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Abstract

“Formal” or “Feynman diagrammatic” calculus is nothing more nor less than the differential
and integral calculus of formal power series. The latter name is because Feynman’s diagrams
provide a convenient notation for manipulating formal power series and for understanding their
combinatorics. In this talk, I will outline the formal calculus, and then use it to write out
the “path integral” description of the asymptotics of the time-evolution operator in quantum
mechanics. The diagrammatics make it much easier to prove that the “path integral” is well-
defined and satisfies the necessary requirements.
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I’d like to begin by describing the category of infinitesimal pointed manifolds. The definition starts
with the category of R vector spaces. The construction works more generally, but I’ll leave it to
the experts to think about how much more generally.

Definition. The objects of InfMan are the same as the the objects of R-Vect. Given
X,Y ∈ InfMan, we misuse notation (better would be “C∞,formal”) and define

C∞(X,Y ) =
∞∏
n=0

Sn-invariant HomR-Vect(X⊗n, Y )

For comparison, Poly(X,Y ) uses
∐

.
There is no good composition for C∞ maps. Instead, we define

HomInfMan(X,Y ) = C∞pointed(X,Y ) =
∞∏
n=1

I.e. the formal power series that begin in degree 1. This gives the word “pointed” in “infinitesimal
pointed manifolds”.

Let f = (f (0), f (1), f (2), . . . ) ∈ C∞(X,Y ). The idea is that the nth piece f (n) should be thought
of as the nth Taylor coefficient. With this in mind, we define the composition

C∞pointed(X,Y )× C∞(Y,Z)→ C∞(X,Z)

by the Faà di Bruno formula:

(g ◦ f)(n) =
∑

(unordered) partitions
of {1,...,n}

g(# of blocks) ◦
↑

composition
of tensors

⊗
blocks

f (block)
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By this I mean: feed in a pure tensor x = x1 ⊗ · · · ⊗ xn. Then f ({2,3,5})(x) = f (3)(x2 ⊗ x3 ⊗ x5).
The sum truncates because f is pointed, so partitions with empty blocks don’t contribute.
There are functors:

Pointed manifolds with choice of coordinates

Pointed manifolds Infinitesimal pointed manifolds

forget

full, faithful, surjective take Taylor coefficients at marked point
full, surjective
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There is a better notation and description of composition. Recall that a groupoid is a category
with all morphisms invertible. If G is a groupoid, let π0G denote its set of isomorphism classes of
objects. A class function G → A is a function π0G → A, or equivalently a functor G → A where
A is given a groupoid structure with no nonidentity morphisms. For example, |Aut(−)| is a class
function. (The name comes from the example where the objects of G are the elements of a group,
and the morphisms are conjugations. Then π0G are the conjugacy classes.)

Definition (Baez and Dolan). Let G be a groupoid, A a Q-module, and F : G → A a class
function. The groupoid integral is ∫

G
F =

∑
x∈π0G

F (x)
|Autx|

As with any integral, it may not converge.
Consider, then, the groupoid G1 whose objects are directec graphs with one vertex, one outgoing

edge, and finitely many incoming edges, with leaves labeled {1, . . . , n}. So there are no automor-
phisms. A choice of f ∈ C∞(X,Y ) determines a class function F : G1 → C∞(X,Y ) by assigning
the vertex with n incoming edges the value f (n). Then f =

∫
G1
F .

There is a different basis for C∞(X,Y ), where we rescale the nth piece by n!, so that we think
of the pieces as f (n)/n! rather than as f (n). In characteristic 0, these are the same; we picked
the one we did for the convenience of writing out the Faà di Bruno formula. But you can work
with this “ordinary generating function” picture instead of our “exponential generating function”
picture. Then consider the groupoid whose objects are graphs with one vertex, one outgoing edge,
and finitely many unlabeled incoming edges. Then a similar class function still has f =

∫
G1
F .

