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Phases = homotopy
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(The actual phase diagram is
much more complicated.)

What do we mean by phases of matter? As
children, we learn a cartoon picture of
{systems of water}, and define

{phases} = π0{systems}.

π0 means the set of connected components
of the phase diagram. It is one measure of
the homotopy of the space {systems}.

What distinguishes paths that cross phase transitions? At the
phase transitions, the spectrum of the Hamiltonian undergoes a
topological change: gaps between eigenvalues close and open.



5/28

Definition: A system of matter is gapped topological
when there is a gap in the Hamiltonian, and the
low-energy behaviour, i.e. the behaviour of the ground
states, looks like a topological quantum field theory.

Warning: There is no complete definition of “gapped
topological system.” The problem is to make sense of
“gapped” in a fully local way: what should be done
about boundary conditions?

Goal: Classify gapped topological phases of matter.

Sub-goal: Classify invertible phases: gapped top’l
phases that can be stacked with some other gapped
top’l phase so that the result is in the trivial gapped
top’l phase.
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Cartoon of the
spectrum of a
gapped Hamiltonian.
Only the behaviour
near the ground
state(s) matters.
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Example: A topological insulator keeps its useful behaviour in
spite of a bombardment from the environment because it is in a
specific nontrivial gapped top’l phases.

Actually, it is in the trivial connected component of {gapped top’l
systems}. It is nontrivial as a G -symmetric phases, i.e. it is
G -Symmetry Protected Trivial, for G = U(1)×ZT

2 . Environmental
bombardment has trouble breaking that symmetry.

For any group G , there is a classifying space BG , and

{phases of G -symmetric systems} = π0 maps(BG , {systems}).

This probes the higher homotopy of the space {systems}.
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Physical assumption: Given a gapped top’l system, gapped top’l
modifications (operator insertions, defects, . . . ) in one region of
spacetime do not affect the choices of gapped top’l modifications
in macroscopically-separated regions.

Under this assumption, {(n+1)-dimensional gapped top’l systems}
are the objects of an (n+1)-category. The 1-morphisms are
interfaces. The 2-morphisms are junctions between interfaces. To
compose morphisms, you place them next to each other, and then
zoom out.
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Theorem (Gaiotto-JF): This (n+1)-category is Segal-complete.
Corollary (G-JF, Kitaev): The spaces In+1 := {(n+1)-dim’l
invertible phases} compile into an Ω-spectrum.

Why this is useful: Ω-spectra are the abelian groups of stable
homotopy theory. They are the same as generalized cohomology
theories. Spaces are flimsy, but Ω-spectra are rigid, with lots of
computational techniques available. The corollary implies:

{G -SPTs} = reduced I•-valued group cohomology of G .

Moreover, the spectrum I• is coconnective. This implies that any
finite piece I≤n+1 is determined by finitely many “experiments”:
using other methods, work out {(n+1)-dim’l G -SPTs} directly for
finitely many groups G .
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So to understand {G -SPTs}, we need to know the spectrum I•.
In low dimensions, we can prove:

Conjecture (Kapustin):

I Bosonic I• = ΣIZMSO.
I Fermionic I• = ΣIZMSpin.

}
The RHSs are well-studied objects in topology.

This conjecture is surprising. It implies that every X ∈ I• is
invariant under rotations in Wick-rotated (Euclidean) spacetime.
But condensed matter systems are typically defined on a lattice:
no rotation symmetry at all! At the end of the talk I will propose
an explanation/generalization of this conjecture.
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Gapped condensation
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Suppose you have two gapped top’l phases X and Y and a way of
“condensing” from X to Y . Run the procedure just on one half of
the room. Now zoom out: you get an interface between X and Y .

As with any interface, it may support its own excitations.

Definition: The condensation procedure is gapped topological if
the corresponding interface is gapped topological.

I am not saying that gaps do not open or close during a gapped
top’l condensation. Rather, during gapped top’l condensation, only
finitely many gaps open and close.
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When this happens, the composition of interfaces X |X := X |Y |X
has an “algebra” structure: a junction between X |X |X and X |X .

By filling X with a network of these interfaces, you can recover the
phase Y . Axiomatizing this structure leads to the notion of
condensation algebra in the category of X -X interfaces, and the
notion of categorical condensation of a condensation algebra.

Theorem (G-JF): Condensation algs are the higher-cat version of
idempotents: functions e s.t. e2 = e. Categorical condensation is
the higher-cat version of “image of e.” The (n+1)-category of all
(n+1)-dim’l gapped top’l phases is Karoubi-complete.
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Theorem (G-JF): The following n-categories are equivalent:

(1) The Karoubi completion of the (n+1)-cat delooping of VecC.

