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Introduction

These are notes from UC Berkeley’s Math 261B, taught by Vera Serganova in the Spring of 2010.
The class met three times a week — Mondays, Wednesdays, and Fridays — from 1pm to 2pm.
Needless to say, the content is due to VS, and all the errors are due to me, the notetaker (Theo
Johnson-Freyd). VS’s website for the course is at http://math.berkeley.edu/~serganov/261/
index.html.

This course is a continuation of the Fall 2009 course Math 261A: Lie Groups, taught by Prof. Ian
Agol. IA’s website for that course is http://math.berkeley.edu/~ianagol/261A.F09/. I don’t
know of notes from that course. Edited notes from previous versions of 261A are [1, 5]. Unedited
notes from a previous version of 261B are [11].

As with my other course notes, I typed these mostly for my own benefit, although I do hope that
they will be of use to other readers. (It was Anton’s excellent notes from a variety of classes
— in addition to the Lie groups notes mentioned above, he has other notes on his website —
that inspired me to type my own notes, and I have borrowed from his preamble.) I apologize
in advance for any errors or omissions. Places where I did not understand what was written
or think that I in fact have an error will be marked **like this**. Please e-mail me (mailto:
theojf@math.berkeley.edu) with corrections. For the foreseeable future, these notes are available
at http://math.berkeley.edu/~theojf/QuantumGroups10.pdf.

These notes are typeset using TEXShop Pro on a MacBook running OS 10.6; the backend is
pdfLATEX. Pictures are drawn using pgf/TikZ. The raw LATEX sources are available at http:
//math.berkeley.edu/~theojf/QuantumGroups10.tar.gz. These notes were last updated May
2, 2010.
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0.1 Conventions and numbering

Each lecture begins a new “section”, and if a lecture breaks naturally into multiple topics, I try to
reflect that with subsections. Equations, theorems, lemmas, etc., are numbered by their lecture.
Theorems, lemmas, propositions, corollaries, and examples are counted with the same counter.
Definitions are not marked qua definitions, but italics always mean that the word is being defined
by that sentence. All definitions are indexed in the index. A list of all theorems, propositions, etc.,
is also at the end of the document. To generate these lists and to format theorems, etc., I have
used the package ntheorem. Better referencing is done by cleveref.

Lecture 1 Jan 20, 2010

VS’s website is math.berkeley.edu/~serganov/. Office hours are Monday 4-5:30 and W 11-12:30,
in 709 Evans.

This course is on Lie groups and quantum groups. We will talk about:

1. Representation theory of semisimple Lie algebras:

(a) Algebraic Methods: Weyl character formula, Harish-Chandra theorem, category O(BGG),
cohomology, Zuckerman functor.

(b) Geometric Methods: The ultimate goal is Beilinson-Bernstein. To move to this, we will
study localization, flag varieties, nilpotent cone, Springer resolution, Borel-Weil-Bott
theorem. And a little bit about the orbit method for nilpotent groups.

2. Quantum Groups. Hopf algebras, tensor categories, quantization. The main result is the
existence of canonical bases. (We may or may not have time to talk about roots of unity.)

Question from the audience: Is there a good reference? Answer: We will not follow a particular
book, but VS will post references on the website. And Theo is taking notes.

Some good references are [4, 10, 2, 3, 7, 8, 6].

1.1

We begin with something that you should know, but we will fix notation.

By g we mean a semisimple (later, reductive) Lie algebra over C. By G we mean a simply-connected
connected group with Lie algebra g. There are several ways to look at this group. If you think of
it as a Lie group really, then its representation theory is very rich. But usually we mean it as an
algebraic group. Maybe you covered this in 261A: there is a unique compact simply connected real
Lie group K with complexification KC = G. So we will not spend much time on compact groups,
because everything follows from the complex presentations.

5
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Let’s then recall the root decomposition and Cartan subalgebra. We pick a subalgebra h ⊆ g, which
is maximal abelian consisting of semisimple elements. Then the action of h on g is semisimple, so
we have the root decomposition

g = h⊕
⊕
α∈∆

gα

where ∆ ⊆ h∗ is the root system, and gα = {x ∈ g s.t. [h, x] = α(h)x}. Then dim gα = 1. This
follows from 261A.

Example 1.1 Let g = sln+1 ⊆ gln+1. We take coordinates ε0, . . . , εn given by εi(aij) = aii, and h

is a diagraonal subalgebra. Indeed, ∆ = {εi − εj s.t. i 6= j}, and gεi−εj = CEij . ♦

Let W be the Weyl group, which is a linear group acting on h∗, generated by all the root reflections
sα. In the above example, W = Sn+1. In general,

W ∼= NG(h)/H

Example 1.2 The group G2 is an exceptional 14-dimensional Lie algebra. Its root diagram is:

• •

••

•

• •

·

··

·

· ·

•

•

•

•

•

•

··

· ·
♦

We recall the triangular decomposition, where we pick a hyperplane that does not pass through
any roots, and so ∆ = ∆+ t ∆−, where ∆+ = {α ∈ ∆ s.t. (α, γ) > 0} for some generically
chosen γ.

As soon as we have this decomposition, we can construct the triangular decomposition g = n− ⊕
h ⊕ n−, where n± =

⊕
α∈∆± gα. Then n± are nilpotent subalgebras, and b = h ⊕ n+ are solvable

subalgebras, and we have:

Theorem 1.3 Every maximal solvable subalgebra of g is conjugate to b.

We can choose a basis α1, . . . , αn ∈ ∆ of simple roots such that every positive root is:

α =
∑

miαi, mi ∈ Z≥0

In sln+1, with the standard choice ∆+ = {εi − εj s.t. i > j}, the simple roots are εi − εi+1 for
i = 0, . . . , n− 1. We define the rank of g to be dim h.

Any α ∈ ∆ gives rise to an sl2-subalgebra inside g. How? We pick xα ∈ gα and yα ∈ g−α, and
hα ∈ h such that [hα, xα] = 2xα, [hα, yα] = −2yα, and [xα, yα] = hα.
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If we do this for every simple α, we get a system of generators and relations for g. We associate
αi 7→ {yi, hi, xi}, and then consider the square matrix C =

Ä
cij
ä

=
Ä
αj(hi)

ä
(the hi are coroots).

Then we have Chevalley’s relations:

[hi, xj ] = cijxi (1.1)
[hi, yj ] = −cijyj (1.2)
[xi, yj ] = δijhi (1.3)

and Serre’s relations: Ä
adxi

ä1−cij
xj = 0 (1.4)Ä

adyi
ä1−cij

yj = 0 (1.5)

Why do these hold? Does anyone know? **no hands** This is just sl2 representation theory:
xj is the lowest vector for (xi, hi, yi). A more difficult theorem, due to Serre, is that equations 1.1
to 1.5 determine g. We will not prove this, but perhaps will include it in the exercises.

1.2 Root and Weight lattices

The root lattice is Q inside h∗ generated by ∆. Let (, ) be the positive definite form induced by the
Killing form. Then:

αi(hj) =
2(αi, αj)
(αi, αj)

(1.6)

So this justifies calling hj = α∨j a coroot. And since (, ) is ad-invariant, and it is in particular
W -invariant.

Then the weight lattice is P = {µ ∈ h∗ s.t. µ(hi) ∈ Z}. Then Q ⊆ P , and in fact:

Theorem 1.4 P/Q is isomorphic to Z(G).

an exercise
∣∣∣P/Q∣∣∣ = det(cij)

Example 1.5 What is the Weyl group of G2? It is the Dihedral group with 12 elements. And
det
Ä

2 −3
−1 2

ä
= 1. So G2 has trivial center. ♦

Example 1.6 In sl(n+ 1), we have, by an easy induction:

det



2 −1 0
−1 2 −1

−1 2
. . .

. . . . . . −1
0 −1 2

 = n+ 1

and in fact Z(SL(n+ 1)) = Zn+1. ♦
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In fact, the lattice P has a very nice geometric meaning. We have H = (C∗)n.

We define P+ = {λ ∈ P s.t. λ(hi) ∈ Z≥0. Then α1, . . . , αn is the natural basis of Q, and ω1, . . . , ωn,
the fundamental weights, defined by ωi(hj) = δij , are the natural basis of P .

Theorem 1.7 Every orbit of W in P intersects P+ at exactly one point.

Example 1.8 Recall the root lattice of G2 from Example 1.2. The arrows point to the simple
roots, and we mark the fundamental weights with ×s:

• •

×•

•

• •

·

··

·

· ·

•

×

•

•

•

•

··

· ·
♦

Finally, suppose that V is some irreducible finite-dimensional representation of g. Then there exists
a highest vector: a unique up to scalar v ∈ V with n+v = 0; then hv = λ(h)v for h ∈ h, and so V
picks out a weight λ ∈ h∗, the highest weight of V .

