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Akshay asked me to talk about orbifolds of vertex algebras, and it is a bit daunting because as
you will find out, I barely know what is a vertex algebra and certainly don’t know the finer points
about C2 cofiniteness and so on. Rather, I want to give a general description and I hope the experts
will fill in the more technical steps during the discussion.

In quantum field theory, the word “orbifolding” is a synonym for “gauging a finite group of
automorphisms.” Here is a very high level algorithm that you could try to implement.

Whatever a “quantum field theory” is, it is supposed to be “local” in spacetime. Now suppose
that you have a qft Q and a finite group G of automorphisms. If those automorphisms preserve
locality, then you should be able to place Q on any spacetime M equipped with principle G-bundle
P : M → BG. This principle G-bundle is called a “background gauge field,” and a physicist would
say that she has used the action of G on Q to couple Q to background gauge fields. For instance,
perhaps Q is modelled by a factorization algebra on M , and you trivialize P in patches. Then you
place Q in every patch, but glue the patches together by using the transition maps in P and the
action of G on Q. If Q were a space over BG, then I would be describing the associated bundle
Q×G P .

So far, we have not “gauged G.” We have just encoded the symmetry in some way. To gauge
the G-action requires a second step, which is to somehow “dynamicalize” or “integrate out” the
choice of principle G-bundle. What will happen is that this step can be obstructed, and if it is
unobstructed, then there might be choices. Physicists call the obstruction an anomaly, and the
choices are called anomaly cancellation data or, when G is a finite group, they are also called
discrete torsion. These obstructions and choices arise because when a physicist says that she knows
a qft, she usually means this operationally : she knows the algebra of operators/observables in the
qft, the (normalized!) expectation values, etc. In particular, she has probably made some choices
for how to parameterize things, like choosing an overall notion of “zero energy,” but some of those
choices are “unphysical” and so don’t need to be preserved by the G-action. However, gauging the
G-symmetry might require more of those choices to be rigidified.

1 Warm-up 1: quantum Hamiltonian reduction

Let me warm up by explaining this in a very down-to-earth example for mathematicians. By
definition, 0+1D qft = quantum mechanics. Schrödinger told us that a good way to model a
quantum mechanical system is to describe it by a Hilbert space H and a self-adjoint unbounded
operator Ĥ called the Hamiltonian which measures the overall energy of a state. If you’d like to
assume dimH <∞, that is fine for what I am going to say.

What are the automorphisms of this system? A mathematician might assume that the auto-
morphisms of the QM system modelled by (H, Ĥ) are the automorphisms of the model, i.e. the
subgroup of U(H) that commutes with Ĥ. But this is not correct. The reason is that (H, Ĥ) is a
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model — a coordinatization — of the QM system, and is not the QM system itself. A vector in H
is not a state. Rather, the (pure) states in the QM system are the lines in H (and the mixed states
are convex combinations of pure states), and so we shouldn’t work with the unitary group U(H)
but rather with the projective unitary group PU(H). There is another way to say this. The Hilbert
space H is not itself physical — its projectivization PH is, and another thing which is physical
is the von Neumann algebra A := B(H) of bounded operators (and various things related to it,
like the Jordan algebra of self-adjoint operators, or various collections of unbounded operators).
And indeed PU(H) = Aut(A). A determines H only up to non-unique isomorphism. So we really
should work with the subgroup of PU(H) that commutes with the Hamiltonian.

Remark: Actually, there is no reason why an automorphism needs to commute with the
Hamiltonian, because Ĥ itself isn’t physical. This is because there is a fundamental ambiguity in
the overall energy scale, which is related to the ambiguity in the phases of vectors representing
pure states. So a symmetry only needs to satisfy gĤg−1 = Ĥ+E for some constant E (depending,
of course, on g). For finite (or compact) groups of automorphisms this doesn’t matter, but if
you want to set up the right theory for infinite groups, it does. Also there could be antiunitary
automorphisms, but those are importantly different: they involve reversing the direction of time,
and so are not totally “local.”

Now, suppose you have a group G of automorphisms of (H, Ĥ). If G really is represented
linearly on H, then the result of gauging aka orbifolding the G-symmetry would be modelled by the
Hilbert space of (co)fixed points H/G. Let me explain this by an example. Suppose that we are
looking at a sigma model, i.e. a quantum mechanical particle moving in some configuration space
X, with a second-order equations of motion. Then H = L2(X). If G acts on X geometrically,
then the “orbifold theory” should be just a particle moving in the orbifold X/G, and you expect
L2(X/G) = H/G.

