as τ → i∞, in which case f
is called a holomorphic modular form. If f blows up no worse than q−k, k <∞, as q → 0, then f
is called weakly holomorphic. If f(q → 0) = 0, then f is called cuspidal. By construction, M has
the homotopy type of a BSL(2,Z), and so Pic(M) = Z/12. But Pic(M) = Z: each line bundle on
M has refinements over M with different orders of vanishing or pole at the cusp.

Number theorists like to add yet another generalization. The action γ · τ := aτ+b
cτ+d makes sense

for any γ ∈ PSL(2,R). Indeed, this is the full symmetry group of h. Rather than using SL(2,Z),
you could use some other subgroup Γ→ PSL(2,R). (Er, “subgroup” in quotes.) Let’s generate an
equivalence relation on “sub”groups Γ → PSL(2,R), called virtual sameness, by declaring that Γ
and Γ′ are virtually the same as soon as Γ → PSL(2,R) factors through Γ′ and the map Γ → Γ′

has finite index (=cokernel) and coindex (=kernel). So Mp(2,Z) → SL(2,Z) → PSL(2,Z) are all
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virtually the same. Number theorists typically, but not always, focus on modular groups Γ that
are virtually the same as as SL(2,Z).

[This is part of standard group theory terminology, where you say a group is “virtually ADJEC-
TIVE” if it is ADJECTIVE up to finite extensions. Another example: a semisimple Lie group is
virtually the same as its connected simply-connected form. Note that if ρ : Γ → Γ′ is a homo-
morphism, then the homotopy fibre of BΓ → BΓ′ has π0 = Γ/ρ(Γ′) and π1 = ker(ρ) and no other
homotopy groups. So working virtually is working modulo π-finite spaces.]

A function or form that’s invariant under Γ is said to be a modular form of level Γ. If ρ : Γ →
SL(2,Z) is a finite-index subgroup, then modular forms of level Γ are easily described in terms of
vector-valued modular forms: you use the permutation representation SL(2,Z)/Γ (also called the
result of induction of the trivial representation of Γ along ρ). The main examples are:

• Γ(N) := ker(SL(2,Z) → SL(2,Z/N)). The permutation representation is, of course, the
image of SL(2,Z)→ SL(2,Z/N). In other words,

Γ(N) =
{(

a b
c d

)
∈ SL(2,Z) : a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
.

• Γ1(N) ⊃ Γ(N) := stabilizer of (1, 0) ∈ (Z/N)2 (under the standard action of SL(2,Z) via
SL(2,Z/N)). The permutation action is, of course, the orbit of (1, 0) ∈ (Z/N)2 under this
action. In other words,

Γ1(N) =
{(

a b
c d

)
∈ SL(2,Z) : a ≡ d ≡ 1 mod N, c ≡ 0 mod N

}
.

• Γ0(N) ⊃ Γ1(N) := stabilizer of [1, 0] ∈ P 1(Z/N) (under the standard action of SL(2,Z)
via PSL(2,Z/N)). The permutation acton is, of course, the orbit of [1, 0] ∈ P 1(Z/N) under
this action. In other words,

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod N

}
.

These are called congruence groups. Normally, when people say that they have “a modular form of
level N ,” they mean its level is one of these three groups. More generally, people call a subgroup of
SL(2,Z) a “congruence subgroup” if it contains Γ(N) for some N . (Not every finite-index subgroup
of SL(2,Z) is congruence.)

However, note that to talk about virtual sameness, we didn’t demand that the group be a
subgroup of SL(2,Z). You could pick some Γ ⊂ SL(2,Z) of finite index, and then extend it, with
finite index, to some larger group Γ′ ⊂ SL(2,R) not contained in SL(2,Z). Number theorists almost
always use Γ′ ⊃ Γ(N) for some N , as then a Γ′-modular form is in particular Γ(N)-modular and
so of “level N .”

The most important example is the following. Look at the matrix

WN :=
1√
N

(
0 1
−N 0

)
∈ SL(2,R).

Then W 2
N = −1 ∈ SL(2,R), so WN acts on h by an involution. Moreover, WN normalizes Γ0(N):

there is an index-2 extension of Γ0(N) to a group called “Γ0(N) + N ,” which is not contained in
SL(2,Z). More generally, a Hall divisor of N is a divisor e|N such that e and N

e are relatively prime;
in other words, e is some subset of the distinct prime factors of N . The Hall divisors of N have a
natural group structure, given by xor on subsets: in terms of divisors, it is e ∗ f = ef/ gcd(e, f)2.
The unit is 1|N , and this group is isomorphic to (Z/2)distinct prime factors of N . Since e and N

e are

relatively prime, we can find α, β such that αe− βNe = 1, and so the set of matrices of the form

We :=

{
1√
e

(
ae b
cN de

)
∈ SL(2,R) : a, b, c, d ∈ Z

}
is nonempty. This set is a coset of Γ0(N) ⊂ SL(2,R), and these cosets are closed under multipli-
cation: WeWf = We∗f . Any element We ∈ We is called an Atkin–Lehner involution. There is an
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interesting group

Γ0(N)+ :=
⋃

Hall divisors e of N

We ⊂ SL(2,R).

It obviously contains Γ0(N) as a normal subgroup, and in fact Γ0(N)+ is the normalizer of Γ0(N)
inside SL(2,R). Groups between Γ0(N) and Γ0(N)+ are given names like “Γ0(N) + e, f, . . . ,”
where e, f, . . . is some list of Hall divisors. Such a group is called Fricke or non-Fricke according
to whether N ∈ e, f, . . . .

Suppose you have a finite-index subgroup Γ ⊂ SL(2,Z). As before, we can compactify h/Γ =:
M(Γ) to

M(Γ) = (h ∪ P 1(Q))/Γ.

Now the cusps are the orbits of the action of Γ on P 1(Q). Let’s focus on Γ = Γ0(N). Consider the
point x

y ∈ P
1(Q), written in irreducible form. Define g := gcd(y,N). If γ =

(
a b
c d

)
∈ Γ0(N), then

γ · xy = ax+by
cx+dy will define the same g, since c ≡ 0 (mod N) and d is invertible (mod N). So this

g is a well-defined number for the cusp. A little bit more number theory (omitted — exercise, or
see Diamond and Shurman) shows that the cusps for g are a torsor for (Z/ gcd(g,N/g))×. So the
total number of cusps for Γ0(N) is:

#cusps =
∑
g|N

φ(gcd(g,N/g)).

(This φ(−) is Euler’s totient function, defined by φ(m) = #(Z/m)×.) For example, of e is a Hall
divisor, then there is only one cusp for e. Now let e be a Hall divisor, xy ∈ P

1(Q) a representative of

a cusp, and γ = 1√
e

(
ae b
cN de

)
∈ We. Then γ · xy = aex+by

cNx+dey . Simplifying the fraction (which depends

on gcd(y, e)) and computing, we see that the new cusp is assigned a new divisor g, which is the
“e-inverse” of g: there is a natural action of the group of Hall divisors on the set of all divisors,
extending the permutation action, and this is how the cusps are permuted by Γ0(N)+. So for
example if N is square-free, so that all divisors are Hall, then Γ0(N)+ has only one cusp.

1.2. G-equivariant modular forms. Let G be a finite group. Let MG = MG(C) denote the
moduli space of pairs consisting of an elliptic curve Eτ and a principle G-bundle P : Eτ → BG.
Note that π1Eτ = H1Eτ ∼= Z2, and a choice of τ ∈ h selects a basis for this group. So we can
present MG as a quotient space as follows:

MG =
h× hom(Z2, G)

SL(2,Z)×G
with action given by ((

a b
c d

)
, g

)
·
(
τ,

(
h
k

))
=

(
aτ + b

cτ + d
,

(
ghakbg−1

ghckdg−1

))
,

where h, k ∈ G commute (and so represent a map Z2 → G) and g ∈ G is arbitrary. [I am rapidly
running out of letters!]

Let’s call a holomorphic function on MG a G-equivariant modular function. In other words, it
is a function f

(
h
k

)
(τ), where τ ∈ h and h, k ∈ G commute, which is invariant under the action

by SL(2,Z) × G. More generally, a G-equivariant modular form of weight w is a function f on

h × hom(Z2, G) such that f
(
h
k

)
(τ) (dτ)w/2 is (SL(2,Z) × G)-invariant. There is an interesting

generalization of this that incorporates a multiplier, explained in a paper by N. Ganter. Namely,
pick α ∈ H3(G;C×). Then α transgresses to a holomorphic line bundle Lα over MG. A choice of
cocycle for α will select a trivialization of Lα over h×hom(Z2, G). Sections of Lα are G-equivariant
modular functions with anomaly α. The ring of G-equivariant modular forms with anomaly α is
MFα(BG). [I’ll write BG for the stack quotient of G. It knows G as a group.]
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Let me briefly describe Lα. Take the trivial line bundle over h × hom(Z2, G). To descend it to
MG, we need to choose, for each (τ,

(
h
k

)
) ∈ h × hom(Z2, G) and each (γ, g) ∈ SL(2,Z) × G, an

isomorphism between the line over (τ,
(
h
k

)
) and the line over (γ · τ, gγ

(
h
k

)
g−1). An isomorphism of

trivial lines is just a C×-number. The number to use is computed as follows. Build the mapping
cylinder for the isomorphism γ : T 2 ∼= Eτ ∼= Eγ·τ ∼= T 2. Give this cylinder a G-bundle with
monodromies

(
h
k

)
along the A- and B-cycles in Eτ , gγ

(
h
k

)
g−1 along the A- and B-cycles in Eγ·τ ,

and monodromy g along the length of the cylinder. A 3-manifold M3 with a G-bundle P is a
thing to which (a cycle for) α assigns a number: the number is

∫
M P ∗α. If M is closed, then this

number depends only on the cohomology class of α; otherwise, under α  α + dβ, it changes by
a boundary term

∫
∂M P ∗β. In our case, the boundary of M is just some 2-tori. So the boundary

term corresponds to changing the trivialization by
∫
Eτ
P ∗β, where β is a 2-cochain on G and P

is the bundle on Eτ with monodromies
(
h
k

)
. For the usual bar complex for group cohomology,

a 2-cochain is β : G × G → C×, and
∫
Eτ
P ∗β = β(h,k)

β(k,h) . So for example if you instead use the

normalized bar complex, then the trivialization of Lα, when restricted to the subspace where one
of k, h = 1, does not depend on the cocycle.