Lemma. Consider the groupoid G2 consisting of finite directed graphs of the following form.
The vertices live on two rows. On the bottom row is a unique vertex, with a unique outgoing edge.
On the top row are some vertices, each with a unique edge pointing towards the bottom row. Each
top vertex has some number of incoming edges, and the incoming edges are labeled {1, . . . , n}.
Given f ∈ C∞(X,Y ) and g ∈ C∞(Y,Z), we can make a class function GF : G2 → C∞(X,Z), by
“evaluating” the diagram by interpreting the bottom most edge as being labeled by Z, the bottom
vertex as labeled by g, the middle edges labeled by Y , the top vertices labeled by f , and the top
edges labeled by X. Then

∫
G2
GF = g ◦ f , and converges if f is pointed.
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So much for differential calculus. What about integrals? The formal gaussian integral of f ∈
C∞(X,Y ) is

“
∫
X
f(x)e−a

−1x2/2 dx√
det(2πa)

” = “f ◦ a
2

”

= groupoid
∫

for


graphs with one bottom vertex (and
unique outgoing edge) labeled f ;
and some top vertices, labeled a, each
with two edges pointing towards f


When Re(a) is positive-definite and f is a polynomial, then it’s easy to see that the RHS

converges absolutely as a Riemann integral, and agrees with the LHS. When f is (represented by)
a smooth function, the LHS computes the a→ 0 asymptotics of the RHS. When a is pure imaginary
(and still invertible), then LHS can converge conditionally, and again RHS computes the correct
asymptotics, c.f. [Evans and Zworski].

There is a problem, however. a ∈ C∞(pt, X⊗2) is not a pointed map, so RHS does not converge.
There are two fixes. One is to consider

∫
f ∈ C∞(X⊗2, Y ), i.e. read a as a variable. The other,

which we prefer, is to pick some new infinitesimal parameter ~, and rescale a 7→ ~a. Then for fixed
a, f , the RHS converges in R[[~]].

Now suppose that f ∈ C∞(X,R) with f (1) = 0 and f (2) invertible. Then∫
exp(−~−1f(x)) = exp(−~−1f (0))

∫
e−~−1f (2)x2/2 exp(−~−1

∑
n≥3

f (n)xn/n!)

and expand the exp in Taylor series. Then we can still define the integral, and hope it converges.
Does it? Use that

exp(?) = groupoid
∫

for {disjoint copies of ?}

Then expanding the exp in the integral gives a bunch of trivalent-and-higher vertices, where an
n-valent vertex is labeled −~−1f (n). Then integrating connects everything up with edges labeled
by (~−1f (2))−1. So for a given graph, there are #(edges)−#(vertices) = euler characteristic many
~s, and as all vertices are trivalent and higher, this number is nonnegative and there are finitely
many graphs for a given number. Thus:∫

exp(−~−1f(x))dx = exp(−~−1f (0))
√

det
(
2π~(f (2))−1

)
×

× groupoid int for all trivalent-and-higher diagrams

The point is, this has a hope of being generalizable to infinite-dimensional spaces, where analytic
definitions are hopeless. For the generalization to be good, we should do two exercises — I know
how to do them, but don’t have time in the talk right now:

(a) Just from the diagrams, check the u-substitution formula. If you do a non-volume-preserving
change of coordinates (jacobian 6= 1), you’ll need to think about traces and determinants
diagrammatically.

(b) Just from the diagrams, check the Fubini theorem. This requires that ∂ log detA = trA−1∂A,
where LHS is the det that appears in the integral, and RHS is diagrammatic.
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Now, let’s say you have an actual manifold N and an actual smooth function f : N → R, and
want the asymptotics of the integral

∫
M exp(−~−1f). Well, if it has only one critical point, and if

it’s nondegenerate, then you can do this: pick that point as the marked point, apply the functor
that remembers only the infinitesimal neighborhood, and use the diagrammatics.
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With the remaining time, I’d like to talk about quantum mechanics. Let M be a manifold. A path
is a continuous, piecewise smooth function [0, 1] → M . Then {paths} is an infinite-dimensional
smooth manifold. Pick L : TM → R. It defines an action A : {paths} → R given by

A(γ) =
∫ 1

0
L
(
γ̇(t), γ(t)

)
dt

Given coordinates on M (to identify jet bundles with powers of tangent bundle), the derivatives of
A are

A(n)(γ) · ξ1 · · · ξn =
∫ 1

0

n∏
k=1

(
ξ̇k
∂

∂v
+ ξk

∂

∂q

)
L

∣∣∣∣∣
(v,q)=(γ̇,γ)

dt

Here ξk ∈ Tγ{paths} = sections of{γ∗TM → [0, 1]}, the pull back of TM → M along γ : [0, 1] →
M .