If, however, you have only a group acting projectively, then there is no “(co)fixed points.”
Rather, if you have G→ Aut(A) = PU(H), then in order to define the orbifold theory, you need to
lift G along U(H)→ PU(H). The fibre of this map is a U(1), and so the obstruction to doing this
lifting is a class α ∈ H2

gp(G; U(1)). This class α (or perhaps a cocycle for it) is called the anomaly
for the G-action.

Let me say this again completely algebraically because I want to explain what happens if you
don’t have direct access to H. If you have a von Neumann algebra A, how do you know if it
is isomorphic to B(H) for some H? The answer is that this happens if and only if A is Morita
invertible in an appropriate world of von Neumann algebras and Hilbert bimodules. This is in turn
the same as asking that the monoidal category Bimod(A) of A-A-bimodules should be equivalent to
the trivial category Vec, i.e. we are asking that A has a unique simple bimodule (and we are asking
for some complete reducibility). It is also equivalent to a dualizability condition on A together
with A being central simple, i.e. that its centre is trivial. Central simplicity of A is basically the
Heisenberg uncertainty principle: for every nontrivial operator, there is some other operator so that
you must have some uncertainty in their joint spectrum.

You could of course make sense of these requests in pure algebra over any field (or even over
any scheme), and then you will recover the notion of A being Azumaya. By the way, even in QM
there is a good reason for working with Azumaya algebras which are not matrix algebras. As you
know, an Azumaya algebra over some base is a thing which is locally a matrix algebra, but not
globally. Geometrically, it is a bundle of projective spaces. In QM, this issue arises any time you
have a family of QM systems parameterized by some base, again because an actual QM model is
a projective space and not a Hilbert space, so projective bundles, not vector bundles, are what
describe parameterized systems.

Ok, so let’s say that A is an Azumaya algebra. Then the group A× of invertible elements of
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A is a form of GLn, and Aut(A) = A×/Gm is a form of PGLn. (Exercise: if Bimod(A) = Vec,
then A× → Aut(A) is surjective. I.e. every automorphism is inner[izable]. This statement “every
automorphism is inner[izable]” is one of the many things that deserves the moniker Noether’s
theorem.) The anomaly α ∈ H2(G;Gm) for a map G → Aut(A) exactly measures whether the
action of G can be innerized consistently.

Now I can tell you the result of gauging the G-action at the level of algebras. Suppose you have
chosen a trivialization of α, i.e. a map G→ A×, or equivalently a map µ : CG→ A from the group
algebra. This choice is a quantum comoment map. Let’s take the trivial G-module. Then you can
look at theA-moduleA⊗CGC, and the quantum Hamiltonian reduction ofA�G := EndA(A⊗CGC).
The point is: when A = End(H) is a matrix algebra, then A �G = End(H/G) as desired.

This algebra can be described differently. Using just the map G→ Aut(A), you can define the
fixed subalgebra AG. Exercise: there is an algebra homomorphism

AG → A �G.

It is a choice of way to promote the non-Azumaya algebra AG to an Azumaya algebra A �G.
In this case it is a quotient, but in the VOA case it will be an extension. Anyway, the kernel

of this homomorphism depends on the choice of trivialization of α. One way to say it is the
following. Let CαG denote the α-twisted group algebra, so that the map G → Aut(A) selects
canonically a map CαG → A, and AG is its commutator. (Specifically, you *define* CαG to be
the sum of one-dimensional subspaces of A, where the gth subspace is the subspace living over g ∈
Aut(A).) Exercise: since A is Azumaya, there is a canonical monoidal equivalence Bimod(AG) ∼=
Bimod(CαG). Now a choice of trivialization of α is the same as choice of homomorphism CαG→ C,
which is the same as a choice of some specific algebra object in Bimod(CαG), which is the same as
the choice of some specific algebra object in Bimod(AG), which is the same as a choice of specific
quotient/extension of AG.

2 Warm-up 2: characters

How would a high-energy physicist detect that some action of G on A has an anomaly, in the
quantum mechanics case where A = B(H) for some Hilbert space H? High-energy physicists are
very good at calculating partition functions aka characters. Given a Schrödinger model (H, Ĥ),
the partition function is the function

Z(τ) := TrH(exp(−τĤ)).