Let’s pick up a G-equivariant modular function f ∈ MF(BG) and try to unpack it in non-
equivariant language. Of course, f consists of some massive list of functions f

(
h
k

)
indexed by(

h
k

)
: Z2 → G, each with some modularity, and also with lots of redundancy. First, obviously

f
(
h
k

)
= f

( ghg−1

gkg−1

)
, so that actually we care only about the G-conjugacy class of the map

(
h
k

)
: Z2 →

G. Second, changing
(
h
k

)
by γ ∈ SL(2,Z) corresponds to acting on f by modular transformation γ,

so in some sense you only care about the image of
(
h
k

)
: Z2 → G, and not the choice of generators.

But the generators are there to be able to talk about the actual function f : they are part of the
trivialization over h, and modular forms are trivialized over h. So we’ll keep them around.

Let’s look first at f
(
h
1

)
, where we have set k = 1. This is a function of τ ∈ h. It depends only

on the conjugacy class of h, and moreover f
(
h
1

)
= f

(
h−1

1

)
, since

(−1 0
0 −1

)
acts trivially on τ . Let

N = order(h). Pick γ =
(
a b
c d

)
. Then

f
(
h
1

)
(τ) = f

(
ha
hc
)
(γ · τ).

In particular, if c ≡ 0 (mod N) and a ≡ 1 (mod N), then γ takes f
(
h
1

)
7→ f

(
h
1

)
; in other words,

the function f
(
h
1

)
: h→ C is invariant under the group

Γ1(N) :=

{(
a b
c d

)
∈ SL(2,Z) s.t. a ≡ 1 (mod N) and c ≡ 0 (mod N)

}
.

Note that, since det γ = 1 ≡ 1 (mod N), these conditions imply d ≡ 1 (mod N) as well. The class
of b mod N is unconstrained. So f

(
h
1

)
is a modular form of level N . Since T =

(
1 1
0 1

)
∈ Γ1(N),

we do have

f
(
h
1

)
(τ) = f

(
h
1

)
(τ + 1).

In particular, f
(
h
1

)
has a Fourier expansion in integer powers of q:

f
(
h
1

)
(τ) =

∑
n∈Z

an(h) qn.

Like the whole function, the coefficients an(h) depend only on the conjugacy class of h, and moreover
are invariant under h↔ h−1. In other words, for each n, the coefficients an define an element of

an ∈ RO(G)⊗ C,

where RO(−) means the real representation ring

RO(G) = K0RepR(G).
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This is the end of the story if G is a cyclic group, but you can get a bit more modularity if G
is nonabelian. Suppose that h is conjugate to ha for some a. Then a is invertible mod N . Let
γ ∈ SL(2,Z) be a lift of

(
a 0
0 a−1

)
∈ SL(2,Z/N). Then γ would take f

(
h
1

)
to f

(
ha
1

)
, but that’s equal

to f
(
h
1

)
since h and ha are by assumption conjugate. In particular, if h is conjugate to all of its

primitive powers, then f
(
h
1

)
will be modular for the group

Γ0(N) :=

{(
a b
c d

)
∈ SL(2,Z) s.t. c ≡ 0 (mod N)

}
.

In general, two elements h1, h2 ∈ G are called algebraic-conjugate if they are conjugate up to
primitive powers, i.e. if h1 and gh2g

−1 generate the same cyclic group for some g ∈ G. A finite group
is called rational when every element is conjugate to all of its primitive powers: when algebraic
conjugacy implies conjugacy. The set of conjugacy classes in G is G/G = hom(Z, G)/G, and
functions on this set are

O({conjugacy classes}) ∼= R(G)⊗ C, R(G) := K0RepC(G).

Since G is finite, the restriction map hom(Z, G) ← hom(Ẑ, G)) is an iso, where Ẑ ∼=
∏
pZp is the

ring of profinite integers. The algebraic conjugacy classes are hom(Z, G)/(Ẑ× ×G), and functions
on this set are

O({algebraic conjugacy classes}) ∼= RQ(G)⊗ C, RQ(G) := K0RepQ(G).

So a rational group is one for which RQ(G)→ R(G) becomes an isomorphism after tensoring with
C, or equivalently after tensoring with Q. This is equivalent in turn to asking that every character
of G take rational values.

Very few groups are rational. I mean, symmetric groups are, but rationality is pretty rare, and
the Monster M is not rational.

But we don’t need it to be. Since −1 ∈ SL(2,Z) acts trivially on h, to get modularity for Γ0(N)
rather than Γ1(N), it suffices if every primitive power of every g ∈ G is conjugate to either g or
g−1 (or both). A finite group is called inverse semi-rational [an ugly name] if it has this property.
The same property is also called cut [an unintuitive name]. Conjugacy classes up to inversion are
hom(Z, G)/(Z× ×G), and functions on this set are

O({conjugacy-up-to-inversion classes}) ∼= RO(G)⊗ C, RO(G) := K0RepR(G).

So G is inverse semi-rational when RQ(G) → RO(G) is an isomorphism after tensoring with Q;
equivalently, if every real character is rational.

Inverse semi-rationality is slightly more common than rationality, but they are still rare. Using
the classification of finite simple groups, in 2021 by Bächle, Caicedo, Jespers, Maheshwary gave a
complete classification of which finite simple groups are inverse semi-rational. Their complete list
is:

C2, C3,

A7, A8, A9, A12,

L2(7), U3(3), U3(5), U4(3), U5(2), U6(2), S4(3), S6(2), O+
8 (2),

M11, M12, M22, M23, M24, Co1, Co2, Co3, HS, McL, Th, M.

Moonshiners will recognize some of their favourite friends. Of course, almost-simple groups can
be inverse semi-rational even if their socles are not (e.g. symmetric groups), and moonshiners also
like almost-simple groups, perfect abelian extensions of simple groups, etc. So this is not quite a
complete list of moonshine-friendly groups. But still.

Anyway, for these groups G, the
(
h
1

)
-components of a G-equivariant modular are automatically

Γ0(order(h))-modular, but for other groups they are not. I suspect that, if you really wanted to
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get a good theory, you should try to build some version of equivariant modular forms with Γ0-
modularity built in: some “rational subring” of MF(BG). Maybe you should call these “algebraic
modular forms” in analogy with algebraic K-theory, since RQ(G) is the 0th algebraic K-group of
the group algebra Q[G]. Comparing to the presentation of MG as a quotient, this “algebraic MF”

should involve upgrading the modular group from SL(2,Z) to SL(2, Ẑ). Comparing to the lectures
of Ganter in this workshop, it probably involves something about Adams operations, since those
act on R(G) = K(BG) by power operations on the character table, equivalently by the Galois group

of Q (which acts through its abelianization, which is of course Ẑ×).
There is one final enhancement of modularity that appears in Moonshine, and which I do not

know how to describe in terms of MF(BG). Namely, it often, but not always, happens that f
(
h
1

)
is invariant under certain Atkin–Lehner involutions, which are matrices in PGL(2,Q) but not in
PSL(2,Z).

[Aside: PGL(2,R) does not quite act on the upper half plane h — it has two components, and
the identity component is PSL(2,R) and does act on h, whereas the nonidentity component reverses
the sign of =(τ). In general, there is a natural map PGL(n,K)→ H1(K;µn) = K×/(K×)n, given by
the class of the determinant. For n = 2 and K = R, there is an isomorphism R×/(R×)2 = {+,−}.
The Atkin–Lehner involutions live in PGL+(2,Q) = PGL(2,Q)×PGL(2,R) PSL(2,R).]

Specifically, for each divisor e|N , consider the set of matrices

We =

{
γ =

(
a b
c d

)
s.t. b ∈ Z, a, d ∈ eZ, c ∈ NZ, det γ = e

}
.

This set is nonempty if and only if e is a Hall divisor, i.e. gcd(e, Ne ) = 1. The Hall divisors are in
obvious bijection with subsets of the prime factors of N . We is coset of Γ0(N), and it normalizes,
and WeWe′ = We xor e′ , where the group operation e xor e′ is exclusive-or of subsets. Note that
e xor e = 1, so, modulo Γ0N , elements of We are involutions. This explains the name Atkin–
Lehner involution. Given some (generators for a) subgroup of the Hall divisors e, e′, . . . , people
write “Γ0(N) + e, e′, . . . ” for the extension of Γ0(N) through these cosets. The original Monstrous
Moonshine involves some complicated rules that tell you, for each h, which Hall divisors e, e′, . . .
to use so that f

(
h
1

)
is modular for Γ0(order(h)) + e, e′, . . . , and then it turns out that there is no

larger modularity for these functions. When all AL involutions are included, you call the group
Γ0(N)+.

Work of Paquette, Persson, and Volpato hints that there is some connection between these
Atkin–Lehner involutions and some extension of G = M by “noninvertible symmetries,” specifically
“duality defects of Tambara–Yamagami type.” But that extension is definitely not the end of the
story: we know myriad examples of things with TY-type duality defects, and most of them do not
have extended modularity.

For the remainder of these lectures, I’m going to largely ignore these Atkin–Lehner involutions,
and, other than a few comments here or there, pretend as if Moonshine was just about modularity
for groups explainable by MF(BG). The special case e = N of an Atkin–Lehner involution is
called the Fricke involution, and a group Γ0(N) + e, e′, . . . is called non-Fricke if N 6∈ e, e′, . . . .
Correspondingly, an element h ∈ M is called (non-)Fricke if its assigned group Γ0(order(h)) +
e, e′, . . . is (non-)Fricke. The rule for assigning AL involutions to h involves various powers of h,
and the only way that there are no AL involutions is if all powers of h are non-Fricke. So the
remaining lectures will largely focus the entirely non-Fricke part of Moonshine.

1.3. Lunarity and optimal growth. What makes moonshine moonshine is the genus-zero phe-
nomenon. The classical story goes as follows. Suppose you have a (nonconstant) holomorphic
function f : h → C; let’s assume it is, at least, a modular form of level N for some large N .
Let Γ(f) ⊃ Γ(N) be the stabilizer of f under the SL(2,R)-action. By definition, f descends
to a function h/Γ(f) → C. Since f was at least Γ(N)-modular, h/Γ(f) has a compactification
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h/Γ(f) = (h ∪ P 1(Q))/Γ(f). A modular function f is called weakly holomorphic if it is merely
meromorphic near the infinite points in this compactification. In this case, f defines a regular
function h/Γ(f)→ P 1(C). The function f is called a hauptmodul when this h/Γ(f)→ P 1(C) is an
isomorphism. Note that this implies, but is slightly stronger than, asking that the punctured curve
h/Γ(f) have genus one. [Following the German, the plural of “hauptmodul” is “hauptmoduln”:
“ox” “oxen,” “brother” “brethren,” “child” “children,” “sow” “swine,” . . . ] Conversely, a
subgroup Γ ⊂ SL(2,R) is called genus zero if h/Γ has genus one, i.e. if Γ = Γ(f) for some haupt-
modul.