In fact, if V is finite-dimensional, then λ ∈ P+. This is a fundamental fact, and it controls the
whole representation theory, so we explain it. It comes from the sl2 representation theory. Let
sl2 = {y, h, x}. The point is that xv = 0 and hv = λv, so applying x, h to v doesn’t do much, but
we can apply y to it. Then in fact hykv = (λ − 2k)ykv, so the vector remains eigen, and also by
induction xykv = (λ−k+1)kyk−1v. But the point is that if V is finite-dimensional, then eventually
ykv = 0, so we must have λ− k + 1 = 0, i.e. λ is integral.

The other direction is also true:

Theorem 1.9 There exists a bijection between P+ and all finite-dimensional irreducible represen-
tations of G.

Given λ ∈ P+, we denote its highest-weight representation by L(λ). When we do quantum groups,
it will be called Lq(λ), but it is the same λ. It is the irreducible finite-dimensional representation
with weight λ.

If you want to follow this course, then everything we have said should be familiar, although maybe
not all the proofs.

We now foreshadow next time. We have a representation L(λ). We would like to know e.g.
dimL(λ). More generally, there is a notion of formal character. All of you know what is the Schur
Polynomial. It is a part of a more general result known as the “Weyl Character Formula”. The
more general statement is as follows. Let V be semisimple (i.e. completely reducible) over h. Then
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we can write it as V =
⊕
µ∈P (V ) Vµ, where P (V ) ⊆ h∗ (although in our case actually P (V ) ⊆ P ),

and Vµ = {v ∈ V s.t. hv = µ(h) v}. Then we define the following formal polynomial:

chV =
∑

(dimVµ) eµ

The reason this makes sense is, consider h ∈ h. Then we can exponentiate it, and:

trV exp(h) =
∑

(dimVµ) eµ(h)

Lecture 2 Jan 22, 2010

2.1 Weight Modules

Let g be semisimple and h ⊆ g a Cartan. And let M be a g-module, possibly infinite dimensional.
We write

M =
⊕

µ∈P (M)⊆h∗

Mµ

where
Mµ =

¶
m ∈M s.t. hm = µ(h)m ∀h ∈ h

©
and P (M) = {µ ∈ h∗ s.t. Mµ 6= 0}.

Let’s say that a module is a weight module if dimMµ <∞ for each µ. Then

1. gαMµ ⊆Mµ+α

2. Submodules and quotients of weight modules are weight.

3. Direct sums of weight modues are weight.

4. Every finite-dimensional module is weight.

In particular, the class of weight modules is an abelian category. Question from the audience:
Is any extension of weight modules a weight module? Answer: In general, no.

We define the character of a weight module to be:

chM =
∑

dimMµe
µ

Then if 0→M → N → K → 0 is an extension of weight modules, we have:

chN = chM + chK

If V is finite-dimensional and M is weight, then M ⊗ V is a weight module, and:

ch(M ⊗ V ) = chM · chV

because (M ⊗ V )µ =
⊕

ν∈P (V )Mµ−ν ⊗ Vν ; the sum is finite because V is finite-dimensional.
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Example 2.1 Pick λ ∈ C and let g = sl2 = 〈x, h, y〉. Then the vector fields y = ∂
∂t , h = 2t ∂∂t , and

x = t2 ∂∂t are an sl2, and we define the (formal) weight module:

Fλ = tλ C[t, t−1]

Moreover, the character is:
ch Fλ =

∑
n∈Z

e2(λ+n)

Indeed, each weight space is spanned by the monomial t2λ+n. ♦

In particular, the notion of formal character makes sense not just for finite-dimensional modules
but for any weight module.

2.2 Weyl Character Formula

We introduce the weight ρ = 1
2

∑
α∈∆+ α. Some people, e.g. Borcherds, call ρ the Weyl vector. Then

if λ ∈ P+, the Weyl formula gives the character of the irreducible finite-dimensional representation:

Theorem 2.2 (Weyl Character Formula)

chL(λ) =

∑
w∈W

sign(w) ew(λ+ρ)

∑
w∈W

sign(w) ew(ρ)

Here sign(w) = detw = (−1)`(w) = ±1.

an exercise ρ(hi) = 1.

Example 2.3 Let g = sl2; then λ = n and ρ(h) = 1. Then in particular:

chL(n) =
e(n+1)ρ − e−(n+1)ρ

eρ − e−ρ
= enρ + e(n−2)ρ + · · ·+ e−nρ

♦

Example 2.4 We now try g = gln, which is not semisimple, but it is reductive, which is a semisim-
ple extended by a central element. We pick the usual basis ε1, . . . , εn for the Cartan, and define
zi = eεi . Then ρ = zn−1

1 zn−2
2 . . . zn−1, and W = Sn. Let’s pick λ = m1ε1 + · · · + mnεn, and the

condition of dominance is that mi −mi+1 ∈ Z≥0.

The Weyl character formula computes a formal determinant. What we get is:

Sλ =
det

∣∣∣zmj+n−ki

∣∣∣
det

∣∣∣zn−ji

∣∣∣
10



In fact, if you know Schur polynomials, this is exactly their formula. And what is downstairs is a
Vandermonde determinant:

det

∣∣∣∣∣∣∣∣
zn−1

1 . . . zn−1
n

...
...

1 . . . 1

∣∣∣∣∣∣∣∣ =
∏
i>j

(zi − zj)
♦

We will now talk about the algebraic proof of Theorem 2.2. Later we will give a geometric
proof.

2.3 Verma module

Pick λ ∈ h∗, and recall g = n− ⊕ h ⊕ n+, and b = h ⊕ n+. Let’s start with a one-dimensional
representation of b, called Cλ, given by Cλ = Cv with hv = λ(h)v and n+v = 0. Now we will
induce, and the induced module is called the Verma module. It is:

M(λ) = Ug⊗Ub Cλ

Let’s understand this better. We will use the PBW theorem, which says that as a vector space
Ug = Un− ⊗ Uh⊗ Un+. Then we have an isomorphism:

M(λ) ∼= Un− ⊗ Cλ

In fact, the isomorphism is compatible with the U(n− ⊕ h) action.

Let N = |∆+|. Then for α ∈ ∆+ pick yα ∈ g−α. Then {yβj}Nj=1 is a basis for n−, and so¶
ys1β1
· · · ysNβN ⊗ v

©
is a basis of M(λ).

Then M(λ) is a weight module, and we can calculate its character:

chM(λ) =
eλ∏

α∈∆+

Ä
1− e−α

ä (2.1)

Perhaps equation 2.1 requires some clarification. The weight of ys1β1
· · · ysNβN is λ−s1β1−· · ·−sNβN .

Thus:
chM(λ) = eλ

Ä
1 + e−β1 + e−2β1 + · · ·

ä
· · ·
Ä
1 + e−βN + e−2βN + · · ·

ä
So we can use the geometric progession formula and divide.

Moreover, M(λ) has a unique proper maximal submodule I(λ). To explain this, we discuss more
the set of weights P (M(λ)). It is often useful to introduce a partial order on h∗. We say µ ≤ λ iff
λ− µ =

∑n
i=1miαi with all mi ∈ Z≥0. Then P (M(λ)) = P (λ) = {ν ≤ λ}.
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Example 2.5 For sl2, we have an infinite string with λ at the top, then λ− 2, etc., and y moves
you down. ♦

Example 2.6 More generally, it is an infinite cone. When g = sl3, we have **picture**. Then it
is easy to figure out the multiplicities. The boundary has weight 1, and the next layer has weight 2,
then weight 3, etc. For example, for λ−2α1−2α2, we can also write 2α1+2α2 = α1+α2+α3 = 2α3.
So that weight is 3. ♦

So, now we will show that there is a unique maximal proper submodule. Actually, what we will
show, is that the sum of two proper modules is proper, and then we can just add up all the proper
submodules.

So, let I1, I2 be two proper submodules of M(λ). We want to show that I1 + I2 6= M(λ). But as
we discussed, each of I1, I2 is a weight module. So P (I1 + I2) = P (I1) ∪ P (I2). So if λ 6∈ P (Ia),
then it is not in P (I1 + I2), and λ ∈ P (I) iff I = M , because it generates everything.

So, by quotienting out by this maximal proper submodule, we get a simple, although usually not
finite-dimensional, highest weight module L(λ) = M(λ)/I(λ). We will eventually prove, although
not today, that if λ is integral and dominant, then L(λ) is finite-dimensional; we proved the other
direction last time.