What happened is that we have taken the time evolution operator exp(itĤ), and Wick-rotated to
imaginary time t = iτ . Depending on the details of your model, of course, Z(τ) might diverge. But
for reasonable QM models, Ĥ is self-adjoint and bounded below and has discrete spectrum which
grows not too slowly, and so exp(−τĤ) is trace-class if τ > 0.

What is Z(τ) a function of? Well, τ ∈ R>0. But really we should think of τ as the circumference
of a Euclidean-signature circle R/τZ, and so Z(τ) is a function on the moduli space of circles: these
circles are the possible “spacetimes” for the 0+1D qft, and Z(τ) is the value of the “path integral”
over fields on the circumference-τ circle. Actually, it isn’t really a function at all because as I
mentioned above we already had to make some unphysical choice to write down Ĥ. If you change
Ĥ 7→ Ĥ +E, then you change Z(τ) 7→ e−τEZ(τ). So we should really think that there is some line
bundle on the space of circles and Z(τ) is a section of it.

Suppose now that you have some group G of automorphisms. If G acts linearly on H — if
you have trivialized the anomaly — then it is completely natural to ask about the character of the
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G-action, i.e.
Zg(τ) := TrH(g exp(−τĤ)).

A physicist might think of this as taking a circumference-τ circle and inserting g at some point
along it, and might call it the one-point function of the operator g. The fact that g is a symmetry
— that it commutes with Ĥ — means that it is a topological operator : even if you were to insert
other operators from A = B(H), the exact location of g wouldn’t matter, but only its topolog-
ical location relative to the locations of the other insertions. [In general, if you insert operator
ai ∈ A at time τi, for i = 1, . . . , n, with τ1 < τ2 < · · · < τn, then there is an n-point function
TrH(exp(−τ1Ĥ)a1 exp(−(τ2 − τ1)Ĥ)a2 . . . exp(−(τn − τn−1)Ĥ)an exp(−(τ − τn)Ĥ)). It depends on
the exact values of the τi except when the ai are topological, in which case it only depends on
their cyclic order. Also, you are forbidden from having τi = τj by another of the things called
“Heisenberg uncertainty.” Well, if [ai, aj ] = 0 then it’s ok, but only then.]

Let’s suppose that G is finite and that you want to gauge the G-action. Again let’s start with
the case when G is acting linearly i.e. without anomaly. Then the gauged=orbifold theory would
have partition function

Zorb(τ) :=
1

|G|
∑
g∈G

Zg(τ) =
∑

[g]∈G/G

1

|CG(g)|
Z[g](τ).

This is a result of Frobenius. On the right-hand side, G/G = hom(S1,BG) means the set of
conjugacy classes in G, and CG(g) is the centralizer of g in G. The physical interpretation is that
we have summed over all G-bundles P on the circle, and the division records that G-bundles have
automorphisms.

The discrete torsion appears for the following reason. Suppose you pick some 1-dimensional
representation β ∈ H1(G; U(1)). Then you can also consider

Zorb,β(τ) :=
1

|G|
∑
g∈G

β(g)Zg(τ).

Note that this corresponds to changing the trivialization of the anomaly, but it does not change
the action of G on A. A physicist would think of β(g) as being a Dijkgraaf–Witten term in the path
integral.

Let me dwell a moment on this point that G/G = hom(S1,BG). It means that Zg(τ), as
a function of both g and τ , should be understood as a function on the moduli space of circles-
equipped-with-a-G-bundle, where by “circle” I mean “S1 with some circumference.”

Now let’s suppose that G → Aut(A) has some anomaly α. Where lives an expression like
“TrH(g exp(−τĤ))”? We do not know what g is as a matrix, but we do know what it is up
to scale. So there is some line in which TrH(g exp(−τĤ)) lives. More precisely, there is a line
bundle

∫
S1 α ∈ H1(hom(S1,BG); U(1)), and TrH(g exp(−τĤ)) lives in this line bundle. This line

bundle goes by many names. One of them is the transgression and another is the slant product.
See, for any g ∈ G and for any cocycle representative of α, you can write down the cocycle
ıgα := α(g,−)/α(−, g), which is a cocycle not on all of G but on the centralizer CG(g). This cocycle
is precisely the monodromies of the line bundle

∫
S1 α for loops in G/G based at the conjugacy

class [g].
A trivialization of α would trivialize this line bundle. And you need to trivialize this line bundle

if you are going to make sense of the sum in Zorb. So this line bundle being untrivializable would
be a symptom of there being a nonzero anomaly, and hence of the problem being ungaugeable.
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I should warn that there is a loss of information in the passage α 7→
∫
S1 α. For example, I think

that if G = (Z/2)2, then this map has kernel. But if G is an elementary abelian group of odd order,
then

∫
S1 is faithful.