There are only finitely many hauptmoduln, up to the obvious actions like rescaling and adding
constants. For example, Ogg showed that a prime p is supersingular (in the sense that every
supersingular elliptic curve in characteristic p can be defined over Fp) if and only if Γ0(p)+ =
Γ0(p) + p is genus zero. He also knew (showed?) that this occurs exactly for the primes

p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71.

Ogg was at a lecture by Tits, in which the latter wrote up the prime factorization of M. Ogg
immediately recognized his list, and this is what started the whole Moonshine game. Ogg’s Jack
Daniels Problem, only partially solved, is to explain why p|#M if and only if Γ0(p)+ is genus zero.
The “only if” direction is fundamental to the statement of Monstrous Moonshine, but the “if”
direction remains largely unexplained (although Duncan and Ono have some partial story). If, as
I intend to do, we throw away Atkin–Lehner involutions, then genus-zero groups are even harder
to come by: Γ0(N) + e, e′, . . . has an easier time be being genus-zero than plain Γ0(N) does, since
it involves a further quotient of the corresponding modular curve. The list of N for which Γ0(N)
has genus zero is:

N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25.

Suppose that f is Γ0(N)-modular. When is f a hauptmodul with Γ0(N)? Following Cheng and
Duncan, we can translate the question into one about growth rates. Indeed: by Riemann–Roch,
f : h/Γ0(N) → P 1(C) is an isomorphism exactly when f has a single simple pole. Let’s assume
that f does grow near q = 0. Then that must be the pole. So f is an isomorphism if and only if
the pole at q = 0 is simple, and f is bounded at all other cusps of Γ0(N).

This growth condition makes sense for other weights, modularities, etc. In general, Cheng and
Duncan say that a weakly holomorphic Γ-modular form has optimal growth if its growth is as
slow as possible given its weight and modularity. This turns out to be a good translation of the
genus-zero property to other types of moonshine, so it’s the one I’ll focus on.

To find a good version of optimal growth for G-equivariant modular forms, we should first work
out the cusps of MG. When an elliptic curve E degenerates towards a cuspidal curve, one of its
cycles gets very small. If E carries a principle G-bundle P , then this vanishing cycle will carry some
monodromy k, well defined up to conjugation and inversion — in other words, k ∈ G/(G × Z×).
Let C(k) ⊂ G denote the centralizer of k ∈ G. The other monodromy of P will be some element
h ∈ C(k), well-defined up to conjugatation by C(k) and up to multiplication by k. In other words,
the cusps are

(
h
k

)
where k ∈ G/(G×Z×) and h ∈ (C(k)/〈k〉)/(C(k)/〈k〉).

There is a more stacky way to say all this. The cusps of MG are the fibre of MG → M over
τ = i∞. Selecting this τ breaks the SL(2,Z)-symmetry to a stackiness of 〈T,±1〉 ∼= Z × Z/2. So
the cusps are classified by

hom(Z2, G)/(〈T,±1〉 ×G).

Note that the choice
(
h
k

)
breaks the stackiness further: in particular, it breaks the stackiness by

〈T 〉 down to 〈T order k〉.
A bit of language. The monodromy k around the vanishing cycle is called the twisting. The

other monodromy h is called the twining.
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Recall that a function on G/G is precisely a class in R(G) ⊗ C = K0(BG) ⊗ C. A function on
hom(Z2, G)/G is a class in

KU0(LBG)⊗ C
where of course LBG = G/G in the stacky sense. The further quotient by ±1 replaces KU with
KR, the “capital-R Real” K-theory. Of course, the Fourier expansion of a modular form near a
cusp is not just a single number, but a q-series. In terms of loop spaces, q encodes an action of
S1 rotating the loop. All together, Fourier expansion, aka q-expansion, for G-equivariant modular
functions is almost a map

MF(BG)→ KR(LBG/S1)⊗ C ≈ KR(LBG)⊗ C((q)).

This is not quite correct, but almost is: the rotation/S1 action gets mixed into the the rest of the
structure a bit. Very explicitly, the RHS is the following. Let me first describe the version with KR
replaced by KU, i.e. where we just care about the S1 aka T -symmetry and not the ±1 symmetry.
Let k ∈ G select a point [k] ∈ LBG; suppose order(k) = N . Its connected component is a BC(k).
A class in KU(BC(k)) ⊗ C restricts to a class in KU(B〈k〉) ⊗ C = C[t]/(tN = 1). We want those

classes in KU(BC(k))[q1/N ] ⊗ C whose restriction to 〈k〉 lives in C[tq1/N ] ⊂ C[t, q1/N ]/(tN = 1).
Now take a direct sum over conjugacy classes k to get the KU version of the RHS. To get the actual
RHS, also quotient from KU to KR.

As indicated in the previous section, I would actually prefer to conflate conjugacy-up-to-inversion
with algebraic-conjugacy, and when these are different, I’d prefer to use the latter. So I would prefer
if the codomain of this q-expansion map were not built from KR, but rather the following. Since
G is finite,

LBG = hom(BZ,BG) ∼= hom(BẐ,BG) = L̂BG

where you might think of BẐ as an object of étale homotopy rather than homotopy. Thus this space

carries a natural action by Ẑ×. This also acts on the characters of all finite-group representations,
and so there should be a “KQ” that imposes equivariance for this action — it should be to the
algebraic K-theory of Q what KR is to KO. Then the codomain of q-expansion should look more

like “KQ(L̂BG/BẐ)⊗ C,” with a little bit of adjustment in the q-degree.
The Monstrous Moonshine example tells us that we want functions f

(
h
k

)
(τ) such that f

(
h
1

)
(τ) ∼

q−1 + 0 +O(q) as τ → i∞. When k 6= 1, it depends a bit on h, and the AL involutions get in the
way, but it is simple in the entirely non-Fricke case: f

(
h
k

)
(τ) ∼ O(1) if k 6= 1.

All together, we see the following. There is a well-defined map

{cusps of MG} → LBG/Ẑ×,
(
h
k

)
7→ [k].

The fibre over BG→ LBG are the infinite cusps and the rest of the cusps are finite: in other words,
a cusp represented by

(
h
k

)
is infinite or finite according where k = 1 or k 6= 1. A G-equivariant

modular function f :MG → C is lunar if it grows like O(q−1) at the infinite cusps and like O(1)
at the finite cusps, and if moreover the residue at the infinite cusps

(
h
1

)
is independent of h.

I suggest that G-equivariant lunar forms are what Moonshine is about.

1.4. Topological lunar forms. Topological modular forms TMF are a derived integral refinement
of MF. Here are the main ingredients of the definition. There is a derived moduli stack Mder of
“elliptic curves over the sphere spectrum.” It carries a sheaf Oder of spectra whose fibre at an elliptic
curve E is E-elliptic cohomology, and TMF is by definition the spectrum of global sections of Oder.
If X is a space, then you are supposed to consider the derived stack MX,der of pairs consisting of
an elliptic curve E together with a map E → X factoring through a formal neighbourhood of X.
Restrict Oder along MX,der →Mder and take its global sections; this produces TMF(X).

The homotopy groups of Oder are: πoddOder = 0; π2nOder|E = Lie(E)⊗n =: ωn. So a section of

π•Oder is a modular form of weight •/2. This supplies an elliptic spectral sequence H•(MZ, ω
•/2)⇒

π•TMF. In particular, TMF⊗ C = MF (with homological degree ≈ weight).
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The equivariant version of TMF is defined roughly as follows. Fix a group G, which for me will
always be finite. Consider the moduli stack MBG,der of pairs (E,P ) where E ∈ Mder is a derived
elliptic curve and P : H1E → G, where the homology theory is such that H1E ∼= Z2 no matter who
E is. The point is that fundamental groups and G-bundles and so on for derived elliptic curves, and
indeed for (singular) elliptic curves over other bases, are complicated. So we use maps H1E → G
in place of G-bundles. Over a field of characteristic 0, these are the same except for something
about the Galois actions that I never wrapped my head around. I publically hope that sometime
this week one of the experts in the audience will explain this to me. I secretly hope that this will
also deal with the thing about KR versus KQ that I spoke about in the previous sections, but I’m
not optimistic on that front. Pull Oder back along Mder → MG,der and take its sections. This
gives TMFG = TMF(BG). If X is a space with a G action, then you are supposed to think about
TMFG(X) = TMF(X/G) as having to do with elliptic curves which explore the stack X/G, but can
only be “macroscopic” in the stacky/G directions — the elliptic curves have to be “microscopiuc”
in the X directions. This is so that you do indeed get something that depends locally in X, and if
you do it right you will end up with a genuinely equivariant cohomology theory.

The upshot is that TMF lets us drop those distracting ⊗C’s from the previous discussion. Specif-
ically, there is a q-series expansion

TMF→ KO((q))

of nonequivariant cohomology theories which enhances to a map

TMF(BG)→ KRS1(LBG),

where the codomain is slightly twisted in a way I tried to sketch above, but that someone really
should spell out. Either through some magic about the group G or through modifying the domain,
I’d really like this to end up in “KQ” — some version of algebraic K-theory — rather than KR,
so let’s just talk about “algebraic TMF” as if it exists and has such a map. As briefly mentioned
above, maybe “algebraic TMF” means something about Hecke eigenfunctions.

Derived algebraic geometry is far enough along that one can talk about divisors, poles, etc. The

compactifications M and MG admit derived refinements, and Oder extends over them — at the
cuspidal point τ = i∞ ∈ M, the fibre of Oder is KU, which reduces to KO when you take into
account the Z/2-automorphism of the cusp. (For “algebraic TMF”, the cusp should reduce to KQ,

because the stackiness should be Ẑ× rather than Z×.) I think the cusps of MG,der are a copy of
LBG, and I think BG ↪→ LBG is a divisor. So I think you can define:

Given a finite group G, the Topological lunar forms TlfG are the sections of Oder(−(BG)) over

MG,der. In other words, they are the topological modular forms with (at most) a simple pole along
the divisor BG ↪→ LBG. More generally, if X is a space with a G-action, then TlfG(X) looks like
Tmf(X/G) — functions of pairs (E, f : E → X/G) which treat E as “microscopic” compared to
X — except with a simple pole allowed along those curves (E, f) in which the stackiness trivializes
along one cycle.