Example 2.7 So let’s go back to the sl2 case. Recall that hykv = (λ(h) − 2k)ykv and xykv −
(λ(h) − k + 1)kyk−1v. So, if we have a submodule, it must start somewhere. So it must include
some ykv. But we want it to be proper, so we want it not to include λ. M(λ) is not irreducible
only if for some k, (λ(h) − k + 1) = 0. So λ must be integral and dominant. And if λ = n, then
the vector of weight −2− n generates a proper module, so we have the following exact sequence:

0→M(−2− n)→M(n)→ L(n)→ 0 ♦

Example 2.8 In the sl3 case the situation is more interesting, and we draw just one picture,
when λ = ρ. We have two sl2s, given by y1, h1, x1 and y2, h2, x2. But [x2, y1] = 0. So by the sl2
calculation, we have x1y

2
1v = 0, and by the bracket, we have x2y

2
1v = 0. In fact, y2

1v, y
2
2v generate

the maximal proper, and when we take the quotient, we get the adjoint representation. The weights
are found by subtraction. ♦

Lecture 3 Jan 25, 2010

Last time we introduced the Verma module M(λ) = Ug ⊗Ub Cλ, and discussed the set of weights
P (M(λ)) = {µ ≤ λ} = P (λ), and we showed that the Verma module has a maximal proper
submodule, and we actually considered the quotient:

0→ I(λ)→M(λ)→ L(λ)→ 0

Then we have a general remark: the highest vector of M is v, and if we have some w ∈M(λ) with
hw = ν(h)w (so, some weight vector) and n+w = 0, then if ν 6= λ, then w generates a submodule.
**We draw a picture.**
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Corollary 3.1 Suppose λ(hi) = ki ∈ Z≥0, then yki+1
i ⊗ v lies in a proper submodule.

The proof is straightforward. We need to check that xjyki+1
i ⊗v = 0. But if j 6= i, then [xj , yi] = 0,

and if j = i, then it is the sl2 calculation that we already did.

So if λ ∈ P+, and if by v̄ we denote the image of v under M(λ) → L(λ), then a sufficiently large
power of each yi is going to kill v̄. Therefore, the action of y1, . . . , yn ∈ g is locally nilpotent. I.e.
for any vector, a sufficiently large power of each element kills it: ∀u ∈ L(λ) ∃N(u, i) s.t. yNii u = 0.
Why? We proved this for u = v, but any u ∈ Un−v̄, so u = Xv̄, and yiXv̄ = (ad yi)Xv̄ + Xyiv̄.
But Un− is a nilpotent algebra, so sufficiently high power of ad yi kills X.

Also, x1, . . . , xn act locally nilpotently on L(λ), as they did so on M(λ). So we can exponentiate:
exp(xi) exp(−yi) exp(xi) is well-defined on L(λ), because each exp(x, y) is, because the action is
nilpotent and exp(nilpotent) truncates. On the other hand, exp(xi) exp(−yi) exp(xi) ∈ SL(2)i, the
ith SL(2). Indeed, if you multiply the elements you have:

Ä
1 1
0 1

äÄ
1 0
−1 1

äÄ
1 1
0 1

ä
=
Ä

0 1
−1 0

ä
. So this is

an element of NG(H).

The set of weights P (L(λ)) is W -invariant. In fact, this proves that the action respects also the
multiplicities of the weights, and hence the character.

Question from the audience: Does H act trivially? What do you mean by the W action?
Answer: We have W ∼= NG(H)/H. But H preserves the weight spaces, so the action on the set
of weights factors through W .

For example, in sl2, we have only one simple reflection, and it acts by reflecting the chain of weights.
**picture**

Indeed, we see that:
P (L(λ)) ⊆

⋂
w∈W

w(P (λ))

Because P (L(λ)) ⊆ P (λ) = P (M(λ)), but by W -invariance, it lies in all of them.

So this means the set of weights is inside of a convex polytope. **Picture** So in particular the
set P (L(λ)) is finite. Thus:

Corollary 3.2 If λ ∈ P+, then dimL(λ) <∞.

Question from the audience: Why the restriction on λ? Answer: The nilpotency argument
required λ ∈ P+. Question from the audience: L(λ) is always irreducible. Answer: Yes, but
finite iff λ ∈ P+.

3.1 Casimir element

In our case, we have a Killing form (, ), which is nondegenerate. Then we choose a basis {e1, . . . , ek}
of g, and since we have a nondegenerate form, we can construct a dual basis {e1, . . . , ek}, by

13



(ei, ej) = δji . Here k = dim g. Then we define the Casimir element by:

Ω =
k∑
i=1

eie
i ∈ Ug

In fact, Ω ∈ Z(Ug), the center. This is a good an exercise, and is in the homework. The trick
is that for x ∈ g,

∑
adx(eiei) = 0, as (, ) is invariant. Also, Ω does not depend on a choice of

{ei}.

Thus, we can write Ω in a very special basis. We pick the basis {xα, yα, hα}α∈∆+ with (xα, yα) =
1
2(hα, hα) = 2

(α,α) . Indeed, we just pick the xαs, and then complete, using (gα, gβ) = 0 if α+β 6= 0.
Then:

Ω =
∑
α∈∆+

(α, α)
2

Ä
xαyα + yαxα) +

n∑
i=1

(ui)2

Here n = rank g = dim h and {ui} is an arbitrary orthonormal basis of h.

But then we write xαyα − yαxα = hα, so:

Ω =
∑
α∈∆+

(α, α)xαyα +
∑
α∈∆+

(α, α)
2

hα +
n∑
i=1

(ui)2

Moreover, λ(hα) = 2(λ,α)
(α,α) , so:

Ωv =
Å∑ α, α

2
λ(hα) +

∑
λ(ui)2

ã
v =

Ä
(λ, λ) + 2(ρ, λ)

ä
v

This uses that h acts diagonally and xv = 0. But Ω is central; so it acts as a scalar on M(λ)
(because this is generated by the eigenvector v) with eigenvalue (λ+ 2ρ, λ).

3.2 Category O (BGG category)

Here BGG=Bernstein-Gelfand-Gelfand.

We say that M ∈ Ob O if:

1. M is a weight module.

2. M is finitely generated over Ug

3. n+ acts locally nilpotently on M .

In particular, O is an abelian category. Also it is clear that M(λ), L(λ) ∈ Ob O. Moreover, it is
clear how to describe the objects of O. For any vector, we act on it enough by n+, and end up at a
highest weight vector. So actually every simple object of O is isomorphic to L(λ) for some λ.

Lemma 3.3 M(λ) has finite Jordan-Hölder series in O.

14



Let’s set A(λ) = {ν ≤ λ s.t. (ν + ρ, ν + ρ) = (λ + ρ, λ + ρ)}. This is the intersection of a discrete
set by a sphere, and hence is finite. I remind you that ≤ means less by an integer amount. But:
(λ+ ρ, λ+ ρ) = (λ+ 2ρ, λ) + (ρ, ρ).

If L(µ) is a simple subquotient of M(λ), then µ ≤ λ, and the eigenvalue of the Casimir on L,M
must be the same. Therefore, (λ + 2ρ, λ) = (µ + 2ρ, µ), so µ ∈ A(λ). This completes the proof of
lemma 3.3, by induction. In fact, probably an exercise, every object in O has finite Jordan-Hölder
series; it is not difficult, but we do not need it.

Corollary 3.4 chM(λ) =
∑

µ∈A(λ)

cλ,µ chL(µ), and cλ,λ = 1.

So the cλ,µ are positive integer coefficients of a lower-triangular matrix with 1s on the diagonal.
Therefore we can invert it, and set aλ,µ = c−1

λ,µ, and again it is lower-triangular with 1s on the
diagonal. In particular:

chL(λ) =
∑

µ∈A(λ)

aλ,µ chM(µ)

Let’s now assume that λ ∈ P+, and get rid of the double index: chL(λ) =
∑
µ∈A(λ) bµ chM(µ).

But we know chM(µ) = eµ/
∏
α∈∆+(1− e−α). We multiply top and bottom by eρ. Then:

chL(λ) =

∑
bµe

µ+ρ∏
α∈∆+

Ä
eα/2 − e−α/2

ä (3.1)

We use that ρ is half the sum of the positive roots.

But the LHS of equation 3.1 is W -invariant, and the denominator of the RHS is skew-invariant. So
the top must also be skew invariant. Question from the audience: Sorry, what is bµ? Answer:
They are unknown coefficients, but we know that bλ = 1.

Ok, now we play a trick, knowing that
∑
µ∈A(µ) bµe

µ+ρ must be skew invariant. So we average over
the Weyl group, knowing that each orbit of the Weyl group intersects the positive chamber exactly
once. We have: ∑

µ∈A(µ)

bµe
µ+ρ =

∑
µ∈A(λ)∩P+

bµ
∑
w∈W

sign(w) ew(µ+ρ)

We finish with a simple

Lemma 3.5 A(λ) ∩ P+ = {λ}

Indeed, suppose µ ∈ P+ ∩ A(λ). Then λ− µ =
∑
miαi for mi ≥ 0. But we have (λ + ρ, λ + ρ) =

(µ+ ρ, µ+ ρ). Upon subtracting, we have (λ+ µ+ 2ρ, λ− µ) = 0. On the other hand, λ+ µ+ 2ρ
is strictly positive, and λ− µ is nonnegative, so must be 0.

Next time we will discuss consequences of this formula, and formulate but not prove a result about
resolutions.