3 Holomorphic CFTs and twisted modules

Let’s now look at 2D = 1+1D qft. There is not a complete definition of “2D qft,” but there almost
is. Instead of a single Hamiltonian, a 2D qft has a energy-momentum or stress-energy tensor. It
is a “tensor” in the sense that it is a symmetric 2-tensor: it measures the response of the QFT to
small changes to the metric: Tij = ∂Q/∂gij . In 2D, a symmetric 2-tensor has three components.
After polarizing (i.e. choosing lightlike coordinates z, z̄), these components are T := Tzz, T̄ := Tz̄z̄,
and Tr(T ) := Tzz̄ ∝ Tijg

ij . The third of these measures the response to rescaling the metric. The
qft is conformal when Tr(T ) = 0. In this case T and T̄ commute, and you can define the chiral and
antichiral operators to be those operators which commute with T̄ and T , respectively, and these
are each VOAs, and you could try to define “cft” to mean “pair of VOAs compatible in some way,”
but no one has worked out the precise definition. The qft is holomorphic when T̄ also vanishes. In
this case, the only operational data in the qft is the VOA A of (necessarily chiral) operators. But,
just as before, this operator cannot be arbitrary: physics requires that it be “Azumaya,” which
here is the definition of holomorphic VOA: a VOA for which the category Rep(A) of vertex modules
is trivial. [I should also insist on niceness properties, like that A be C2 cofinite and N-graded and
so on. Physics insists that A be unitary. These insistences are for the experts in the room, not for
me.]

Note that Zhu’s modularity does guarantee that there is a partition function Z(τ). What is
this a function of? It is a holomorphic function of τ , and it transforms as a modular form. In other
words, it is a holomorphic “function” on the moduli space of flat 2-tori moduli global rescaling, i.e.
on the space of genus-1 curves Eτ = C/(Z⊕ τZ). “function” is in quotes because it really is now
a section of a not-necessarily-trivial line bundle.

Now let’s suppose that we have some finite group G of automorphisms of A. Analogy with the
1D case leads us to expect:

• Locality should allow us to place A on any worldsheet E equipped with a principle G-bundle
P : E → BG. In particular, when E = Eτ is the elliptic curve C/(Z⊕ τZ), then P is a pair
of commuting elements g, h ∈ G, one for the A-cycle and one for the B-cycle, considered up
to simultaneous conjugation. In particular, one should be able to define a partition function
Zg,h(τ) which is the expectation value of this configuration, i.e. of A twisted by g and twined
by h. It might not be valued in numbers but rather in some line bundle.

• There might be an anomaly (aka obstruction) α to defining/constructing a gauge=orbifold
theory A �G. If the obstruction is trivializable, there might be choices in the trivialization.
A symptom of such an anomaly might be the nontriviality of the line bundle where Zg,h takes
values.

• If we can define A �G, then its partition function will be formally an expression like

Zorb(τ) =
1

|G|
∑

P∈hom(Eτ ,BG)

Zg,h(τ)

Here (g, h) are monodromies of P around the A- and B-cycles in Eτ . The factor of 1
|G|

accommodates the automorphisms of a G-bundle.
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• If we can construct A�G, its operator algebra will not be merely the G-fixed operators AG.
Rather, it will be some new holomorphic VOA which receives a map

AG → A �G.

This map should be somehow “selected” by the trivialization of the anomaly α together with
a characterization of Rep(AG) just in terms of G and α. (Unlike in the 1D case, now the map
AG → A � G will be an extension, not a quotient, because under any reasonable niceness
hypotheses, AG will be simple as a VOA.)