2. Topological mock modularity

Summary: A generalized mock modular form with shadow s is precisely a nullhomotopy, in a
certain cochain model for TMF, of a class constructed from s. This gives a derived/homotopical
origin of mock modularity. Number theorists and harmonic analysts care about “pure” mock
modular forms which is when the shadow s is purely antiholomorphic. Mock modular moonshine
is specifically about pure mock modular forms of weight w = 1/2. The (Segal–)Stolz–Teichner
proposal says that each nice enough N = (0, 1) 2D SQFT supplies a TMF class; “null” means
that supersymmetry spontaneously breaks. Pure mock modularity of weight 1/2 corresponds to
having an N = (1, 1) SQFT which is nullhomotopic if you forget the left-moving susy. The Bunke–
Naumann “secondary Witten genus” makes sense for all SQFTs, not just sigma models. Its recipe
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is: compute the 1-point function s of the supercurrent; find a (generlized) mock modular form with
shadow s; take the class of that mock modular form modulo MF +Z((q)).

2.1. Classical mock modular forms. I first review the standard story. Probably I won’t say
any of this in my lectures. This story is more or less due to Zwegers.

A modular function was a holomorphic function on M = M(C) = h/SL(2,Z), satisfying some
analytic condition near τ = i∞ (q = 0). As a space,M is a (finitely stacky) complex curve, so a real
surface. We can of course consider C∞ or analytic (Cω) functions on M. People normally assume
analyticity from the get go, so I will too. Unsurprisingly, such functions are called real-analytic
modular functions. More generally, a real-analytic modular form of weight (w, w̄) if a function

f(τ, τ̄) on h such that f(τ, τ̄)(dτ)w/2(dτ̄)w/2 descends to M. In other words, f should transform
as

f(γ · τ) = (cτ + d)w(cτ̄ + d)w̄f(τ), γ =

(
a b
c d

)
∈ SL(2,Z).

An important, and fun, example is =(τ) := (τ − τ̄)/2i. Indeed:

=(γ · τ) =
1

2i

(
aτ + b

cτ̄ + d
− aτ̄ + b

cτ + d

)
=

1

2i

(aτ + b)(cτ̄ + d)− (aτ̄ + b)(cτ + d)

(cτ + d)(cτ̄ + d)

=
1

2i
(cτ + d)−1(cτ̄ + d)−1

(
(acτ τ̄ + bcτ̄ + adτ + bd)− (acτ τ̄ + bcτ + adτ̄ + bd)

)
=

1

2i
(cτ + d)−1(cτ̄ + d)−1(ad− bc)(τ − τ̄) = (cτ + d)−1(cτ̄ + d)−1=(τ)

since ad− bc = 1. In other words, =(τ) transforms as a C∞ modular form of weight (−1,−1). As
such, we can move weight between the holomorphic and antiholomorphic sides by multiplying by
powers of =(τ) — the controlling factor is just w−w̄. Note that this adjusts the cuspidal behaviour,
but not by much: as a function of q = exp(2πiτ), we have =(τ) = 1

2π log(|q|).
Suppose you have a Cω modular form f . You can ask: is it holomorphic? If not, by how much

is it off? The answer, of course, is measured by derivative ∂τ̄f := ∂f
∂τ̄ . To make it sound like I’m

doing physics, I’ll call this the holomorphic anomaly of f . If f had modular weight (w, w̄), then
∂τ̄f will be modular of weight (w, w̄ + 2).

A function f is harmonic if ∂τ∂τ̄f = 0, i.e. if ∂τ̄f is purely antiholomorphic. Suppose that f is
harmonic and transforms as a modular function (weight (0, 0)). Then the complex conjugate ∂τ̄f
will be a (weakly) holomorphic modular form of weight 2. More generally, the modular form folks
like to move all the weight to the holomorphic side, and don’t really like antiholomorphic things.
So the convention is to say: start with f of weight (w, 0); then ∂τ̄f has weight (w, 2); so ∂τ̄f
has weight (2, w); so =(τ)w∂τ̄f has weight (2 − w, 0). We’ll call f a harmonic Maass form if this
=(τ)w∂τ̄f is holomorphic, i.e. if f is annihilated by the “Laplace” operator ∂τ=(τ)w∂τ̄ . (Maass was
more generally interested in eigenvectors for this Laplacian.) This modified holomorphic anomaly
=(τ)w∂τ̄f is called the shadow of the harmonic Maass form f . Even if it’s not holomorphic (so
that f is not harmonic) I’ll still call it the shadow.

Remark: This Laplacian seemed a bit ad hoc. Here’s another description. Under some growth
rate condition, the space of Cω modular forms of weight (w, 0) is (pre)Hilbert, with Hilbert pairing

〈f1, f2〉 =

∫
M
f1f2=(τ)w−2 dτdτ̄

Indeed, f1f2 has weight (w,w), whereas volume forms on M have weight (2, 2), so you need to
adjust. In particular, you could consider the pairing

〈∂τ̄f1, ∂τ̄f2〉 =

∫
M

(∂τf1)(∂τ̄f2)=(τ)w dτdτ̄ .
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Now integrate by parts: this is equal up to a sign to

〈f1, (∂τ̄=(τ)w∂τ̄ )f2〉.

So this is where Maass’s Laplacian comes from.
Suppose you really really like holomorphic functions. Perhaps you like them so much that,

when handed a harmonic function, you will just immediately try to work with its holomorphic
part. In other words, you want to subtract off the τ̄ -dependency. Well, you know that f solves an
inhomogeneous differential equation

∂τ̄f(τ, τ̄) = =(τ)−ws̄(τ̄ , τ).

You’d really like to work with solutions to the corresponding homogeneous equation. Of course,
these are the same if you can select a reference inhomogeneous solution. And you can if you can
choose a distinguished basepoint for τ̄ . We do have one: τ̄ = i∞ = −i∞. So we can try to modify
f to

fholo(τ) = f(τ, τ̄)− (2i)w
∫ τ̄

z̄=−i∞
(τ − z̄)−w s̄(z̄, τ) dz̄

which looks marginally cleaner if s is holomorphic, so that ḡ(z̄, τ) = s(z) does not depend on
depend on τ . Formally, you should think that what you’ve done is to analytically continue f to
the τ, τ̄ plane, and then take

fholo(τ) = “ lim
τ̄→−i∞

f(τ, τ̄).”

Of course, whether the integral (or, for that matter, the limit) makes sense depends on some
assumptions about growth rates: we need the combination (τ − z̄)−w s̄(z̄, τ) to decay sufficiently
quickly as z̄ → −i∞. From undergraduate calculus, we know that “inverse quadratic” is sufficiently
quick. So we need something like s(z, τ̄) = O(zw−2) as z → i∞. You might also worry that about
a pole at z̄ = τ , since the value of the integral would depend on which side you go around it, but
z̄ is in the lower half plane and τ is in the upper half plane so there is no issue.

By choosing the cusp (−)i∞ as the starting point for our integral, we’ve broken the SL(2,Z)-
equivariance of f to a manifest equivariance just for the upper Borel 〈T 〉 × {±1}. But we can
measure how far off fholo is from being modular. Of course, f is modular of weight (w, 0), so the

failure of fholo will be, up to a constant like ±(2i)w, the failure of
∫ τ̄
z̄=−i∞(τ − z̄)−w s̄(z̄, τ) dz̄ to be

modular. Oh, you still like holomorphic things? Then its complex conjugate, i.e.∫ τ

z=i∞
(z − τ̄)−w s(z) dz

where perhaps g(z) actually is g(z, τ̄). The integrand transforms really well under modular trans-
formations (g has weight 2−w, so the total integrand is well defined onM). The only issue is the
cycle of integration, which under a modular transformation transforms as∫ τ

i∞
7→
∫ γ·τ

γ·i∞

whereas modularity would require that it instead transform as∫ τ

i∞
7→
∫ γ·τ

i∞
.

These differ by the cycle ∫ γ·i∞

i∞
=

∫ a/c

i∞
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Dropping the subscript, people say that f is a mock modular form of weight w with shadow s if (s
is modular of weight 2− w and) f is invariant under the transformation

f 7→ (f |w;sγ)(τ) := (cτ + d)−wf(γ · τ)−
∫ a/c

z=−i∞
s̄(z) (z − τ)−wdz

up to some w-dependent constant that I’ve dropped. Any mock modular form has a modular
completion which just restores the integral term. The modular completion is more natural from
the perspective of harmonic analysis. As far as I can tell, the reason number theorists like mock
modular forms is that they have q-series (since we still have manifest T -invariance). A question I

don’t know: can you recover s from these functions
∫ a/c
−i∞ s̄(z) (z − τ)−wdz?

Recall that from the harmonic analysis perspective, s being holomorphic is special, but not that
special. People say that a pure mock modular form is one where the shadow s is holomorphic. A
mock modular form is mixed if s is the dot product of a vector-valued holomorphic modular form
with a vector-valued antiholomorphic modular form (of course in the conjugate representation).
A mock modular form is generalized if s is just some random Cω function. In other words, a
generalized mock modular form is just the same data as a Cω modular form with some specific
rules about the cuspidal behaviour, whereas pure mock modular forms are much closer to being
holomorphic.

2.2. Mock modularity from derived modularity. We are interested in the ring(-spectrum)s
TMF and TMF ⊗ C, and their variants with various cuspidal behaviour. The latter is simply the
space of (weakly) holomorphic modular forms, which are essentially just holomorphic functions on
M. More precisely, as Dan Berwick-Evans has explained quite well, TMF⊗C is the derived space
of holomorphic modular forms.

The most näıve model of this is a Dolbeault model. Let’s just talk about functions. A C∞

function on a complex variety X is holomorphic when it is in the kernel of the Dolbeault operator

∂̄. The Dolbeault complex is C∞(X)
∂̄→ Ω0,1(X)

∂̄→ Ω0,2(X)
∂̄→ . . . . Just the same way, you could

look at a Dolbeault model for the ring of modular forms. It will be a double complex, with only
a horizontal differential ∂̄; the other grading is twice (!) the modular form degree. Remembering
that we have a favourite coordinate τ on a cover h of M, and the stackiness of this cover, while
infinite, is rationally acyclic. Thus we looking at the SL(2,Z) fixed points for a complex like

. . . → C∞(h)
∂/∂τ̄→ C∞(h)

0→ C∞(h)
∂/∂τ̄→ C∞(h) → . . .

In cohomological degree −2w, the action of SL(2,Z) is the weight-(w, 0) action. In degree −2w+1,
it’s the weight-(w, 2) action. Dan has explained how to incorporate a target space: if M is a
manifold, then TMF(M)⊗ C has a model like this that also involves to the de Rham cohomology
of M .

For Tmf ⊗ C, there is a similar description, where you have to put in the correct cuspidal
behaviour. I ran out of time when preparing these notes to work out exactly what that behaviour
is.

Anyway, the point is: up to issues of growth rates, a generalized mock modular form of weight
w is just (the same data as) a Cω modular form of weight (w, 0) is just a cochain in degree −2w.
Genuine (holomorphic) modularity is that this cochain is a cocycle.