Oh, we used one important fact: an exercise ρ(hi) = 2(ρ,αi)
(αi,αi)

= 1.
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Lecture 4 Jan 27, 2010

**VS arrives early an puts a picture on the board. Perhaps we will include it here
later. It consists of a large triangular lattice, with the following labels: λ = 3ω1 + 2ω2,
λ+ρ = 4ω1 +3ω2, and the vertices λ, s1(λ+ρ)−ρ, s2(λ+ρ)−ρ, s1s2(λ+ρ)−ρ. And various
weights drawn in.**

We will not say much about the Weyl character formula today, because we proved it last time. But
we do have this formula, for dominant integral λ:

chL(λ) =

∑
w∈W

sign(w) ew(λ+ρ)

∏
α∈∆+

Ä
eα/2 − e−α/2

ä (4.1)

Let’s recall how much we used. We used only that the whole thing is finite and W -invariant. To
get the formula we wrote at the beginning of the semester, all we need is to use the so-called
“denominator formula”, for which we can simply evaluate equation 4.1 at λ = 0. Then we have:∏

α∈∆+

Ä
eα/2 − e−α/2

ä
=
∑
w∈W

sign(w) ew(ρ) (4.2)

In fact, this is a very important formula, especially when we move to infinite dimensions, whence
it will give us combinatorial data and count **?**. In sl(n), it corresponds to Vandermonde’s
determinant formula.

4.1 Kostant partition function

chL(λ) =
∑
w∈W

sign(w) chM
Ä
w(λ+ ρ)− ρ

ä
This is because we can take out eρ, which is the character of the Verma module.

So we define the Kostant partition function P(γ) = #
¶
{mα} ∈ Z≥0 s.t. γ =

∑
α∈∆+ mαα

©
. I.e. it

is the number of ways to write γ as a sum of positive roots. Question from the audience: For
only positive integral γ? Answer: **yes?**

Then we see that: dimM(λ)µ = P(λ − µ). We give an example in sl(3). **picture**. The
dimension is 1+ the distance to the wall of the cone.

Now we can use this to calculate the dimension at weight µ in L(λ). It’s going to be the alternating
sum of partition functions:

M(λ, µ) = dimL(λ)µ =
∑
w∈W

sign(w)P
Ä
w(λ+ ρ)− µ− ρ

ä
16



This leads to the picture we drew earlier. On the boundary, all multiplicities are 1, and they continue
counting distances, because chL(λ) is W -symmetric; it is always a hexagon (or degenerates to a
triangle). See [4].

But actually, this formula is not very useful in applications, because the order of the Weyl group
is very big.

In fact, there is a continuous partition function Pcont(γ) = Vol
¶
mα ∈ R≥0 s.t. γ =

∑
mαα

©
. This

function is a piecewise polynomial.

4.2 BGG resolution

We will prove this section later. But the remark is that since we have an alternating sum, it should
arise from some complex. The idea is that in the category O we can construct a resolution in this
category, in which each term is a direct sum of Verma modules:

0→M
Ä
w0(λ+ρ)−ρ

ä
→ · · · →

⊕
w∈W`(w)=k

M
Ä
w(λ+ρ)−ρ

ä
→ · · · →

⊕
M
Ä
si(λ+ρ)−ρ

ä
→M(λ)→ L(λ)→ 0

Here w0 is the longest element of W ; it maps positive roots to negative roots. Also, we have
sign(w) = (−1)`(w), so actually the formula has some nice algebra behind it.

4.3 Dimension formula

We can write the dimension as a ratio of two products:

dimL(λ) =

∏
α∈∆+

(λ+ ρ, α)∏
α∈∆+

(ρ, α)
(4.3)

Example 4.1 Let g = gl(n), and λ = a1ε1 + · · · + anεn, where ai − ai+1 ∈ Z≥0. Then ρ =
(n− 1)ε1 + · · ·+ 0εn. And actually the product is a double factorial. We have:∏

i<j

(ai − aj + j − i)∏
i<j

(j − i)
=

. . .

(n− 1)!!
♦

We prove equation 4.3, using equation 4.2. We have dimL(λ) = tr 1 = chL(λ)
∣∣∣
h=1

. But when we
try to evaluate here, we get 0/0. It is a well-defined polynomial, but to evaluate it, we must take
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a limit. The point is:

dimL(λ) = lim
t→0

∑
w∈W

sign(w) e(w(λ+ρ),ρt)

∑
w∈W

sign(w) e(w(ρ),ρt)
(4.4)

But equation 4.2 implies: ∑
w∈W

sign(w) e(w(ρ),µ) =
∏

α∈∆+

Ä
e(α

2
,µ) − e−(α

2
,µ)
ä

So we rewrite the numerator. We have:

lim
t→0

∑
w∈W

sign(w) e(w(λ+ρ),ρt)

∑
w∈W

sign(w) e(w(ρ),ρt)
= lim

t→0

∏
α∈∆+

e(λ+ρ,α
2

)t − e−(λ+ρ,α
2

)t

e(ρ,α
2

)t − e−(ρ,α
2

)t

Now we can take the limit using L’Hôspital’s rule. We have: limt→0
eat−e−at
ebt−e−bt = a

b . Thus, we
have:

dimL(λ) =
∏

α∈∆+

(λ+ ρ, α)
(ρ, α)

This was a much more useful formula before computers. Now there is a computer program (Ques-
tion from the audience: Which one? Answer: It is called “Lie”. VS used it once.) that you
plug in a representation and it computes things.

4.4 Application to tensor product

We have:
L(λ)⊗ L(µ) =

∑
ν

Γνλ,µL(ν) (4.5)

The question is for a formula for Γ?

Actually, you already know, from the characters of a finite group, that the characters are orthogonal.
We can write the orthogonality condition here in terms of the formal character. We define the formal
ring R =

⊕
λ∈P Z[eλ]. In fact, this has a W -action. So we take the invariant subring RW .

Proposition 4.2 The characters chL(λ) form a basis in RW , which is orthonormal with respect
to the pairing (, ) given by:

(φ, ψ) = constant coefficient of
DD̄
|w|

φψ̄

where ēλ = e−λ, so that chL(λ) = chL(λ)∗. Also, D =
∑

sign(w) ew(ρ).
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We describe the geometric meaning of this. Consider the compact group K ⊆ G, with maximal
torus T ⊆ H. Since we didn’t do it properly, think of G = GL(n,C) and K = U(n). What we
do know is that every element of K is conjugate to something in T . Then the idea is that the
characters are class functions: ∫

K
φ ψ̄ dg =

1
|W |

∫
T
φ ψ̄ Volt dt

where Volt is the volume of the conjugacy class of t ∈ T in K. The 1/|W | counts the redundancy
of how we diagonalize unitary matrices. So the idea is that DD̄(eh) = Volt where t = eh.

Ok, so this is why they are orthonormal. How to check that they are a basis? There is another
obvious basis of RW . Namely, each W -orbit intersects P+ once, so for each λ ∈ P+, set Eλ =
cλ
∑
w∈W ew(λ), where cλ is some coefficient to get the length to be 1. But then it is obvious from

the formula that
chL(λ) = Eλ +

∑
µ<λ

dµEµ

But this is a lower-triangular matrix with 1s on the diagonal, so chL(λ) is a basis.

Ok, but now we can calculate Γ from equation 4.5. We have:

Γνλ,µ =
Ä
chL(λ) chL(µ), chL(ν)

ä
=

= constant coef of
1
|W |

1
D

∑
w,u,v∈W

sign(w) ew(λ+ρ) sign(u) eu(µ+ρ) sign(v) e−v(ν+ρ) =

= const coef of
1
D

∑
w,σ∈W

sign(w) ew(λ+ρ) sign(σ) eσ(µ+ρ)−(ν+ρ) =

=
∑
σ∈W

sign(σ)M
Ä
λ, ν + ρ− σ(µ+ ρ)

ä
=

=
∑

σ,w∈W
sign(σw)P

Ä
w(λ+ ρ) + σ(µ+ ρ)− ν − 2ρ

ä
(4.6)

where we substituted σ = uv−1, and used various facts. This is the Steinberg formula.

Again, this is not very effective. It’s much nicer to use Littlewood-Richardson rule, but that only
works for gl(n).

Next time, we will move to Harish-Chandra theorem, which describes the center of Ug.

Lecture 5 Jan 29, 2010

We are going to speak today about the center of universal enveloping algebra.
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5.1 Center of universal enveloping algebra

We begin with some motivation: why is this important? We all know the Schur lemma, and we
formulate a lemma that is a sort of infinite-dimensional version, but is less well known.

Lemma 5.1 Let R be a countable-dimensional associative algebra over C, and M a simple R-
module. Then EndR(M) = C.

This is well known when dimR <∞. The proof goes like this.

Proof: Any non-zero endomorphism is an isomorphism, because kernel and image are invariant
subspaces. So let’s pick up some endomorphism X 6= 0, and there are two cases: either X is
algebraic over C, or it’s transcendental.

1. X is transcendental. Then C(X) ⊆ EndR(M). But dim C(X) = 2N, because we can take
1/(x − a) for all a ∈ C. On the other hand, EndR(M) is countable dimensional: if we pick
up m ∈ M , m 6= 0, and φ ∈ EndR(M), then φ is determined by φ(m), because m generates
M ; similarly, dimM is countable because R is countable-dimensional, and M = Rm. So this
was impossible.