Before I continue, I want to make a remark about the language. In the VOA literature, the
fixed-point subalgebra AG is sometimes called the orbifold of A by G. Sometimes it is called the
chiral orbifold. When you use those language, the gauged theory A�G is then called the full orbifold
or twisted orbifold. There is a reason for this language. Suppose you have any nice enough VOA
V . Then you can define a “full CFT” which is not holomorphic, but rather has chiral operators in
V and antichiral operators in V̄ , and its full algebra of operators is something like

A =

∫
I∈Rep(V )

I ⊗ Ī

where the integral means a coend. This is called a diagonal CFT. Then Aut(A) will include
Aut(V ) as a (proper) subgroup, and the Aut(V ) subgroup will be nonanomalous, and if you gauge
G ⊂ Aut(V ), the result will be the diagonal CFT for V G. This is an important class of examples
but it’s not the class that arises in moonshine, where you really should think of V \ as a holomorphic
CFT and not as part of a diagonal CFT. Of course, the fourth bullet point means that studying
the “chiral orbifold” AG is very close to studying the “full orbifold” A �G.

Let’s start by guessing where the anomaly α should live. Well, to do this let’s ask: where do the
choices of anomaly trivialization data live? Changing the anomaly trivialization would correspond
in particular to modifying the orbifold partition function to

1

|G|
∑

P∈hom(Eτ ,BG)

ε(g, h)Zg,h(τ)

for some numbers ε(g, h) ∈ U(1). Actually, it would be better for me to call those numbers
∫
Eτ
β or

something. If I only cared about writing down some function, then I could probably adjust these
numbers pretty willy-nilly. But I want to think of this sum as a sum over G-gauge fields, and so the
most natural thing would be to modify the sum by including a Dijkgraaf–Witten term, which in d
dimensions is a term of the form (M,P : M → BG) 7→

∫
M P ∗β ∈ U(1) for some β ∈ Hd(BG; U(1)).

So in the 2D case we expect that the choices of anomaly trivialization — the discrete torsion —
will live in H2(BG; U(1)), and so we expect that the anomaly itself will live in H3(BG; U(1)).

Remark: This expectation is correct for bosonic qfts in this dimension, but fails in higher
dimensions. The reason is that it was overkill to demand that P ∗β be an ordinary U(1)-valued
cohomology class. All we need is for it to be something which can meaningfully be integrated over
d-dimensional oriented manifolds. So really β should live in degree-d oriented cobordism of G, i.e.
Ωd

SO(BG) = hom(πdMT(SO × G),U(1)) = Hd(BG; IU(1)MTSO), which is to say it should be a
cobordism invariant of oriented-manifolds-with-G-bundle. [There’s some unitarity snuck into this
statement which is why you care about MTSO and not MTSO(d).]

Now let’s assume that we have trivialized the anomaly α and let’s inspect the formula for Zorb to
see what we can learn about A�G. Why is this reasonable? Because (the underlying vector space
of) A is itself the Hilbert space that the qft assigns to S1. This is a version of the state-operator
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correspondence. (In 1D, I’m saying that B(H) is the Hilbert space assigned to S0 = {+,−}, and
indeed B(H) = H⊗ H̄ up to issues of functional analysis.) We can break up the sum as

Zorb(τ) =
1

|G|
∑
g∈G

∑
h∈CG(g)

Zg,h(τ) =
∑

[g]∈G/G

1

|CG(g)|
∑

h∈CG(g)

Zg,h(τ).

Then the inner sum 1
|CG(g)|

∑
h∈CG(g) Zg,h(τ) looks very much like it is projecting down to the fixed

points of a CG(g)-action on something.
Indeed, this is exactly what is happening. Given an A-cycle S1 with a G-bundle [g] ∈ G/G, we

can define a g-twisted Hilbert space A(g), aka g-twisted module (or at least we can do this when
the anomaly is trivialized). It will automatically carry an action by CG(g), and we find that:

A �G =
⊕

[g]∈G/G

A(g)CG(g).

Note that the g = e summand is the subalgebra AG, and the other summands are all AG-modules.
This is the sense in which the extension AG → A �G is controlled by Rep(AG).