Cochains are a model-dependent notion. But nullhomotopies are less so. Let’s suppose fixed a
shadow s, made into a cochain, automatically a cocycle, of degree −2w+ 1. A mock modular form
with shadow s is then precisely a realization of this cocycle as a coboundary.

This is still not an entirely coherent thing, since I asked you to fix a cochain representative for s,
but then immediately made s nullhomotopic and so derivèdly-zero. Where this notion really shines
is when you have a morphism of complexes, perhaps an inclusion, with some homotopical kernel.
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Indeed: pick a class [s] 6= [0] ∈ hoker; then its image is derivedly-zero, and so you can pick a class
of a nullhomotopy.

In the case at hand, the stack M of smooth elliptic curves is affine, up to finite stackiness that
C-valued functions don’t see. So line bundles on it have no cohomology in degrees other than
0. And indeed π•(TMF ⊗ C) is just the ring MF of weakly-holomorphic modular forms, entirely
in even cohomological degree (not only that — entirely in even weights, i.e. twice-even degree).
On the other hand, the compactified moduli stack M is not affine — it’s a stacky refinedment of
P1(C). So sufficiently ample lines on it only have degree-0 cohomology, but their duals only have
cohomology in degree 1.

Over C, these computations are not too hard. What you find is that π−21(Tmf ⊗ C) ∼= C is
nonzero: there is a holomorphic derived modular form σ of weight −21/2. I’ll come back to who
it is later. But since πodd(TMF ⊗ C) = 0, there is some weakly holomorphic (generalized) mock
modular form of weight −20/2 with its as the shadow.

Recall that there is an interesting function ∆(τ) = q
∏∞
n=1(1 − qn)24. It is a holomorphic

modular form of weight 12, i.e. it is class in π24(TMF ⊗ C). (It does not refine to TMF, but
it does up to a scalar multiple.) Actually, I can say more: it is a cusp form in the sense that
∆(τ = i∞) = 0. The derived version of cusp forms is called, not surprisingly, topological cusp
forms Tcf: ∆ ∈ π24(Tcf ⊗ C). Anyway, multiplying or dividing by ∆ is a good way to adjust
cuspidal behaviour, trading it for modular degree.

So in particular we have an interesting class ∆σ 6= 0 ∈ π3(Tcf ⊗ C). But π3(Tmf ⊗ C) = 0. So
there is a (generalized) mock modular form ϕ of weight w = 2 (homotopical degree 4) with shadow
the cusp form ∆σ, and this f is bounded at the cusp!

Dividing back by ∆, we could equivalently say that σ is bounded at the cusp, whereas φ = ϕ/∆
has a simple pole at the cusp. In other words, φ is what I called lunar before, albeit without any
equivariance.

2.3. Supersymmetry. So far in my narrative, there’s no reason for these ϕ or φ to be “pure”
as a mock modular form. Indeed, there’s no good way so far to even formulate pureness from the
perspective of a chain model for TMF⊗ C. What would pureness mean? It would mean that the
shadow σ or ∆σ is somehow “antiholomorphic.” But I’ve written it as a derived modular form —
it is “holomorphic” in the derived sense. If it is also somehow antiholomorphic, then it should be
somehow “constant.” What should this mean?

Mayuko Yamashita has already discussed at this workshop the (Segal–)Stolz–Teichner proposal.
Stolz and Teichner have made a precise conjecture that implements this proposal, but I will prefer to
speak about the meaning rather than the technical details (because my perspective is that probably
there are many implementations). What they propose is summarized as saying that: TMF has a
cocycle model whose cocycles are compact unitary 1+1D quantum field theories, not necessarily
conformal, equipped with an N = (0, 1) supersymmetry.

Let me elaborate on this briefly. A quantum field theory in d + 1D is some sort of object
that lives on Lorentzian spacetime manifolds of dimension d + 1. “Lives on” should mean that it
enjoys some sort of sheaflike locality condition, and the manifolds might be required to have some
background fields beyond the metric, and furthermore the metric might be required to have some
special holonomy, depending on the QFT in question. A unitary QFT can be Wick-rotated into
Euclidean signature, where it becomes a reflection-positive QFT. (More generally, as well-explained
by Kontsevich–Segal, unitary QFTs should be formulated on manifolds with complex-valued metric,
whose real part is positive-definite; the Lorentzian metrics live on the boundary of this space.) A
priori, QFT is about physics aka dynamics: it explains how states evolve; evolution, infinitesimally,
is captured by spacetime manifolds that are germs of spacial slices, and longer evolutions are
captured by cylinders, but in physics of course sometimes the macroscopic evolution has trouble:
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waves crash. That said, in a Wick-rotated theory, you can certainly ask if the evolution is well-
defined on all macroscopic spacetimes — if the path integral over those manifolds “converges”
(absolute convergence, not conditional). For example, it does for sigma models with compact
target (the high-energy oscillations are suppressed by a Gaussian), and so these QFTs are called
compact.

A priori, a quantum field theory can have an anomaly. In a path integral model, this hap-
pens when the path integral doesn’t quite resolve as a number, but rather as a section of some
line bundle. From the perspective of operators and expectation values, this is because the value
of the path integral itself is not physical: only ratios are. The upshot of this is that two QFTs
describe the same physics whenever they differ by stacking by an invertible theory, and so if you
want to work with the space of “physicses described by QFTs”, you should quotient some space
by this action. Well, if you can make this quotient precisely, then there will certainly a map
{physicses equipped with a path integral description}/{invertible things} → B{invertible things}.
If “QFTs” means the domain of this map, then this map itself records the anomaly. More precisely,
people have taken to distinguishing “(possibly-)anomalous QFTs” from “nonanomalous aka abso-
lute QFTs,” the former being the collection of actual physicses, and the latter being the homotopy
kernel of the anomaly map (i.e. equipped with anomaly cancellation data).

Freed has explained this quite well, especially in his arXiv note this week. An invertible QFT
is someone who takes invertible values and lives on manifolds: for example, its Hilbert spaces are
lines, and its partition functions are invertible numbers. Who is B{invertible things}? The B makes
it categorical: the anomaly of a d+1D QFT is someone who assigns a line to a spacetime manifold,
or a gerbe to a spatial slice.

A priori, this is all an anomaly needs to define. That said, the anomaly inflow mechanism is the
statement that this anomaly is in fact the ≤ d+1D data of an invertible d+2D QFT. Whether inflow
occurs depends on details of the model, and in examples seems to require a unitary hypothesis that
in general has not been formally formulated. This is especially true in the nontopological case, and
especially especial in the supersymmetric case.

Well, we care only about things up to deformation, since we just want a cocycle model for a
topological object (TMF). So we only care about the anomaly up to deformation. One expects
(if unitary) anomalies to be classified by a certain “differential Anderson dual” of the “differential
cobordism spectrum” for you the background fields and cetera. Up to deformation, you should be
able to drop the word “differential.” We care about supersymmetric field theories: our tangential
structure is Spin. So one expects the anomalies to be classified by Σ4IZMSpin. There is a distin-
guished map KO = Σ4IZKO→ Σ4IZMSpin dual to the Spin orientation of KO: this map is called
the massive free fermion, because given an element of π0KO, it writes down the corresponding
massive free fermion in 3D. Recall that {possibly-anomalous 1+1D SQFTs} was the total space of
a bundle over Σ4IZMSpin. Pulling this bundle back to KO gives a space spread over KO and so it
is plausible at least that this can be made into an orthogonal spectrum.

Which, at a physical level of rigour, it can. I call this spectrum SQFT•. The Stolz–Teichner
proposal is that SQFT• = TMF•.

Here’s how you should think of this. A supersymmetry is like a differential — a “curved”
differential since it squares to a translation operator rather than to 0. In particular, a (0, 1)-

supersymmetry is an odd operator Ĝ which squares to ∂̄. So ∂̄ is “superexact” — physicists would
say it’s a “superdescendent” — which of course is just saying it’s derivedly zero. So (0, 1) SQFTs are
“derived holomorphic.” The fact that we’re working with the full SQFT and not just its partition
function is what supplies the extra integrality.

In particular, any (0,1) SQFT Q has a (Ramond) partition function Z(Q). There is a well-known
physics argument that Z(Q) is a (weakly) holomorphic modular function with a multiplier, and
a deformation invariant of Q; the argument is a manifestation of the “derived holomorphicity.”
The multiplier is • mod 24, if the SQFT was in cohomological degree •. This is the same as the
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multiplier of η(τ)•, where

η(τ) = q1/24
∞∏
n=1

(1− qn) =
24
√

∆

is Dedekind’s modular form (with multiplier) of weight 1/2. So we can correct the multiplier and
simultaneously record the degree by working with

Z(Q)(τ)× η(τ)−• ∈ MF−•/2.

I call this combination the Witten genus of Q. So this supplies a map

SQFT• → MF−•/2.

When • = −m < 0, the correction by η has the following interpretation. Take your SQFT.
Now stack on m-many free fermions. The result Q × Fer(m) is now nonanomalous. Its partition
function vanishes, but because I have m distinguished fermions ψ1, . . . , ψm, I have a distinguished
local operator :ψ1 · · ·ψm:. Standard calculation: up to some conventions about how to handle odd
self-adjoint operators, we have the 1-point function

〈:ψ1 · · ·ψm:〉Fer(m) =
(
〈ψ〉Fer(1)

)m
= η(τ)m

in the Ramond sector. So the upshot is that

Z(Q)(τ)× η(τ)m = 〈1〉Q × 〈:ψ1 · · ·ψm:〉Fer(m) = 〈:ψ1 · · ·ψm:〉Q×Fer(m).

Now suppose that Q enjoyed also a left-moving supersymmetry, i.e. it has N = (1, 1) susy. Then
it is also derived-antiholomorphic, and in particular Z(Q) is both holomorphic and antiholomorphic
i.e. just a constant. The Witten genus will not be constant because of this conventional factor of
η, but that’s the only reason it won’t be.

So, in this SQFT model, I propose the following. A topological pure mock modular form is a
compact N = (1, 1) SQFT S, called the shadow, together with a nullhomotopy among compact
N = (0, 1) SQFTs.

In work with Gaiotto, we argue the following. Physics does not mandate that SQFTs be compact,
but if they are not, then their partition functions will not be well-defined, and in particular will not
be holomorphic or modular. There is a mild type of noncompactness, that we call having tubular
ends: it is the SQFT version of a Riemannian manifold Mn that near its end approximates R ×
Nn−1. An SQFT with tubular ends does have a partition function, but the path integral converges
conditionally, not absolutely. So it actually has a couple different functions that deserve the name
“the” partition function. One of the reasonable interpretations is manifestly modular, and the cost
of the noncompactness is that the “well-known physics argument” establishing holomorphicity fails.