2. X is algebraic over C. Then p(X) = (x− λ1) . . . (x− λn) = 0, so x = λi for some i. �

Question from the audience: When does this break? Answer: The Schur lemma does break
eventually, but we do not recall a counterexample right now.

So what we will do is study irreducible representations of g the Lie algebra, by studying the
representation theory of Ug = T g/(xy − yx− [x, y])x,y∈g. Then we have:

g

Ug

End(M)

In any case, let Z(g) be the center of Ug **Z is not a functor**, and suppose that M is an
irreducible g-module. Then for all x ∈ Hom(Z(g),C) = SpecZ(g), and such that z|M = x(z) id
forall z ∈ Z(g), we have Irr g→ SpecZ(g).

Now, let’s restrict attention to g semisimple and (, ) a Killing form.

Recall that Ug is filtered, with K ⊆ Ug1 ⊆ Ug2 ⊆ . . . . Then we can construct the associated graded
algebra grUg =

⊕∞
i=0 Ugi+1/Ugi. Then:

Theorem 5.2 (Poincarè-Birkhoff-Witt) grUg ∼= Sg

You did the proof last semester.

Ok, so the adjoint action of g (or of G) on Ug and on Sg:

Proposition 5.3 Let char K = 0. Then grUg ∼= Sg as g-modules with the adjoint action.
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Proof: You draw a certain triangle:

T gSg

Ug
∼

All the arrows are morphisms of g-modules, and by Theorem 5.2 the diagonal is an isomorphism.�

Ok, so Zg = UgG is the set of adg-invariant elements. So we start with studying SgG. The killing
form identifies g ∼= g∗ as adjoint modules, so S(g∗)G ∼= SgG. The LHS is the set of G-invariant
polynomials on g.

Ok, so g = n− ⊕ h ⊕ n+, and consider the restriction r : S(g∗) → S(h∗). How does this act on
invariant polynomials?

Lemma 5.4 1. Im r ⊆ S(h∗)W .

2. r is injective.

Proof: 1. W ∼= N (h)/H, and if f(g) is G-invariant, then f(h) is N (h)-invariant.

2. Any semisimple element is conjugate under the adjoint action to some element of h. Ok, so
let gss be the set of semisimple elements; it is dense in g. So if f(h) = 0, then f(hss) = 0, so
f(g) = 0. So ker r = 0. �

Question from the audience: What field are we over? Answer: We’ve certainly used characteristic-
zero for Proposition 5.3, and we need existence of splitting form for the second part of lemma 5.4,
so we probably want to be algebraically closed. Probably the first part is always true. Actually, in
characteristic p, there are two ways to define the universal enveloping algebra. At some point, we
will talk about this, but not now.

Theorem 5.5 The map r : S(g∗)G → S(h∗)W is an isomorphism.

Proof: After lemma 5.4, all we have to do is show that r is surjective. We pick fundamental weights
ω1, . . . , ωn, and think of them as coordinate functions on h. Then S(h∗) has a basis ωa1

1 · · ·ωann .
Then S(h∗)W is spanned by

∑
w∈W w

Ä
ωa1

1 · · ·ωann ).

Claim:
∑
w∈W w(ωmi ), m ∈ Z≥0 generates the ring of invariant.

For this, we use the following Polarization formula: Over x1, . . . , xn, let Γ = 〈p1, . . . , pn−1〉 ∼= Zn−1
2 ,

where pi(x1, . . . , xn) = (x1, . . . ,−xi, . . . , xn). Then:∑
γ∈Γ

sign(γ) γ(x1 + · · ·+ xn)n = constant · (x1 . . . xn) (5.1)

**So Γ is the group (Z/2)n−1, which acts on coordinates {x1, . . . , xn}, by letting the
generators pi switch the sign of the ith variable.** Indeed, what happens when you apply
an element of the group to the LHS? You see that it’s a sum of monomials of total degree n, but
the only monomials that can appear must be of odd degree in each variable, by anti-symmetry.
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Ok, so to prove the claim, we apply equation 5.1 to xi = ωaii , and thus obtain ωa1
1 . . . ωann .

Then to prove surjectivity, we have to show that:
∑
w∈W w(ωmi ) ∈ Im r.

If V is finite-dimensional representation of g, trV (gm) ∈ S(g∗)G, since tr is ad-invariant. So if
V = L(λ) with λ ∈ P+, then:

trL(λ)(h
m) =

∑
w∈W

w
Ä
λ(h)m

ä
+
∑
µ∈P+

µ<λ

dµw
Ä
µ(h)m

ä
But the µs don’t bother us: they are of lower degree, so by induction we already got them. That
prove surjectivity. �

Ok, so we’ve got: S(g∗)G ∼= S(h∗)W . But we are interested in the center of Ug. We will get a
very similar result. Question from the audience: So we proved that that Z(g) ∼= S(h∗)W as
something? Answer: Ah, yes, but not as rings. We proved in fact that they are isomorphic as
graded vector spaces, and in fact that grZ(g) ∼= S(h∗) as rings, but you know that you can have a
commutative ring that is not isomorphic to its associated graded.

5.2 Harish-Chandra homomorphism

Let g = n− ⊕ h⊕ n+, and use PBW to write Ug = Un⊗ Uh⊗ Un+, as vector spaces and in fact as
h-modules. What Harish-Chandra does is to say Ugh = Uh⊕

Ä
n−(Un−)⊗ Uh⊗ (Un+)n−

ä
, and to

forget the second direct summand, so that we have Ugh → Uh.

Then we have a map θ : UgG → Ug = Sg, where the isomorphism is because h is commutative. We
claim this is a homomorphism of rings.

Example 5.6 Let g = sl(2), given by x, h, y, with the Killing form (h, h) = 8, (x, y) = 4. Then
Ω = 1

8h
2 + 1

2(xy+ yx) = h2

8 + h
4 + yx

2 . But when we apply the Harish-Chandra projection, we have:
θ(Ω) = h2

8 + h
4 = 1

8

(
(h+ 1)2 − 1

)
. ♦

Lecture 6 Feb 1, 2010

Last time we defined Harish-Chandra homomorphism, and calculated one example. If we look at
Ugh = Uh ⊕

Ä
n−(Un−) ⊗ Uh ⊗ (Un+)n+, which follows from PBW, and then we project onto the

first part, and restrict to Z(g).

But Uh = Sh = C[h∗], the algebra of polynomial functions on h∗. But max Spec C[h∗] = h∗, and
so we have a dual map θ∗ : h∗ → Spec(Z(g)). So we have λ 7→ χλ ∈ Hom(Z(g),C). Of course,
we are in characteristic zero, but actually this works in arbitrary characteristic. Question from
the audience: But you do need to be in a closed field. Answer: Yes, because we need maximal
ideals.
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This map has the following properties:

1. If z ∈ Z(g), then z|M(λ) = χλ(z) id. Indeed, we have z = θ(z) + Y n+, but if v is the highest
vector of M(λ), then n+v = 0, so zv = θ(z) v. But θ(z) = p(λ) ∈ C[h∗]. Then use the fact
that hv = λ(h) v for all h ∈ h. Question from the audience: What is Y n+? Answer:
Well, we mean, Y X, where X ∈ n+. This is from the far right end of the PBW statement
above.

2. θ is a homomorphism of rings.

3. We now describe the image of θ. For this, we introduce an action of W on h∗ which is slightly
different from the normal action. Instead, we call it the shifted action. Not to confuse it, we
write it differently. It is λw def= w(λ+ ρ)− ρ. Then the statement is that θ(Z(g)) ⊆ C[h∗]Wsh .

Proof (of 3.): We will use property 1. Pick up a simple root αi, and let si ∈W be its reflection.
Then let Sαi = {λ ∈ h∗ s.t. λ(hi) ∈ Z≥0}. Equivalently, 2(λ,αi)

(αi,αi)
∈ Z≥0. Well, when we studied the

Verma module, we saw something like this. So:

Lemma 6.1 Let λ ∈ Sαi and µ = λsi. Then Homg(M(µ),M(λ)) 6= 0.

Proof (of lemma): We have λ(hi) = hi and (λ + ρ)(hi) = ki + 1. So let w = Y ki+1
i v, with

v the highest weight of M(λ), and n+w = 0, and hw = µ(h)w. Then 0 6= Homb(Cµ,M(λ)) ∼=
HomUg(Ug⊗Ub Cµ,M(λ)), but Ug⊗Ub Cµ = M(µ). �

So, from this, what do we have? If λ ∈ Sαi , then since the homomorphism is nontrivial the centers
must act the same. So χλ = χλsi . So if f ∈ Im θ, then f(λ) = f(λsi) for all λ ∈ Sαi . But these sets
are the union of countably many hyperplanes, so are dense; i.e. Sαi is Zariski dense, so f(λ) = f(λsi)
for any λ ∈ h∗. This checks it on the simple reflections, and so W -invariance follows. �

Theorem 6.2 In fact, θ : Z(g)→ C[h∗]Wsh is an isomorphism.