Ok, now let me tell you what is the twisted module. Let’s suppose that g is of order n < ∞.
Consider the n-to-one cover A1 r {0} → A1 r {0}, z 7→ zn. I’m going to place A upstairs,
and descend it to the downstairs by using the automorphism g as my descent data. This gives a
factorization algebra on A1 r {0}. If I draw in a branch cut, then I can think of this as being A
away from the branch cut, and that I put a g-symmetry defect along the branch cut. The definition
is: the g-symmetry defect is the topological defect so that if I move it over a vertex operator, the
operator gets acted on by g.

Now there is some category of factorization algebra extensions of this factorization algebra over
the origin.

If you did this in the language of VOAs, you’d find a category which is almost the category of
A-modules, except where the locality axiom is modified by g. Namely, in a vertex module M for A,
for any m ∈M and a ∈ A, there should be a vertex operator a(z)m(0) ∈M((z±1)) = M⊗C((z±1)),
and the integrality of the exponent means that you can move z around 0. Now I want instead to
look at a vertex operator valued in M⊗zk/nC((z±1)), where a is an eigenvector of g with eigenvalue
exp(2πik/n). Note that such an M is in particular an ordinary vertex module for AG.

So, up to analytic details like “admissibility” and the like, there is a category of these, the
category of g-twisted modules. I think it was Lepowsky, but maybe it was Huang, who showed
Theorem: If A is holomorphic, then the category of g-twisted modules is “one-dimensional” in
the sense that it has a unique simple object (and good complete reducibility). Warning: this
module is unique up to nonunique scalar. The module A(g) above is this simple module. The
twisted-twined partition function is

Zg,h(τ) = Tr(A(g);hqL0−c/24).

If you change g 7→ hgh−1, then you change this category is a controlled way. It follows that A(g)
carries a projective action of CG(g). What controls the projectivity? Why, it is precisely the slant
product of the anomaly α ∈ H3(BG; U(1)) to ıgα ∈ H2(BCG(g); U(1)), given by the cocycle formula
(ıgα)(h, k) = α(g, h, k)α(h, g, k)−1α(h, k, g). If you compile these together over all the g ∈ G/G
you get the transgression

∫
S1 α ∈ H2(G/G; U(1)). [Or rather, it will be this after I explain how to

really define α.]
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4 Characters

How might a high-energy physicist measure an anomaly? She is very good at calculating partition
functions, as we said already. So what she might do is to say: let me work out in what line bundle
lives the twisted twined partition functions Zg,h(τ), and whether it is or is not trivializable.

Where is this line bundle? It is a line bundle on the moduli space of elliptic-curves-with-G-
bundle, or at least this is true C-analytically. (I think if you want to work algebraically, you need
to get some Galois twistings into place, and maybe make some other corrections.) Let me call this
moduli stack MG. C-analytically, it is the following. If we choose A- and B-cycles on the elliptic
curve, then the curve is parameterized by a point τ ∈ h the upper half plane. If we also choose a
basepoint on Eτ , then the monodromies are parameterized by pairs (g, h) ∈ G×G which commute,
i.e. by (g, h) ∈ hom(Z2, G). Undoing the basepoint and the choice of cycles, we are looking at

MG(C) = (h× hom(Z2, G))/(SL2(Z)×G).

The G-action simultaneously conjugates both g and h. The SL2 action acts on τ ∈ h and also
on the pair (g, h). Anyway, given α ∈ H3(BG; U(1)), you can transgress it to a holomorphic line
bundle

∫
T 2 α ∈ H1(MG; U(1)). A version of this construction is due to Ganter.

It is an interesting exercise to work out this line bundle. It is even an interesting exercise
to work out the homotopy groups of various components in MG. I’m pretty sure that the map
H3(BG; U(1)) → H1(MG; U(1)) has a small but nonzero kernel. Specifically, I think it is injective
for many finite groups, including all abelian groups, but I think that it has a kernel of order 2 for
the dicyclic (=binary dihedral) groups.

Let’s focus on a special case where G = Z/n is cyclic. Then we expect the anomaly will like
in H3

gp(Z/n; U(1)) ∼= Z/n. If it is trivializable, then we expect no choices in the trivialization

because H2
gp(Z/n; U(1)) = 0. Pick a generator g of G and look at the (g, e) component ofMG. Its

homotopy group contains a boring copy of G. (It is boring because its monodromies in this line
bundle are trivial.) What else does it contain? Well, it contains the stabilizer of (g, e) under the
SL2(Z)-action, which is nothing other than Γ0(n).