Rather, what we find is that, if Q has tubular ends R×S, then the Witten genus Z(Q)×η(τ)−•

satisfies the following holomorphic anomaly equation:

√
−8(=(τ))1/2 ∂

∂τ̄

[
Z(Q)(τ, τ̄)× η(τ)−•

]
= 〈Ĝ〉S × η(τ)−(•+1).

The factors of η are there for my degree conventions. The factor of
√
−8 is just something about

conventions for supersymmetry operators. The factor of
√
=(τ) looks like the factor you’d use for

a mock modular form of weight 1/2.

What’s really going on is that there is an super moduli space M(0,1) of “super elliptic curves”
which is 2|1 real-dimensional. An (0, 1) SCFT can be placed on any elliptic curve in this stack. If
you use the curve with moduli (τ, τ̄ , θ), then the partition function is

Z(Q)(τ, τ̄ , θ) = Z(Q)(τ, τ̄) + θ〈Ĝ〉
up to some convention factor about the units of θ. This starts getting close to the picture that Dan
Berwick-Evans has developed. The point of the holomorphic anomaly equation is that 〈Ĝ〉 is not
a deformation invariant, but its class modulo the image of the holomorphic anomaly equation is.
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In my holomorphic anomaly equation, Ĝ was the generator of the right-moving susy in S. If S
has N = (1, 1) susy, then the well-known argument tells you that 〈Ĝ〉S should be antiholomorphic:
in general, if an operator commutes with a right- (left-) moving susy, then it (anti)holomorphic.
So the strictly-correct statement is that Z(Q) × η(τ) is [the modular completion of] a pure mock
modular form of weight 1/2. If you want some other degree w of pure mock modularity, you’d need

〈Ĝ〉S(=(τ)η(τ)2)w−1/2 to be antiholomorphic. I don’t know a physical process which would make
this to happen.

2.4. Motivating example. Consider the (0,1) sigma model with target a round S3. So the
dynamical fields are: a full boson exploring S3; its superpartner, a right-moving fermion. Because
of that mismatched fermion, this theory requires a String structure on S3 to be well-defined — this
String structure manifests as a term in the volume form for the path integral over the fermi field.
Orientations are a torsor for Z/2; Spin structures are a torsor for Z/2-bundles; String structures
are a torsor for H3(−;Z). Typicallly they really do live just in a torsor. But for S3, there is a
distinguished String structure: the unique one that extends over D4, equivalently the unique one
which is isomorphic to its image under a reflection automorphism of S3. Any other one is k ∈ Z
units of String structure away from that “zero” one.

Use that S3 = SU(2) as a Riemannian manifold. It is understood that 1+1D sigma models with
group manifold target exist quantumly and flow to WZW models in the deep IR. Specifically, we’ll
flow to a (0, 1) WZW model. The left-moving chiral algebra will have bosonic fields J1, J2, J3 and
OPE

Ja(z)Jb(0) ∼ κδab
z2

+
iηabcJc(0)

z
.

This η is the totally-antisymmetric tensor on R3, i.e. the Lie bracket on su(2). The number κ ∈ N
is called the level of the left-moving sector. There are also some twist fields that are exponentials in
the Js. The right-moving chiral algebra will have conjugate fields J̄a and also their superpartners
ψ̄a. The bosons will OPE with themselves, and they will act on the fermions as the adjoint
representation, and the fermions will have an OPE like

ψa(z)ψb(0) ' δab
z2
.

The question is to work out κ. Here’s how to do it. Considering the left- and right-multiplication
actions by SU(2). These have to flow to some actions in the deep IR: surely they will become the
left and right Noether currents J, J̄ , although the two handednesses are a priori uncorrelated. The
String structure k introduces an ’t Hooft anomaly for those actions. To anomaly match, you find
that κ = |k| − 1 depends on the absolute value of k. Changing the sign of k stacks the theory with
an Arf invertible phase, which is not seen by VOA. When k = 1, the theory spontaneously breaks
supersymmetry (it flows to zero).

Suppose k > 0. The supercurrent is

Ĝ =
√
−1

√
2

k + 1
ψ̄1ψ̄2ψ̄3 + (proportionality factor)

∑
a

ψ̄aJ̄a.

The second term has vanishing 1-point function. The 1-point of a free fermion is η, and then you
have the partition function of the remaining fields. So, dropping a power of

√
i, we have

〈Ĝ〉 =

√
2

k + 1
η(τ̄)3ZWZW

k−1 (τ, τ̄)

where ZWZW
k−1 is the partition function of the bosonic WZW model. This is a RCFT: its partition

function is the norm of the characters of the modules for the chiral algebra V ; these transform as
a vector-valued modular form ξj(τ), where j ranges over K0Rep(V )⊗ C.
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These characters are pretty well known. We are working with SU(2) at level k − 1, so there are
k representations, naturally indexed by their spins (hence “j”) 0, 1

2 , 1, . . . ,
k−1

2 . Define the weight
3/2 theta function

Θk+1,`(τ) =
∑

m∈Z+ `
2(k+1)

mq(k+1)m2
.

Then
χj(τ) = 2(k + 1)Θk+1,2j+1(τ)η(τ)−3.

So our shadow is

〈Ĝ〉 = 2(2(k + 1))3/2η(τ̄)3
k+2∑

2j+1=1

|Θk+1,2j+1(τ)η(τ)−3|2.

I won’t go through the derivation of a mock modular form with this shadow: it uses the standard
type of hard-to-motivate calculational trick that the number theorists and string theorists are good
at. I’ll just record that its holomorphic part is explicitly computable and looks like

q−1/8

(
− k

12
+ 2Z((q))

)
.

When k = 1, we have a bosonic WZW model at level 0. This is just the vacuum (massive aka
gapped) theory. In terms of these formulas, the point is that the unique Theta series is precisely

η(τ)3, so χ0 = 1 in this case. Thus, exactly in this case, 〈Ĝ〉 is antiholomorphic. The physical
explanation for this is the following. Exactly when k = 1 (or k = −1 or k = 0), the left-moving
sector is completely trivial: the SCFT is entirely right-moving. So the left handed stress-energy
tensor is 0. A left-moving susy is a square root of this. So we can decide to supply the model with
a left-moving supersymmetry equal to 0!

When S3 has 1 unit of String structure, it is the Lie group framing on SU(2). Every group has
a framing, and every framed manifold represents a class in the sphere spectrum Mfr = S and so in
any ring spectrum. The class represented by SU(2) is always called “ν”. What I’m saying is that,
after restoring powers of η, we have:

ν = 0 + θ‖η(τ)‖3.

2.5. Integrality and KOMF. Suppose that you have a (0, 1)-SQFT Q with tubular ends S. You
can compactify on an S1 (nonbounding spin structure) to get an N = 1 quantum mechanics model.
This model has an S1 symmetry by rotating the circle of compactification, and so the Hilbert
space decomposes as a sum of subspaces. There is also a time-reversing symmetry, whose precise
behaviour depends on the anomaly of Q.

When Q is compact, then
∫
S1 Q is S1-equivaraintly compact: its Hamiltonian has discrete spec-

trum on each S1 eigenspace. So its supersymmetry Ḡ0 : Hev → Hodd is Fredholm, and defines a
KO((q)). The graded dimension in Z((q)) of this object is easy to compute: compactify on another
circle. But then you see that this is just the q-series expansion of the modular function Z(Q) (up
to normalization conventions).

When Q is noncompact with tubular ends S, it often still happens that
∫
S1 Q is compact. It

can fail in a mild way, by a sort of “Z/2-index” of S, which can adjust some integrality in a
controlled way. If you think about the compactifications, what it really is doing is evaluating Z(Q)
at (τ, τ̄) = (τ,−i∞). This is the type of formula that does not parse unless Z(Q) is analytic (and
so can be analytically continued away from the real locus where τ and τ̄ are conjugate) and also
has an entire analytic continuation. If S is sufficiently nice, then Z(Q) will solve an ODE like
∂τ̄Z(Q) = (nice function), and so Z(Q) will also be nice. Anyway, the point is that this q-series is
precisely the holomorphic part of the Maass form Z(Q).

Fix S, and imagine that you have a filling Q. There are many fillings, of course, and so Z(Q)
is not determined by S, but the holomorphic anomaly equation already determines [Z(Q)] ∈
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{Cω modular functions}/{holomorphic modular functions}. The integrality anomaly is also de-
termined. The upshot is that S determines a well-defined class in C((q))/(MF+Z((q))). Moreover,
although the ingredients (for example, 〈Ḡ〉) of this class turn out not to be deformation invariants
of S, the total class in. And it vanishes if Q exists.

Reversing the logic, this class can obstruct S from being nullhomotopic. I told you the class for
S = S3

k : it was [
− k

12
+ 2Z((q))

]
∈ C((q))

MF + 2Z((q))
.

I snuck in a factor of 2: it is because actually in this case the anomaly of any putative filling would
make

∫
S1 Q into a quaternionic module, and so its dimensions are even. I also dropped the η(τ)−3

factor for convention reasons.
This confirms what you know from geometry: S3

k is String-nullcobordant iff k = 0 (mod 24).
What we’re seeing is that also its sigma model is quantum-nullhomotopic only under the same
condition.

Dan Berwick-Evans introduced a cohomology theory KOMF that is the home for invariants like
this that play integrality against modularity. The specific invariant I’ve described is a version of
the Bunke–Naumann secondary Witten genus, and Dan’s KOMF is exactly designed to cohere that
invariant.

3. Umbral and categorical symmetries

3.1. Neimeier lattices. I first tell a quite classical story. Probably I will say any of this in my
lectures.

A (positive-definite) lattice of rank r is a full-rank discrete subgroup L ⊂ Rr. [More precisely, it
is a full-rank discrete subgroup of some orthogonal vector space over R with positive-definite inner
product. I do not need to trivialize that vector space.] The subgroup of O(n) that preserves L is
O(L). The lattice L is integral if 〈, 〉 : L× L→ R takes values in Z, and even if ‖`‖2 = 〈`, `〉 takes
values in 2Z for all ` ∈ L (evenness implies integrality by polarization). For any lattice, define its
dual lattice L∨ := {x ∈ Rn : 〈x, `〉 ∈ Z ∀` ∈ L}. Integrality says that L ⊂ L∨. The lattice is
self-dual if L = L∨. More generally, if L is integral, then L∨/L is a finite abelian group with a
nondegenerate R/L-valued inner product, called the discriminant group ∆(L). If L is even, then
the metric on ∆(L) refines canonically to a quadratic form.