Proof: The proof goes by going from filtered rings to graded rings. Suppose that A is a filtered
C-algebra, i.e. A =

⋃∞
i=0Ai with AiAj ⊆ Ai+j and each Ai is a vector space; e.g. Ug. Then we

do have the graded ring grA =
⊕

i(Ai/Ai−1). If we have two filtered algebras A =
⋃∞
i=0Ai and

B =
⋃∞
i=0Bi, and a homomrophism θ : A → B that preserves filtrations, then we can define the

map gr θ : grA→ grB. Then:

1. gr θ is a homorphism;

2. if gr θ is an isomorphism, then so was θ, at least when all the graded components are finite-
dimensional. We remark that the converse is not true, in the following sense: You can have
a filtered homomorphism A→ B that is an isomorphism of algebras but not an isomorphism
of filtered algebras, and it generally will not induce an isomorphism grA→ grB.

Neither is hard. But last time we proved that r : S(g∗)G → S(h∗)W was an isomorphism, and
with the Killing form we have S(g∗)G ∼= S(g)G, and S(h∗)W ∼= S(h)W . But grUgG = SgG and
grShWsh = ShW , and gr θ = r. **draw a diagram** �
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Actually, there is a more general statement, called the Duflo theorem, that S(g)G ∼= Z(g) is an
isomorphism of rings. Bar-Natan proved this provided g has an invariant form (, ). But we do not
believe that any conditions are required, but we don’t remember. Question from the audience:
Is the Duflo isomorphism canonical? Answer: It is clear that SgG = grZ(g). But even in our case
we picked a ρ, which could be rotated by the Weyl group.

Theorem 6.3 A finite group W that acts linearly on some vector space h, then S(h)W is isomor-
phic to a polynomial ring C[f1, . . . , fn], all homogeneous within the grading on Sh, and n = dim h.

We will not prove this. You can look it up in [13], or in VS’s notes at [12].

Corollary 6.4 Z(g) is isomorphic to a polynomial ring of n variables, where n = rank g.

The degrees of generators m1, . . . ,mn are called the exponents of g. They satisfy:

m1 · · · · ·mn = |W | (6.1)

m1 + · · ·+mn =
1
2

(dim g + n) (6.2)

Question from the audience: When you say the degrees of the generators, what do you mean?
Answer: By going to the graded. In a filtered algebra, you can always define degree by going to
the graded. **Really?**

Indeed, we have in S(h)W , that:

R(t) =
∞∑
k=0

dimSk(h)W tk =
n∏
i=1

1
1− tm1

(6.3)

If V is a linear representation of W , then:

dimV W =
1
|W |

∑
w∈W

trV w (6.4)

It more or less follows that:
R(t) =

1
|W |

∑
w∈W

1
det(1− wt)

(6.5)

And comparing equations 6.3 and 6.5 gives:
n∏
i=1

1
1− tm1

=
1

m1 . . .mn(1− tn)
+

∑
(mi − 1)

2m1 . . .mn(1− t)n−1
+ . . .

whereas
1
|W |

∑
w∈W

1
det(1− wt)

=
1

|W |(1− t)n
+

1
|W |

∑
reflections

1
2(1− t)n−1

Thus,
∑

(mi − 1) = number of reflections.

Example 6.5 Let’s do G2. We have m1m2 = 12 and m1 + m2 = 1
2(14 + 2) = 8. But we always

have m1 = 2, because we always have a Casimir element. So m2 = 6. ♦
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Example 6.6 Let’s do sln. We have m1 · · ·mn−1 = n! and m1+· · ·+mn−1 = n2−1+n−1
2 = n2+n

2 −1.
You can solve this. One solution is m1 = 2, m2 = 3, . . . , mn−1 = n. One possible set of generators
of S(g∗)G is the traces trX2, trX3, . . . , trXn.

Of course the set of generators is not unique. A second option is to take the characteristic polynomial
det(X − tid) and take the coefficients. ♦

Example 6.7 Let’s do Bn, Cn. These must have the same exponents, because the Weyl groups
are the same. We have Bn = O(2n + 1), and dim g = (2n+1)2n

2 = (2n + 1)n. What is the order of
the Weyl group? Well, W = Sn o Zn2 . So:

m1 · · ·mn = 2n n! (6.6)
m1 + · · ·+mn = (n+ 1)n (6.7)

So the obvious solution is 2, 4, . . . , 2n.

So, what are they? We can still take the ones from sln. But some of those vanish: the traces of
odd powers of skew-symmetric matrices are 0. So we have trX2, . . . , trX2m. ♦

Lecture 7 Feb 3, 2010

We will first fix some notation, and then we will speak about the graded version S(g∗)G. This
is a graded ring generated by n homogeneous invariants: S(g∗)G = C[f1, . . . , fn]. We denote
deg fi = mi, ordered so that m1 ≤ m2 ≤ · · · ≤ mn.

Example 7.1 (Dn) Then g = o(2n) = {skew-symmetric matrices of size 2n}. Then dim g =
n(2n− 1), and m1 + · · ·+mn = 1

2(dim g + n) = n2. Also, m1 · · ·mn = |W | = 2n−1n!. So when you
start looking for the most reasonable solution, it is 2, 4, . . . , 2(n− 1) and one more: n, somewhere
in the middle.

So, think of X as a skew-symmetric matrix. Then fk(X) = tr(X2k) are invariant as before. But if
we take 2k = 2n, then we might as well take the determinant, but the n is actually the Pfaffian of
X, which is a polynomial Pf(X) =

√
detX.

Why is Pf(X) a polynomial? Think of X as a matrix of some skew-symmetric form on C2n. Then
by linear algebra, if X is nondegenerate, then in some basis it has a canonical form

Ä
0 1n
−1n 0

ä
. So

in general, we have X = Y t
Ä

0 1n
−1n 0

ä
Y , and so detX = (detY )2. ♦

But in fact you can easily calculate the exponents of any semisimple Lie algbera, which we will
explain now.

The first step is what’s called principal sl2 in g. Let’s go back to the standard generators x1, . . . , xn,
h1, . . . , hn, y1, . . . , yn. Then let x = x1+· · ·+xn. There exists a unique h ∈ h such that the αi(h) = 2
for all simple roots α1, . . . , αn.
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So write h = c1h1 + · · ·+ cnhn, and then take y = c1y1 + · · ·+ cnyn. Then we can immediately see
that {x, h, y} is an sl2 triple.

So now we will go into the Lie algebra g and look at the adjoint action of this sl2 on g. Then α(h) is
even, so every irreducible representation appearing in g has a one-dimensional 0-weight space. Also
clear is that h is regular, so gh = h. So that tells us that the number of sl2-irreducible components
is exactly n, the rank.

Example 7.2 In sl3, we have x =
(

0 1
0 1

0

)
, h =

(
2

0
−2

)
, and x =

(
0
2 0
0 2 0

)
. So we see that

sl3 = sl2 ⊕ V4. ♦

So we write g = Vp1 ⊕ · · · ⊕ Vpn with p1 ≤ · · · ≤ pn, where by definition dimVp = p + 1. Then∑n
i=1(pi + 1) = dim g, and so

∑n
i=1

Ä
pi
2 + 1

ä
= 1

2(dim g +n). So the numbers pi
2 + 1 satisfy the same

relation as the exponents, and this is no surprise: they are the same. So let’s write it down:

Theorem 7.3 mi =
pi
2

+ 1

So you know how to do it. It’s a little bit of work, but you know all the weights, so you know how
to decompose it.

Proof: Let v1, . . . , vn be the lowest weight vectors in the components. So those are all the vectors
which are killed by y. So gy = Cv1⊕· · ·⊕Cvn. Let’s consider a little bit bigger space M = Cx⊕gy.
This is a linear subspace of g with dimension n+ 1. We write C, but of course it can be any field
of characteristic 0.

So M ∼= Cn+1 = {(t0, . . . , tn)} the coordinates, so that any vector in M is of the form t0x+ t1v1 +
· · · + tnvn. So let φ : M ↪→ g be the injection, and we are going to study the map φ∗ : C[g]G →
C[M ] = C[t0, t1, . . . , tn].

Claim 1: φ∗ is injective. Indeed, consider the map γ : G ×M → g given by first embedding
and then acting: g × (t0, . . . , tn) 7→ (Ad g)(t0x + t1v1 + · · · + tnvn). So we want to figure out the
image of dγ at the particular point e × (1, 0, . . . , 0), where e is the identity element in G. Then
dγ|e,1,0,...,0 : g⊕M → g, and in fact Im dγ|e,1,0,...,0 = gy ⊕ adg(x) = gy ⊕ [x, g] = g.