I can never remember whether Γ0(n) is upper triangular or lower triangular. One version
contains T and the other contains only Tn.

In any case, what am I telling you? I am telling you two things. First, I am telling you that
Ze,g(τ) = Tr(A; gqL0−c/24) should be modular for the copy of Γ0(n) that contains T . (Certainly it
is valued in integral powers of q, and so is invariant under T -action.)

Applying an S-transformation gives Zg,e(τ). This should be modular for the copy of Γ0(n)
which contains Tn but not T . What does that mean? Well, it isn’t modular on the nose: it
is modular with some multiplier. This multiplier records the line bundle. In particular, Zg,e(τ)
will be an eigenvector for Tn with some eigenvalue. If the eigenvalue is trivial, that means that
Zg,e(τ) ∈ C[[q1/n]]. If the eigenvalue is exp(2πik/n), that means that Zg,e(τ) ∈ qk/n2

C[[q1/n]].
The neat calculation, which I learned from a paper of Gaberdiel, Persson, Ronellenfitsch, and

Volpato, is the following:
Proposition: Suppose that the anomaly of the G-action is k ∈ H3(Z/n; U(1)) ∼= Z/n. Then

Zg,e(τ) ∈ qk/n2
C[[q1/n]]. I.e. Tn acts with multiplier exp(2πik/n).

What do I mean by this as a proposition? One thing I mean is that it is a calculation of the
line bundle that I told you. You still have to believe some statements about VOAs that I haven’t
explained.
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5 Constructing the orbifold

Let’s stick with the case when I’m just trying to gauge a cyclic group G := Z/n. Then I can use
a nontrivial statement of Carnahan and Miyamoto: Theorem: if A is nice, then so is the fixed
subalgebra AG. Holomorphic is a special case of nice. (A lot but not all of what I’m about to say
can be done without this theorem, and I don’t know where the cut-off is exactly.)

Zhu’s modularity tells you that for each g ∈ G, Zg,e(τ) = Tr(A(g); qL0−c/24) and Ze,g(τ) =
Tr(A; gqL0−c/24) are related by S-transformation and that the former is modular, with a multiplier,
under Γ0(n). In particular you can unambiguously define the anomaly k because L0 − c/24 acting
on A(generator) takes values in k

n2 + 1
nZ. The action is nonanomalous when k = 0.

Furthermore, from its definition, A(g) carries a canonical projective action by G = Z/n. Every
projective action of Z/n can be promoted to a linear action, but there are n = H1(G; U(1)) choices.
Moeller gave a direct proof of the following. Suppose that the action of G on A is nonanomalous.
Then there is a unique way to resolve the G-action on the A(g)s such that

A �G :=
⊕
g∈G
A(g)G

carries a VOA structure extending the structure on AG. Moreover, this VOA structure is unique.
(If the G-action were anomalous, then there would be nothing you could do: A(g)G would not be
integrally graded for any resolution of the projectivity. The unique promotion in the nonanomalous
case is selected by wanting A �G to be integrally graded.)

Let me note, by the way, that this A � G carries a new action by the Pontryagin dual group
H1(G; U(1)) corresponding to the grading by G. Now let me change notation and write G = Aut(A)
and Z/n = 〈g〉. Then note that G acts on A, but only the normalizer NG(g) acts on A〈g〉, and
actually it acts through the quotient NG(g)/〈g〉. Well, the thing that acts on A � 〈g〉 is some new
extension H1(G; U(1)).[NG(g)/〈g〉].

Example: Let A = VLeech denote the Leech lattice VOA. Then Aut(A) is a nonsplit extension
T.Co0 where T = hom(Leech,U(1)). Select a lift g of the central element in Co0 — all lifts are
conjugate. The centralizer of g is a nonsplit extension of shape 224.Co0 = (224 × 2).Co1, where
224 = hom(Leech,Z/2). [Ivanov showed that there is a unique nonsplit extension like this.] The
thing that acts on Ag is 224.Co1. It is not too hard to show that when you extend to A � g, the
extension that you get of shape 2.(224.Co1) will contain a subextension of shape 21+24

+ . But there
are two possible total extensions 2.(224.Co1) like this, differing by how Co1 is extended. It turns
out that only one of them is a maximal subgroup of a simple group.

6 Nonabelian orbifolds

Time will not permit, but if it does, I will describe Kirillov Jr’s result.
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