We have a fiber bundle Endpoints : {paths} → M × M . Feynman says the time evolution
operator for QM is ψ 7→

∫
M ψ(q0)U(q0, q1) dq0 (we pick a volume form on M), where

U(q0, q1) =
∫

γ∈Endpoints−1(q0,q1)

exp
(
−(i~)−1A(γ)

)
dγ

where dγ =
∏

0<t<1 dγ(t) is a meaningless infinite product of volume forms. We have switched
~ 7→ i~, and ~ = 10−34 6= 1/∞ but no matter; let’s try to define this integral diagrammatically.

We run into some challenges.

(a) First a non-challenge. The critical points of A on Endpoints−1(q0, q1) are precisely the
classically-allowed trajectories connecting q0 to q1.

(b) When is the critical point nondegenerate, in the sense that kerA(2)∩T
(
Endpoints−1(q0, q1)

)
=

0? Exactly when the path is nonfocal: the corresponding classical flow is a local diffeomor-
phism. WARNING: if ∂2L

∂v2
is not positive definite, there might not be very many nonfocal

paths. If we do have this convexity condition, then nonfocal paths are dense open among all
classical paths.

Then (A(2))−1 makes sense as a map [0, 1]×2 → T⊗2M , is given explicitly in terms of
∂γclassical/∂(q0, q1), and has a discontinuity like |s− t|.

(c) We needed to define
√

det
(
2πi~(A(2))−1

)
. In finite dimensions, we have

√
det(2πi~) =

(2πi~)dim /2. What is the dimension of Endpoints−1(q0, q1)? Well, dim(functions from n
points to M) = n dimM , and Endpoints−1(q0, q1) is roughly the functions from an open in-
terval to M . But two open intervals and one point together make an open interval, so we set
dim Endpoints−1(q0, q1) = −dimM .
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(d) How about the other part? For Fubini, etc., we need some relation between detA(2) and
diagrams. In good situations, it works to take

∣∣detA(2)
∣∣−1 =

∣∣det ∂
2A(0)

∂q0∂q1

∣∣, which is a bit ad hoc.
For the sign, we again compare with finite dimensions. In finite dimensions,

∫
exp(iax2/2)[. . . ]

has a sign like
√

det 2πi× (−i)morse index of a. If ∂2L
∂v2

is positive definite, then the Morse index
of A is always finite (and not otherwise).

(e) This biggest problem is that THE DIAGRAMS MIGHT DIVERGE. The intuition is that
loops are like traces, and we’re in infinitely many dimensions. The details are that (A(2))−1

has a singularity like |s − t|, whereas vertices can differentiate the incoming edges — these
correspond to the v dependence of L. Now, since L is a function of v, q, and not, say,
acceleration, any given vertex differentiates any given edge at most once. But an edge can
still be differentiated at each end, and ∂2|s−t|

∂s∂t ∼ δ(s − t). But this isn’t much of a problem:
we’ll do

∫
dsdt. So it’s only a problem if there is a complete loop of edges, all of which are

differentiated at both ends.

Now, if L is (inhomogeneous) quadratic in v, so that L(v, q) = 1
2a(q) v2+b(q) v+c(q), then any

vertex differentiates at most two of its edges. And so divergent loops do not intersect. Let’s
take all our graphs, and pull the divergent loops far apart, and consider a sum of divergent
loops. I.e. consider “wagon wheels” with n spokes, or rather the groupoid integral over all
such things (fixed n). Then it turns out that

groupoid
∫

for wagon wheels with n spokes =

=
∫ 1

0

(
δ(0)

∂n

∂qn
det a(q)× [. . . ]

∣∣∣∣
q=γclassical(t)

+ [bounded]

)
dt

What do I mean by “det a”? We’ve picked a volume form dVol on M . And a is a metric
on M . A choice of volume form determines a “determinant” on metrics. For example, pick
coordinates compatible with the volume form, and take the determinant of the representing
matrix for a in these coordinates. Equivalently,

det a =
volume determined by a

dVol

So we win if det a is constant, i.e. if dVol is the volume determined by a.

(f) Finally, everything we did depends on coordinates, because Taylor coefficients don’t make
sense coordinate-free — the jet space J∞M ∼=

⊕
T∨nM , but not canonically: picking an

isomorphism is essentially equivalent to picking coordinates. So you use the “formal u-sub”
to prove the coordinate invariance for paths that can be contained within coordinate patches.
Then you use the “formal Fubini theorem” to cut long paths apart, compute, and glue back
together.

Also, in the quadratic case, U(q0, q1) formally satisfies Schrödinger’s equation with correct initial
values (allow paths of different durations). I’m definitely out of time, so for the proofs, I have
articles on the arXiv, and I’ll stop here.

Thank you.
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