Suppose that L is an even lattice. A root in L is a vector with ‖`‖2 = 2, the smallest possible
length. A lattice is a root lattice if it is spanned by its roots. Suppose α is a root of L. Then the
reflection map that sends α 7→ −α but fixes vectors orthogonal to α is ` 7→ ` − 〈α, `〉α. So this
takes L→ L. The subgroup of O(L) generated by this reflections is the Weyl group Weyl(L). It is
a normal subgroup, and the quotient is the group Out(L) of outer automorphisms of L.

You know these things in examples. Suppose I draw a simply-laced Dynkin diagram X of rank r.
Then you can construct a lattice of rank r as follows: you put a basis vector α for each of the roots;
you make ‖α‖2 = 2; you make 〈α, β〉 = 0,−1 according to whether α and β are connected by an
edge or not. Now take the span of these roots, call it LX . Fact: Out(LX) = Aut(X). Another fact:
if L is a root lattice (as I’ve defined it), then it is LX for a unique Dynkin diagram X.

Another fact. Suppose the simply-laced Dynkin diagram X is connected. Then the ratio

h(X) =
#{roots in LX}

rank of X

is an integer, called the Coxeter number of X.
Evenness forces the lattice points to be rather far apart, whereas self-duality forces them close

together. Low-dimensional intuition makes these seem in conflict. But it leads you somewhat
astray: the volume of a sphere relative to its bounding box goes down. It turns out that there do
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exist self-dual even lattices, and you know one of them: the E8 root lattice. It turns out that self-
dual even lattices can live only in rank r = 8. There are various famous proofs. One uses Poisson
resummation to show that the Theta series of an even self-dual lattice has good modularity, and
then rules out other ranks from considering MF. Another converts an even self-dual lattice into an
invertible element in KO.

The only even self-dual lattice of rank 8 is E8 root lattice. In rank 16, there are two self-dual
even lattices. One is E8 × E8. The other is not a root lattice. It is constructed as follows. You
take D16. Now inspect the highest weight of the fundamental half-spin representation of Spin(32).
This weight σ is not in the root lattice, but it is a weight, so it has integral pairing with the roots,
and it is even: for Dn in general, ‖σ‖2 = n/4. So the union

D+
16 := D16 ∪ (D16 + σ)

is an even lattice. Now #∆(D16) = 4, so #∆(D+
16) = 4/(#(D+

16/D16)) = 4/22 = 1. So D+
16 is

self-dual. Remark: Out(D16) = Z/2, but Out(D+
16) = ∗, because we broke the outer automorphism

by selecting “the” fundamental half-spin representation.
Niemeier, famously, classified the self-dual even lattices of rank 24. The main steps go as follows.

Leech had already shown that if rk(L) = 24 and L has no roots, then L ∼= Leech is the lattice
Leech had discovered. Niemeier shows that if L contains a root, then its root system is full rank.
Moreover, he shows that each connected component of the Dynkin diagram of this root system has
the same Coxeter number. Now just do some combinatorics: find all Dynkin diagrams of rank 24
such that all components have the same Coxeter number; there turn out to be 23 of them. For
example, E8 and D16 both have Coxeter number 30, so E8 ×D16 is on your list. Finally, for each
of these 23 cases, study the ways to extend that root lattice to a self-dual lattice, like D16  D+

16,
and show that there is a unique way up to outer automorphisms.

Here’s how this works in general. Suppose you have an even lattice L. Even extensions of this
lattice are classified by subgroups I ⊂ ∆(L) which are isotropic in the sense that the quadratic
form trivializes on I. Then ∆(L + I) = I∨/I, where I∨ ⊂ ∆(L) = ∆(L)∨ is the dual subgroup.
(Orthogonal subgroup for the quadratic form on ∆(L).) It could happen that L+ I has more roots
— for example, D+

8 = D8 + {0, σ} = E8, because in rank 8, the half-spinor has length2 8/4 = 2.
If L is a root lattice, then ∆(L) is just a product of groups indexed by the components: ∆(An) =

n+ 1; ∆(Dn) = 4 or 22 according to the parity of n; E6,7,8 = 3, 2, 1. Specifically, these numbers are
the numbers of “1”s appearing in the markings on the affine Dynkin diagram. There is a classical
notion: a code over q is a subgroup of Fnq . So subgroups of ∆(L) are also some types of codes. The
condition that I ⊂ ∆(L) is isotropic for the quadratic form generalizes being an doubly even code
(over F2). If you rule out that L+ I should have new roots, then that’s like ruling out codewords
of Hamming weight 4. In classical coding theory, a word is a tuple of symbols, perhaps drawn from
a finite field, and a code is a set, perhaps a group, of words. The Hamming weight of a word is
the number of nonzero letters in the word. The idea (if your code is a group) is that when you
transmit a message, perhaps some of the letters get changed because of noise in the transmission.
If that number is less than half the minimal Hamming weight of your code, then you can definitely
correct them back to being in your code. So codes with high minimal Hamming weight have good
error correction properties. The subgroups of ∆(L) that we care about are basically the self-dual
codes of high minimal Hamming weight.

Given a Dynkin diagram X, I’ll write Niem(X) for the corresponding Niemeier lattice. From the
remarks above, you see that Out(Niem(X)) ⊂ Aut(X). For example, Aut(A12

2 ) = 2 o Σ12. It turns
out that in this case the code is Golay’s ternary code, and Out(Niem(X)) = 2M12. Indeed, ∆(A2) =
Z/3, so ∆(A12

2 ) = F12
3 , and 2M12 is its automorphism group. Similarly, Out(Niem(A24

1 )) = M24

because the code in question is the binary Golay code inside ∆(A24
1 ) = F24

2 .
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The groups Out(Niem(X)) were rediscovered by the moonshiners when they were thinking about
mock modular forms. Because mock modular forms have a “shadow”, they called their new moon-
shine “umbral”. So they called these the umbral groups: Umb(X) := Out(Niem(X)). So for
example Umb(A24

1 ) = M24 and Umb(A12
2 )) = 2M12.

3.2. Leech lattice. Take a root lattice LX , of constant dual Coxeter number h. There is a vector
ρ ∈ L∨X that pairs with all the simple roots to 1. In fact 2ρ ∈ LX : it is the sum of the positive
roots. Using the evenness of the extension LX → Niem(X), in fact ρ ∈ Niem(X).

Since X has constant Coxeter number h, we can consider the function

〈ρ,−〉 mod h : Niem(X)→ Z/h.

Its kernel is a sublattice Niem(X)0 ⊂ Niem(X) of index Z/h. (The index of a subgroup is the quo-
tient, thought of as a set [cardinality] or orbit or quotient group or whatever you have.) Thus
∆(Niem(X)0) is an extension of shape (Z/h).(Z/h). Now you do a calculation, which holds
universally provided the rank is divisible by 24: ∆(Niem(X)0) = (Z/h)2 with the split qua-
dratic form. There are various Lagrangian subgroups: one of them corresponds to the inclusion
Niem(X)0 ⊂ Niem(X). There is a unique Lagrangian subgroup that intersects this one transversely.

(You should think of this (Z/h)2 with the split quadratic form as a “cotangent bundle” T ∗(Z/h).
The extension Niem(X) ⊃ Niem(X)0 corresponds to the zero section. It turns out that the La-
grangian subgroups of (Z/h)2 are precisely the conormal bundles of subgroups of Z/h. The unique
transverse Lagrangian subgroup is the cotangent fibre at the origin.)

So there is one other distinguished extension Niem(X)0 ⊂ L self-dual. It turns out that this L
never has roots — you killed the roots you had when you passed to Niem(X)0, and what you have
to calculate is that you don’t get any new ones under the extension, and this again uses something
about the code not having words of low Hamming weight. So, in the rk = 24 case, it is a Leech
lattice. Note that the selection of ρ broke the Weyl(X)-action, but it did not break the action by
Aut(X). Of course, the Niemeier construction itself broke Aut(X) Umb(X).

These 23 constructions of the Leech lattice are what Conway and Sloane call the hol(e)y con-
struction. The reason for the name is that it makes manifest a subgroup of Co0 isomorphic to
Umb(X).

Here Co0 := O(Leech). Since Leech has no roots, this is also Out(Leech). Obviously Co0 is
not simple: it contains a central ±1. Conway showed that this is the only reason it isn’t simple:
Co1 := Co0/ ± 1 is simple. This is somewhat remarkable. For example, Co0 cannot contain any
elements of determinant −1, as otherwise it would emit a nontrivial surjection (the determinant).
So Co0 ⊂ SO(24).

The group Co1 appears as the symmetries of a few things.
First, it is the (projective) automorphism group of Leech.
To tell you the second, I need to tell you a rather remarkable fact about the lattice II25,1. By

definition, IIm,n ⊂ Rm,n is the even unimodular lattice of indefinite signature (m,n). The word
“the” is justified because, unlike in the definite-signature case, as long as m,n > 0, this lattice is
unique (up to isomorphism) if it exists, and it exists if and only if m − n ∈ 8Z. The roots in a
definite-signature lattice are the integral points on a sphere; in the Lorentzian signature (25, 1),
they are the integral points on a 25-dimensional hyperboloid. Pick a hyperplane defining the notion
of “positive”, and look at the simple roots, i.e. those closest to this hyperplane. In the Euclidean
signature case, these are points near (just barely north of) the equator in the sphere of roots. Now
they are just north of a 24-dimensional hyperboloid. You are used to the idea that there is one
simple root for each dimension, but in Lorentzian signature there can be more than that. You can
still draw a sort of “Dynkin diagram” that encodes the angles between the simple roots. The rather
remarkable fact is that in this case, this 24-dimensional Dynkin diagram is the entire Leech lattice:
there is one simple root for each vertex in Leech. And the angles are related to the Leech metric.
So Co0 = Aut(Dynkin diagram) = Out(II25,1).
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This second representation of Co1 is intimately related to the first. There is a third represen-
tation that I don’t know a satisfactory relationship. It was discovered by Duncan in his thesis.
In their book, Frenkel–Lepowsky–Meurman developed a twisted orbifold construction that inputed
the Leech lattice holomorphic CFT VLeech and outputted the Monster CFT V \. Duncan investi-
gated what would happen if you ran the same construction, but inputed the N=1 supersymmetric
holomorphic SCFT built from E8. (I.e. VE8 ⊗ Fer(8), with supersymmetry that couples the free
fermions to the 8 Cartan bosons.) What Duncan discovered was a N = 1 holomorphic SCFT V f\

with no continuous symmetries (just as Aut(V \) = M has no continuous elements), and he showed
that V f\ was the unique such holomorphism SCFT with this property of central charge c = 12.
(The corresponding uniqueness of V \ is still open.) Finally, he showed that AutN=1(V f\) = Co1.