So that tells me that γ is locally surjective map. So Im γ contains an open — not Zariski, just
open — subset in g. Question from the audience: So you really are working over C? Answer:
No, you can do this in algebraic geometry. If an algebraic map between affine spaces has surjective
derivative, then the image is Zariski dense. See [4].

But on the other hand Im γ = G ·M is Zariski dense in g. So if f ∈ S(g∗)G, then f |M = 0 implies
f |G·M = 0 so f = 0.

On the other hand, if h ∈ sl2, then adh acts as some diagonal matrix on M , because each vi is an
eigenvector. As a vector field, the action is:

adh = 2t0
∂

∂t0
−

n∑
i=1

piti
∂

∂ti
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where [h, vi] = −pivi because vi is the lowest vector of Vpi . So:

adh
Ä
φ∗(f)

ä
= 0∀f ∈ S(g∗)G

And if f1, . . . , fn are algebraically independent, then φ∗(fi), . . . , φ∗(fn) are algebraically indepen-
dent. So each must contain one ti.

So we write:
φ∗(f) =

∑
cj0,j1,...,jnt

j0
0 . . . tjnn

Actually, we cal also plug in t0 = 1 and it is still surjective by above. Then looking at the total
degrees of the weights, which must be zero by the h-invariance, then: 2j0 =

∑n
i=1 piji. And also

restriction preserves degree.

So from all this, deg fi ≤ pi
2 +1, because we have ordered everything in increasing order. Is it clear?

You can figure out the details.

But
∑

deg fi =
∑Äpi

2 + 1
ä

is what we need, so we do have equality. �

So from this statement, which is important by itself, we need a couple of corollaries.

Corollary 7.4 We can choose f1, . . . , fn so that φ∗fi = t
pi/2
0 ti + poly(t0, t1, . . . , ti−1).

Corollary 7.5 The differentials df1, . . . , dfn are linearly independent at x = (1, 0, . . . , 0).

7.1 Nilpotent cone

We will study the geometry of the nilpotent cone. First some motivation.

Recall that our program was to study Irr g. And we have a map Irr g→ SpecZ(g). Then for each
χ ∈ SpecZ(g), we can study only those irreps that admit this character. So if M ∈ Irr g, then
kerχ(M) = 0, and so Ug kerχ(M) = 0.

So let’s define Uχ(g) = Ug/(Ug kerχ). So it’s very important to study the structure of this alge-
bra.

On the other hand, everything has a filtration, so one way to study such things is going to the
graded. So if everything is OK, and we are going to prove that everything is OK, then grUχg =
S(g∗)/〈f1, . . . , fn〉. But this has a nice geometric interpretation. It is a certain affine variety inside
g. And this is the nilpotent cone.

So we begin with the definition: N def= {z ∈ g s.t. adz is nilpotent}. Let me remind you that as g is
semisimple, this is equivalent to saying that z in any finite-dimensional representation is nilpotent.
But then the traces of all powers are 0: for any π : g→ gl(V ) we have trπ(z)m = 0 for all m.

We will prove: if I is the ideal in S(g∗)G generated by f1, . . . , fn, then the nilpotent cone is exactly
the set of zeros of this ideal. Later on, we will also say that the radical of I is the same as I.
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Recall that an element is regular if its adjoint orbit has maximal dimension. So we look at:

Nreg = {z ∈ N s.t. dimCg(z) = n}

where Cg(z) is the centralizer of z. Then it is Zariski open set in N , and x ∈ Nreg.

We will prove one property:

Lemma 7.6 If z ∈ N , then G · z, the orbit under the adjoint action, intersects n+ nontrivially.

If you think about sln case, this is more or less trivial. It follows from Jordan form. We know that
for any nilpotent, there is a flag so that it moves along the flag.

Proof: We claim that there is u ∈ g such that [u, z] = z. For this, we need to show that z ∈ Im adz.
But we have the Killing form, so Im ad z = (ker adz)⊥. So we need to show that if a ∈ ker adz and
let gk = Im adkz . Then a commutes with adz, so [a, gk] ⊆ gk. So we have:

ad z =
0 ∗ ∗
0 0 ∗
0 0 0

ad a =
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

But then tr ada adz = 0.

So u can be chosen semisimple: u = us +un, and [un, z] = 0, so u ∈ h′ for some Cartan subalgebra.
So there is g ∈ G with Adg(u) ∈ h and Adg(z) ∈ n+. Then [Adg(u),Adg(z)] = Adg(z).

Question from the audience: Why did [un, z] = 0? Answer: Because adun is a polynomial in
adu. �

Next time we will show that Ug is free over its center.

And we posted new homework.

Lecture 8 Feb 5, 2010

Theorem 8.1 Let N be the cone of nilpotent elements in a semisimple Lie algebra g.

1. N is irreducible, with I(N ) = 〈f1, . . . , fn〉
def= I, where fi are the generators from last time.

2. Nreg = G · x, where x, h, y is the principal sl2 from last time.

3. dimN = dim g− n

Proof: Last time we proved that N = G · n+, by which we mean the adjoint action. So let
B = NG(n+) the normalizer. Then dim(B · x) = dimB − n = dim n+. Therefore, B · x = n+, and
so G · x = N . But G is a connected group, and so G · x is irreducible.

We already showed that f1, . . . , fn ∈ I(N ). And so we only need to show that
√
I = I. But this is

follows from the fact that df1, . . . , dfn are linearly independent at x: indeed, if
√
I 6= I, then some

dfi would have to depend on the others at some point. �
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In fact, this is always true if you know a little bit about algebraic groups, and will be an exercise.
The claim is that N has finitely many G-orbits.

Example 8.2 sln, then N consists of the nilpotent n × n. And the G-orbit of a matrix is deter-
mined by its Jordan form. So the G-orbits are in one-to-one correspondence with **unordered**
partitions of n. ♦

Theorem 8.3 Ug is free as a module over its center Z(g).

Proof: We will prove this in three steps. Our strategy will be to show in Steps 1 and 2 that S(g∗)
is free as a S(g∗)G-module. Then in Step 3 we will conclude the result via the filtered-graded yoga.

Step 1 Pick up q1, . . . , qm ∈ S(g∗) which are linearly independent on G · x. Then we will show
that there exists Zariski-open U ⊆ g, U 3 x such that q1, . . . , qm are linearly independent on
G · z for any z ∈ U .

This fact uses very little algebraic geometry. In fact, for every z ∈ g, define the obvious map
φz : G→ G · z, g 7→ Adg(z). Then there is a dual map. And the linear independence implies
that rankφ∗x(q1, . . . , qm) = m. But rankφ∗z(q1, . . . , qm) = m is a Zariski-open condition in z,
as it is the statement that certain minors are non-zero.

Step 2 We set S(g∗) = I ⊕ Y , with Y graded. **I is a graded subspace of S(g∗); so we
pick some vector-space splitting.** Then we will prove that the multiplication map
µ : S(g∗)G ⊗ Y → S(g∗) is an isomoprhism.

We first prove that µ is surjective. Let p : S(g∗) → Y be the projection induced by the
splitting. Then for q ∈ Sk(g∗), we have q · p(q) = f1q1 + · · · + fnqn with deg qi < k. So we
can proceed by induction.

To prove injectivity, we argue as follows: And element of S(g∗)G⊗Y is of the form
∑m
i=1 s⊗qi,

with si ∈ S(g∗)G and qi ∈ Y , and we can chose it so that q1, . . . , qm are lienarly independent.
Then suppose that µ

Ä∑m
i=1 s⊗qi =

∑
siqi = 0. But q1, . . . , qm are linearly independent on

G ·x. But then they are linearly independent on G ·z for z ∈ U , by Step 1. On the other hand,
the si are constants on any orbit, because they are invariant. So then si|G·z = 0 because the
qi are linearly independent. But then si = 0, because U is Zariski-open.

Step 3 Let σ : S(g∗) ∼→ Sg ↪→ T g � Ug, where the first map is the Killing form, the second
is by symmetrization, and the last is definining. Then as we discussed before, this is a
homomorphism of g-modules (adjoint action).

So now set X = σ(Y ). Then take the multiplication µ̃ : Z(g)⊗X → U(g). But then µ = gr µ̃,
and since µ is an isomorphism, so is µ̃. �

So, what we do is: we take a character χ : Z(g) → C. Then we are interested in Uχg
def=

Ug/
Ä
(kerχ)(Ug)

ä
. As an algerba, this depends on χ. But on the other hand, their Hilbert or

Poincare series are always the same. Indeed, grUχ(g) = S(g∗)/〈f1, . . . , fn〉, so this is nothing else
but the ring C[N ] of regular functions on N . That’s why the nilpotent cone is so important.
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In some sense, if you know about quantization, then each χ gives a deformation quantization of
C[N ]. We hope it’s clear that C[N ] is important, so we would like to say a lot about it. For
example, G acts on C[N ], as does Uχg. Then in fact these are isomorphic as modules.

By the way, when we choose the orthogonal complement Y on Step 2 above, we can make it g-
invariant by induction on degree. If we do this, then it’s trivial that Y ∼= C[N ] as G-modules.