(2) The (n+1)-category of (n+1)-dim’l gapped top’l phases that
arise from the trivial phase via gapped top’l condensation.

(3) The (n+1)-category of fully dualizable C-linear n-categories,
i.e. fully extended (n+1)-dim’l top’l field theories.

Moreover, this (n+1)-category can be realized by gapped top’l
systems of commuting Hamiltonian projector type.

Warning: The equivalence (1)⇔ (2) is a physical statement. It is
conditional on the Physical Assumption from earlier.

Warning: The equivalence (1)⇔ (3) is a mathematical statement.
It is conditional on some basic facts about colimits in enriched
higher cats that have yet to appear in the higher-cat literature.
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Topological orders
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Definition (Wen):

{physical topological orders} :=
{gapped top’l phases}
{invertible phases}

.

Warning: The quotient both subtracts and adds equivalence
classes. If (n+1)-dim’l invertible phases are considered trivial, then
an interface between two different (n+1)-dim’l invertible phases
should be considered an n-dim’l system.

Why is this a reasonable definition? In an invertible phase, the
algebra of extended top’l operators is trivial. So the algebra of
extended top’l operators in a general top’l phase only depends on
the corresponding top’l order.

Idea/Hope: {topological orders} = {algebras of extended top’l
operators}. These are more physically meaningful than actual
Hilbert spaces and Hamiltonians.
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Definition (JF): A fusion n-category A is a
Karoubi-complete monoidal n-category/C which
is at-least-twice dualizable: you can arrange, and
then continuously unkink, the configurations on
the right.

Theorem (JF) A is at-least-twice dualizable iff
it is finite-dim’l and separable: multiplication
A�A → A is part of a cat condensation.

Theorem (JF): Fusion n-cats are fully
dualizable: they determine (n+2)-dim’l TFTs. It
is the “bulk TFT” with boundary operators A.
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Definition (JF): An (n+1)-dimensional algebraic topological order
is a fusion n-category satisfying Remote Detectability: the
(Drinfel’d) centre of A is trivial.

The objects in A are the n-dim’l operators in a physical top’l order.
The 1-morphisms are (n−1)-dim’l operators. Etc.

Why Remote Detectability? The centre measures the operator
insertions which cannot be detected by other operators.

Theorem (JF):

{(n+1)-dim’l alg top’l orders} =
{(n+1)-dim’l TFTs}

{invertible (n+1)-dim’l TFTs}
.
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Can we classify (algebraic) topological orders?

(0+1)d: Over C, all top’l orders are sums of invertible phases.

(1+1)d: Over C, all top’l orders are sums of invertible phases.

(2+1)d: Modular tensor categories.

(3+1)d: Lan-(Kong-)Wen announced a classification in 2017-18:
up to some issues about emergent fermions, all are top’l sigma
models with target finite 1-groupoids G. Why?

(a) Condense all the line operators. G is the groupoid of choices
for how to do this.

(b) Result has no line operators, and so is invertible. These
invertible phases compile to the sigma model Lagrangian.

Their argument was inspiring, but they did not claim it was
completely rigorous.
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(b) Result has no line operators, and so is invertible.

LKW argument: an (n+1)-dim’l top’l order with no lines also has
no (n−1)-dim’l operators, because they would be undetectable.
When n = 3, this means no surface operators. Similarly, no vertex
operators should mean no n-dim’l operators.

Problem: you can always build m-dim’l operators as networks of
(m−1)-dim’l operators. Let’s call such networks trivial.

Theorem (JF): If an (n+1)-dim’l top order A has no nontrivial
(≤ d)-dim’l ops, then it also has no nontrivial (≥ n−d)-dim’l ops.

Idea of proof: Compare dim’l reductions along various spheres.
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(a) Condense all the line operators. Why is this possible?

Consider the (1+1)-dim’l situation, where every top’l phase is a
sum of invertible top’l phases. Why? A top’l phase with a vacuum
(=local ground state) degeneracy is unstable: you can add a small
operator which condenses the top’l phase onto a single ground
state. In (1+1)d, the condensed top’l phase has no nontrivial
vertex operators, and hence is invertible by the Theorem. The
original top’l phase is

⊕
v∈vacua(v ’th invertible phases).