In some sense there is a one-way relationship. If you forget the susy, V f\ is a very easy object: it
is the lattice CFT of the (integral but not even) lattice D+

12. So its susy-destroying automorphism
group is SO+(24), the image of Spin(24) in the half-spin representation. Cohomological calculation:
Co0 = O(Leech) ⊂ O(24) has trivial Schur multiplier H2 (and trivial abelianization H1), and so
lifts (canonically) to Spin(24). Actually I’ve been sloppy: since Co0 does not contain reflections,
although there is only one Leech up to O(24)-action, there are two chiralities / oriented isomorphism
classes. For one, but not the other, of these chiralities, the map Co0 → Spin(24)→ Spin+(24) that
you get factors through Co1. Now another calculation: For that chirality, and not the other,
there exists a unique spin-3/2 field in VD+

12
. A final calculation: The conformal vector is the

unique Co0-fixed field of spin-24 (this is just because the 24-dimensional real representation is
simple). These together imply that that unique spin-3/2 field is, up to a conventional scalar, an
N = 1 superconformal vector, and with this vector you get V f\. All together, these give a map
Co1 → AutN=1(V f\). Final ingredient is a nontrivial theorem: Co1×±1 is a maximal subgroup of
SO+(24), and −1 does not fix the supersymmetry (nor do any of the continuous symmetries). So
the map Co1 → AutN=1(V f\) must be an iso.

What is missing from this story is how to go back. Can you use the geometry of V f\ to construct
the Leech lattice? I don’t know. Not in general: the same discrete subgroup of O(n) can be O(L)
for inequivalent L’s. So you will need some other special facts about the problem.

3.3. A conjecture. Recall that, according to Stolz–Teichner, an N = (0, 1) SCFT Q of anomaly
• = 2(cL − cR) represents a TMF class of cohomological degree •, whose image in MF−•/2 is

Z(Q)η−•. If the SCFT has N = (1, 1) susy, then Z(Q) ∈ Z is a constant. So the (1, 1) SCFTs are
basically the polynomials in η.

For example, Z(V f\) = 24, and (cL, cR) = (12, 0), and V \ has a left-moving susy and its right-
moving half is trivial so it is automatically (1, 1). So V f\ represents a class “24∆−1” in TMF24.
Indeed, there is a unique such class. Integrally, ∆−1 itself is not a TMF class. One of the stronger
pieces of evidence, I think, supporting the Stolz–Teichner proposal (at least in the weak form that
SQFTs admit a TMF-valued deformation invariant, not a priori a complete invariant) is that, as
far as we know, the subtle divisibility properties of TMF classes are satisfied by all SQFTs.

We also have the class ν, represented by S3
1 , or equivalently, in the deep IR, by Fer(su(2)) (since,

for this amount of String structure, the bosons gap out). The product 24∆−1×ν is then represented
by V f\ × Fer(su(2)). This product turns out to vanish in TMF. But there is a more to say. The
class ν is a cusp form: it has a zero at τ = i∞. So 24∆−1ν is formally a regular function at i∞.
And indeed, by inspecting the elliptic spectral sequence, you discover that this is the class I earlier
called “σ” that generates Tmf21 ∼= Z.

If the Stolz–Teichner picture is correct, saying that the TMF-valued class in a complete invariant,
then it says that V f\ × Fer(su(2)) can be deformed in the space of compact (0,1)-SQFTs to one
with spontaneous supersymmetry breaking.

Moreover, that deformation can be chosen so that its partition function [more precisely, the
partition function of the corresponding SQFT with tubular ends] blows up with only a simple
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pole at q = 0. Moreover, after better understanding the topological meaning of “regular at the
cusp,” I think that deformation should be unique up to higher-order deformation, since I think [but
haven’t checked] that the next cohomology group vanishes. These are not at all obvious statements
physically, and would be interesting to investigate.

Moreover, since M24 ⊂ Co1, it acts on V f\ and hence on V f\S3
1 . Conjecture [application of

Stolz–Teichner proposal]: 24∆−1 ∈ TMF24 has a natural Co1-equivariant refinement. 24∆−1ν ∈
Tmf21 has a natural Co1-equivariant refinement.

Topological Mathieu Moonshine Conjecture: (This M24-equivariant refinement of) 24∆−1ν
is nullhomotopic in M24-equivariant topological lunar forms (i.e. allowing a pole only at the infinite
cusp). Note: I think it is not nullhomotopic Co1-equivariantly, even with much worse poles, because
I think I can rule this out by calculating its image of Co1-equivariant KOMF (which is just to say:
by playing modularity against integrality).

To tell you the more general case, I have to tell you one more feature of umbral moonshine.
Suppose your Niemeier lattice had Coxeter number h > 2. Then the umbral moonshine functions
are not scalar-valued mock-modular forms. Rather, they are vector-valued. The vector space in
question has a categorification: it is the SL2-module associated to the modular tensor category
associated to SU(2) at level h− 2. This is precisely the level with which the left copy of SU(2) acts
on S3

h−1.

S3
h−1, in the deep IR, is not purely antiholomoprhic (unless h = 2). But the holomorphic part is

precisely a WZW algebra for SU(2) at level h− 2. This means that if you work equivariantly with
respect to this holomorphic SU(2), what you have left is naturally an antiholomorphic, and hence
N = (∞, 1)-supersymmetric, object. The only correction is that it is an object whose partition
function transforms as an SU(2)h−2-character and not a scalar. Which is precisely what we want!

Physically, what’s going on is the following. The modular tensor category for SU(2)h−2 selects a
3D topological quantum field theory. This antiholomorphic N = 1 theory is a boundary condition
for the 3D TFT. For any MTC C, one can consider the moduli space of its N = (0, 1) boundary
conditions. This is not naturally Z-graded, but it is graded by the torsor Z+ c where c ∈ Q/Z is
the central charge of the MTC (up to conventions). This space is formally a spectrum, and Stolz–
Teichner would predict it is a TMF-module spectrum, which deserves the name “C-equivariant
TMF.” It is still open to construct C-equivariant TMF, but Henriques and Morrison have con-
structed “C-equivariant TMF ⊗ Q,” which is to say they’ve correctly controlled the Galois on the
(well-defined) C-equivariant TMF⊗ C.

Given my narrative, you could reasonably think that my conjecture is that V f\ × S3
k has a

(hopefully unique) lunar nullhomotopy in an SU(2)h−2 ×Umb(X)-equivariant way. This is almost
what I want. But it turns out to not quite reproduce the shadow functions of the original umbral
moonshine: it produces shadows which are precisely the degree-24 permutation representation, but
actually I need to take that one and subtract off some copy of the permutation representation on
the components of the Dynkin diagram.

Recall that the Umb(X)-action on Leech arose through the hol(e)y construction from Niem(X).
This construction is reversable (to go the other way, you start with a deep hole in Leech), and is
a sort of “gauging” construction for lattices, where the gauge group is a cyclic group. Indeed: in
terms of lattice VOAs, the hol(e)y construction is exactly a gauging by Z/h. I think of V f\ as a
sort of “quantum version” of Leech in a way I cannot make precise. There is a “quantum version”
of Z/h: it is the modular tensor category corresponding to SU(2)h−2. One way this occurs: this
MTC has a Z-form, whose mod-h reduction is the semisimplification of RepFh(Z/h), at least when
h is prime.

I think that each deep hole in Leech should correspond to an action of the SU(2)h−2 fusion cate-
gory (forget the braiding) on V f\. By definition, an action of a fusion category C on a holomorphic
VOA V is a sub-VOA W ⊂ V together with an equivalence Rep(W ) ∼= ZDrinfeld(C), where ZDrinfeld
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is the Drinfeld centre: you think of W as the fixed points of the C-action. You think of the fusion
rules of C as providing a hypergroup, and the associator of C as being the anomaly of the action.

Conjecture: For each Niemeier lattice, there is an action of the SU(2)h−2 fusion category on
V f\, commuting with the Umb(X)-action.

I know how to construct the correct action for h = 2 (trivial), h = 3 (X = A12
2 ), and h = 4

(X = A8
3). The reason I can do this is that because in those cases the fusion category is an extension

of cyclic groups. In all other cases the fusion category is inherently non-groupal in the sense that
its simple composition facts have noninvertible elements, and we don’t have good tools to do that
representation theory. It’s not impossible: Brandon Rayhoun has some techniques, and he has used
them to find what look like the correct actions for the next couple Niemeier lattices. His methods
seem to work when h in the single digits, but his methods break down when h gets too large.

There is also an action of this fusion category on the deep IR of S3
h−1 by Verlinde lines. You

should think of the Verlinde lines as a sort of “quantum centre” of the SU(2) at this level: the
classical centre is level-independent, but the quantum centre depends on the level. Neither of these
actions is separately gaugeable, but, using that this fusion category is actually modular, there is a
way to “gauge the diagonal action.”

Topological umbral moonshine conjecture: The diagonal gauging (V f\×S3
h−1)�SU(2)h−2 is

nullhomotopic in Umb(X)×SU(2)h−2-equivariant topological lunar forms, and the space of nullho-
motopies is connected. Equivalently, V f\×S3

h−1 is Umb(X)×SU(2)h−2-equivariantly nullhomotopic,

but where the (geometric) SU(2)h−2-action on S3
h−1 is skewed by a (quantum) fusion-categorical

action of SU(2)h−2 on V f\.
In other words, the conjecture is “just” a cohomology calculation. If everything is set up correctly,

the nullhomotopy will necessarily reproduce the umbral moonshine functions, just because those
are unique.

Some words of warning. There are good reasons to be suspicious of this conjecture. First, I am
worried that it doesn’t quite reproduce the growth rates of umbral moonshine. Second, Cheng et
al calculated the ’t Hooft anomalies of most of the umbral group actions on the putative umbral
moonshine SQFTs. Separately, Treumann and I calculated the anomaly of the Co1 action on V f\,
and the restriction of this class to the umbral groups. The anomalies don’t match, and I don’t
think the as-yet-unknown gauging can meaningfully adjust them. The values calculated by Cheng
et al don’t seem to follow any rhyme or reason, and certainly there is not a known formula that
interpolates them. So there is a missing piece of mathematics: either the Cheng et al calculations
have an error, which is highly unlikely, or, more likely, there is some as-yet-undiscovered rule that
assigns a cohomology class to each Niemeier lattice. Of course, there is a rule: Cheng et al did
the calculation, so the rule can be “look at the lookup table”. But that’s a stupid rule: there
should be an organic one. I think finding this rule (or, unlikely, finding an error in the Cheng et al
calculations) would help a lot to clarify the umbral moonshine statements.
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