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The famous Morita equivalence Cliff(8) ' R appears in many contexts, most
notably as a manifestation of the eight-fold Bott periodicity of KO. It can be
explained in many ways. The goal of this talk is to give yet another explanation,
this time in terms of (super) symplectic geometry.

Clifford algebras have a natural (super) symplectic interpretation. Let R0|n de-
note the “odd” manifold with coordinate ring C∞(R0|n) =

∧• Rn = R[x1, . . . , xn],
where the coordinate functions are Grassmann variables, so that xixj = −xjxi
and x2i = 0. Odd manifolds admit a calculus of differential forms fully analogous
to the even case with one notable exception: since xi is odd, the one-form dxi
is even, and so dxi ∧ dxj = dxj ∧ dxi with no sign, and dx∧2i 6= 0 (as it has no

reason to vanish). In particular, R0|n admits a positive definite symplectic form
ω = 1

2

∑
i dx∧2i . Since R0|n is a vector space and ω translation-invariant, (R0|n, ω)

admits a canonical quantization to its Weyl algebra, which in this case is nothing
but the Clifford algebra Cliff(n) = R〈x1, . . . , xn〉/(xixj + xjxi = 2δij).

Linear symplectic geometry can explain Morita equivalences. Suppose that
(M,ω) is a symplectic vector space with Weyl algebra Weyl(M) =

⊕
(M∗)⊗n/([x, y] =

{x, y}, x, y ∈ M∗). Given a linear Lagrangian L ⊆ M cut out by linear equations
L⊥ ⊆ M∗, the corresponding left Fock module is Fock(L) = Weyl(M)/L⊥. By
construction, the commutant of Weyl(M) in End(L) is R, and so up to issues of
functional analysis that are absent in the purely-odd case, Fock(L) is a Morita
trivialization of Weyl(M). This in particular “explains” the two-fold Bott perio-
dicty of KU. Indeed, the complex Clifford algebra Cliff(2) = Cliff(2) ⊗ C is the
canonical quantization of the holomorphic symplectic manifold C0|2 with symplec-
tic form 1

2 (dx∧2 + dy∧2), which admits a holomorphic linear Lagrangian spanned
by the lightlike vector x + iy. Linear symplectic geometry does not, however,
explain any nontrivial Morita equivalences of real Clifford algebras, because the
positive-definiteness of 1

2

∑
i dx∧2i prevents R0|n from admitting Lagrangian sub-

supermanifolds.
A Hamiltonian action of a connected and simply connected Lie group G on a

symplectic manifold M is determined by a comoment map µ : Lie(G)→ C∞(M),
considered as a Lie algebra under the Poisson bracket. The corresponding ac-
tion is infinitesimally generated by the Hamiltonian vector fields {µ(g),−}, g ∈
Lie(G). The Hamiltonian reduction M//G is the space µ−1(0)/G with coordi-

nate ring
(
C∞(M)/(µ(Lie(G)))

)G
. Assuming the action of G on M is not too

singular, M//G is again a symplectic manifold and µ−1(0) is a Lagrangian cor-
respondence between M and M//G. The story of Hamiltonian reduction can
be quantized. A quantum Hamiltonian action of G on an associative algebra
A is determined by a map µ : Lie(G) → A, considered as a Lie algebra un-
der the commutator bracket; the corresponding action is infinitesimally gener-
ated by [µ(g),−], g ∈ Lie(G). The quantum Hamiltonian reduction A//G is the

ring
(
A/(µ(Lie(G)))

)G
= EndA

(
A/(µ(Lie(G)))

)
, where (µ(Lie(G))) now denotes
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the left ideal generated by the image of µ. By construction, the cyclic module
A/(µ(Lie(G))) is a bimodule between A and A//G. If the action is “not too
singular,” A/(µ(Lie(G))) is a Morita equivalence.

When M = R0|n with its positive-definite symplectic form, there is a subgroup
of the full symplectomorphism group given by the linear symplectomorphisms
Sp(0|n) ∼= SO(n). (The “metaplectic group” for R0|n is Spin(n).) Thus repre-
sentations of compact groups provide linear symplectic actions on odd symplectic
manifolds, which are automatically Hamiltonian if the group is connected and
simply connected. It is natural to focus on linear symplectomorphisms, as they
canonically quantize. Linear actions never satisfy the Marsden–Weinstein condi-
tion — the classical moment map always has a quadratic singularity at the origin —
but the quantum action is “not too singular” as soon as the reduction Cliff(n)//G
is non-zero. The main results of the talk are the following calculations:

(1) Cliff(4)//Spin(3) ∼= H, the purely-even quaternion algebra, where Spin(3)
acts on R0|4 via the real spin representation.

(2) Cliff(7)//G2
∼= Cliff(−1), the Clifford algebra with one generator and

oppositive signature to that of Cliff(1), where the exceptional group G2

acts on R0|7 via its defining representation.
(3) Cliff(8)//Spin(7) ∼= R, where Spin(7) acts on R0|8 via the real spin repre-

sentation.

For comparison, the vector representation of Spin(n) on R0|n is always “too sin-
gular.” The calculations are explicit. For example, G2 ⊆ SO(7) is by definition
the stabilizer of the cubic function ε = x1x2x7 − x1x3x6 − x1x4x5 − x2x3x5 +
x2x4x6 + x3x4x7 + x5x6x7 on R0|7, and Spin(7) ⊆ SO(8) is the stabilizer of the
quartic ε(x8 + x1x2x3x4x5x6x7) ∈ Cliff(8).

How does this story relate to twisted functorial field theories and factorization
algebras? My hope is that it can be used to explain the 576-fold periodicity of
TMF. There is a conjectural analogy due in part to Stolz and Teichner and in part
to Douglas and Henriques relating:

1-dim N = 1 SUSY QFT KO real Clifford algebras Cliff(8) ' R
2-dim N = 1 SUSY QFT TMF free fermion chiral CFTs Fer(576) ' R

The existence of such an analogy is conjectural, and also the lower right box is
conjectural. With luck, quantum Hamiltonian reduction could establish the Morita
equivalence conjectured in the lower right box. This would provide supporting
evidence for the table as a whole.
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