This fails in the presence of a ZT
2 -symmetry. Why? Without a

ZT
2 -symmetry, the algebra A of vertex operators is a f.d.

commutative C-algebra. A ZT
2 -symmetry descends A to an

R-algebra AR (i.e. A = AR ⊗C). The operator needed to condense
onto a single vacuum requires solving a polynomial equation. Over
C, but not R, every polynomial equation has solutions.
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There is a way to define 1-categorical polynomial equations, where
the coefficients and variables are objects in a category.

Theorem (Deligne, interpretation by JF): Over SVecC, but
not VecC, every 1-categorical polynomial equation has a solution.

This allows you to condense any fermionic (≥ 3+1)-dim’l top’l
order to one with no vertex or line operators.

The collection of all solutions to the 1-categorical polynomial
equation determined by A is the groupoid G, the target space of
the sigma model.

Descent: R ⊂ C is selected by ZT
2 -symmetry. VecC ⊂ SVecC is

selected by Zf
2[1]-symmetry in exactly the same way.
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(3+1)d: Theorem (JF, following Lan–(Kong–)Wen): Every
fermionic (3+1)-dim’l top’l order can be written canonically as an
anomalous topological sigma model with target a finite
groupoid G. For bosonic (3+1)-dim’l top’l orders, work
Zf
2[1]-equivariantly. (The anomaly for Zf

2[1] measures the presence
of emergent fermions.)

(4+1)d: Classification within sight. Calculations joint with M. Yu.

(5+1)d: Only (fermionic) sigma models, by using: Theorem
(Hopkins-JF, unpublished): Every 2-categorical poly equation
has a sol’n over SCatC, the 2-cat of super cats.

(6+1)d: Looks feasible.

(7+1)d: Would have only sigma models, if you could solve
3-categorical polynomial equations. 2SCatC does not contain
solutions to all 3-cat poly eqns. Need beyond-fermionic stringons.



23/28

Higher spin-statistics?
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Conjecture (Kapustin):

bosonic I• = ΣIZMSO, fermionic I• = ΣIZMSpin.

In = invertible phases, i.e. invertible objects in the n-category of
all phases. Algebraically, those categories are

Bosonic with ZT
2 : Σ•R := (R,VecR,CatR, 2CatR, . . . )

Bosonic: Σ•C := (C,VecC,CatC, 2CatC, . . . )

Fermionic: Σ•SVecC := (C,SVecC,SCatC, 2SCatC, . . . )

Definition (JF): A tower is a sequence, like those above, in which
each entry is Karoubi-complete and contains all earlier entries as
morphism cats. Towers are an ∞-cat version of commutative alg.
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Conjecture: Every tower K has an algebraic closure K̄. The nth
entry K̄n is the n-category in which every n-categorical polynomial
equation with coefficients in Kn has solutions.

Σ•R, Σ•C, and Σ•SVecC all have the same algebraic closure R,
if it exists.

Theorem (JF, unpublished): Assuming R exists, its Ω-spectrum
R× of invertible elements is equivalent to IC×Mfr.
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Definition: An extension K ⊂ L of towers is Galois if it is selected
by G -equivariance (K = LG ). G is the Galois group of K ⊂ L.

Examples:

I Σ•R ⊂ Σ•C is Galois with Galois group ZT
2 .

I Σ•C ⊂ Σ•SVecC is Galois with Galois group Zf
2[1].

Conjecture: Σ•R ⊂ R = Σ•R is Galois.

Corollary: Suppose Σ•R ⊂ R has Galois group G . Then
(Σ•R)× = (IC×Mfr)G = IC×MG .
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Conjecture (higher spin-statistics): In the real-analytic topology,
the Galois group of Σ•R ⊂ R is homotopy equivalent to O(∞).

Warning: I do not have a definition of “the real-analytic
topology” on a tower over R. The Conjecture would require a
good notion of positivity, similar to Freed–Hopkins “reflection
positivity” for invertible phases.

Corollary: The Galois group of Σ•C ⊂ R is homotopy equivalent
to SO(∞). The Galois group of Σ•SVecC ⊂ R is homotopy
equivalent to Spin(∞).

Corollary (Kapustin’s conjecture): In the real-analytic topology,

bosonic I• = (Σ•C)× ' ΣIZMSO,

fermionic I• = (Σ•SVecC)× ' ΣIZMSpin.
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Thank you!

Further details:

[arxiv:1507.06297] Spin, statistics, orientations, unitarity.

[arxiv:1712.07950] Symmetry protected topological phases and
generalized cohomology.

[arxiv:1905.09566] Condensations in higher categories.

[arxiv:2003.06663] On the classification of topological orders.

[pirsa:20030111] Gapped condensation in higher categories.
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