Theorem 8.4 Y decomposes as:
Y =

⊕
λ∈P+

L(λ)⊕mλ

where the multiplicities are mλ = dimL(λ)0 = dimL(λ)h.

For example, mλ 6= 0 implies that λ ∈ Q. This is not surprising: only the root lattice appears as
weights of Ug.

Example 8.5 When g = sl2, each representation of even weight appears with multiplicity 1. ♦

So, the idea is that G ·x is not closed. So we will deform it to G ·h, where h is from the principle sl2,
and hence a semisimple element, and then we will prove that we have an isomorphism Y = C[G ·h].
This is the kind of thing that doesn’t always work; it’s rather specific to this situation.

We will first show, because we didn’t do it yet:

Proposition 8.6 If z ∈ gss (the semisimple elements), then the adjoint orbit G · z is closed.

Proof: Suppose z′ ∈ G · z. If p(t) is the minimum polynomial for adz, then it also annihilates adz′ :
p(adz′) = 0. So the minimum polynomial of z′ can only have smaller degree. Also, the characteristic
polynomials are the same: det(adz −t) = det(adz′ −t). Question from the audience: Why?
Answer: Because the characteristic polynomial is invariant, so constant on orbits, and one is in
the closure of the orbit of the other.

So all multiplicities of eigenvalues are the same, and so the multiplicities of the zero eigenvalue are
the same. Then dim ker adz′ = dim ker adz. So dimG · z = dimG · z′, and hence z′ ∈ G · z. �

Ok, so now we do a nice trick.

Proposition 8.7 Let r : S(g∗)→ C[G·h] be the restriction map. The claim is that r : Y → C[G·h]
is an isomorphism.

Question from the audience: This is for arbitrary semisimple h? Answer: No, it is for any
regular h. But we will do it for the specific h in the principal sl2.

Proof: Surjectivity follows from the fact that on an orbit r(fi) are constants. Injectivity is the
interesting part. Remember that Y is graded; so pick up q1, . . . , qm ∈ Y homogeneous and linearly
independent. Then we want to show that their images r(q1), . . . , r(qm) are also linearly independent.

So assume the opposite. Remember this notation φ from before: φh : G→ g∗ birationally. Then by
the assumption dimφ∗h(q1, . . . , qm) < m. On the other hand, we can multiply h by any constant:
because each qi is homogeneous, we have for any t ∈ C×, that dimφ∗th(q1, . . . , qm) < m. On the
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other hand, you can check that th + x ∈ G · th. So dimφ∗th+x(q1, . . . , qm) < m. But this rank is a
semicontinuous function, so we can take t = 0: dimφ∗x(q1, . . . , qm) < m. But then q1, . . . , qm are
linearly dependent on G · x, and therefore on N . But this is a contradiction: Y → C[N ] is an
isomorphism. �

So this was a good trick. You see what happened: you have generic orbits, which are closed,
because they are maximal dimension. And then you have nongeneric orbits, but they are still in
the families.

Next time we will finish Theorem 8.4, which requires that we talk a little bit about algebraic groups.
Then we will talk about the symplectic structure on G-orbits in C[N ].

Lecture 9 Feb 8, 2010

We briefly recall the results from last time (Theorem 8.4). By N we mean the Nilpotent cone, and
C[N ] its ring of regular functions. Last time, we proved that:

C[N ] ∼= C[G · h] ∼= S(g∗)/〈f1, . . . , fn〉 ∼= Uχ(g)

All these are isomorphism of G-modules. Question from the audience: I thought the last should
be the associated graded? Answer: No, we are just talking about G modules. As rings they are
different.

We will eventually prove:

Proposition 9.1 C[G · h] =
⊕
λ∈P+

L(λ) ⊗ L(λ)h. As G-modules, G acts on the first L(λ), and

trivially on L(λ)h.

We could talk about g, but we prefer G.

9.1 G as an algebraic group

Let G ⊆ End(V ) where V is a finite-dimensional vector space. Then if G is a semisimple simply-
connected Lie group over C, then it is algebraic.

An important remark: This fails over R. For example, π1SL(2,R) = Z, which is easy to see directly.
Therefore, if we take a simply-connected cover, its center is isomorphic to Z. But this cover cannot
be algebraic, as its center is not Zariski-closed.

Question from the audience: But this cover does not have a faithful finite-dimensional rep-
resentation. Answer: That’s correct. We will prove that any semisimple over C has a faithful
representation, but we will do this when it’s easy. When we say “algebraic group”, we mean an
affine algebraic group. Of course, elliptic curves are also algebraic groups. We will prove that if
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G is an algebraic variety and a group, then there is an exact sequence 0 → Gaff → G → A → 0,
where Gaff isaffine and A is abelian. So this is all the examples.

Question from the audience: So is the failure, even over R, to be algebraic that it doesn’t have
a faithful rep? Answer: No, certainly not in the non-semisimple case, and we think there are even
semisimple counterexamples, but didn’t prepare any.

So, the regular representation of G and algebraic group is C[G]. It is a G×G module: if f ∈ C[G],
then we set (g1, g2)f |x = f(g−1

1 xg2). This is interesting, because each G centralizes the other.

In fact, if G is finite — and certainly finite groups are algebraic — then it is a well-known fact
that

C[G] =
⊕

irreps of G

V � V ∗

Let’s explain the symbol �, which is the exterior tensor product. It is M �N = M ⊗N as a vector
space, and if G y M and H y N then G×H y M �N .

Theorem 9.2 C[G] =
⊕
λ∈P+

L(λ)� L(λ)∗

This is a non-compact version of the Peter-Weyl Theorem.

To prove it we need a bit of preparation.

Recall the maximal torus. Let H = (NG(h))0, the connected component of the normalizer in G of
h. Then Lie(H) = h, and it is a torus: H ∼= C× × · · · × C×. Of course, we can replace C with any
algebraically closed field of characteristic 0.

There is an exponential map: exp : h → H, which is a homomorphism of abelian group, and let
Γ = ker exp. It is some lattice. Indeed, we have C× ∼= C/Z, or really (2πi)Z.

To describe this lattice, we switch to the dual. Let Ĥ be the set of all 1-dimensional (irreducible)
representations of H. Then the point is that the set of irreps of h is just h∗, and so if λ ∈ h∗, we
can try to exponentiate it. But in order for this to happen, we should have an integrality property.
I.e. Ĥ ⊆ h∗, and in fact it is:

Ĥ = {λ ∈ h∗ s.t. 〈λ, γ〉 ∈ Z∀γ ∈ Γ}

Moreover, Ĥ is an abelian group, because we can tensor representations.

We said already that G has a faithful representation, which could be the sum of all fundamental
representations. Then Ĥ ∼= P , the weight lattice of g. Question from the audience: What
do you mean by ∼=? Answer: Of course, it is isomorphic as an abstract group, but we mean
that there is a canonical isomorphism. **They are both in h∗; can we write down this
isomorphism?**
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Then you can easily prove that any regular function on H is a finite linear combination of characters,
because of Laurent polynomials. This gives:

C[H] =
⊕
Φ∈Ĥ

CΦ

Now, the torus actions on the left and on the right are more or less the same. So we identify Ĥ = P ,
and then any element λ ∈ P gives rise to a one-dimensional representation of H, which we call Cλ.
So, since C−λ = C∗λ, we have:

C[H] =
⊕
λ∈P+

Cλ � C−λ

**So the idea is that Cλ � C−λ =
⊕
w∈W

Cwλ or something...**

Now we will construct the matrix coefficient. For λ ∈ P+, we will construct jλ : L(λ) � L(λ)∗ →
C[G]. Indeed, let v ∈ L(λ) and ϕ ∈ L(λ)∗. Then we define:

jλ(v ⊗ ϕ)
∣∣∣
g

= 〈g−1v, φ〉

You can check directly that this is a homomorphism of (G × G)-modules. It is injective by ir-
reducibility of L(λ)s. Question from the audience: Why? Answer: The guy on the left is
irreducible **over G×G**, so the kernel is invariant, so must be 0.

Then we have: ⊕
λ∈P+

L(λ)� L(λ)∗ ⊆ C[G]

First, we remark that C[G] is indeed the direct sum of finite-dimensional representations. This for
example follows from the faithfulness G ⊆ End(V ), so C[G] is a quotient of C[End(V )] by some
invariant ideal, and C[End(V )] = S(V ⊗ V ∗). So we really cannot have an infinite-dimensional
irreducible direct summand. Question from the audience: We’re using the grading? Answer:
No. It’s always true that the quotient of a semisimple module is semisimple.

So, any finite-dimensional irrep of G×G is of the form L(λ)�L(µ) for λ, µ ∈ P+. Question from
the audience: How do we know? Answer: If you don’t know it, do it as an exercise.

**Ah, so of course, L(λ)∗ is finite-dimensional, so not L(−λ). Rather, L(λ) 7→ L(λ)∗ is
given on fundamental weights by the action of some involution of the Dynkin diagram.
For many Dynkin diagrams, there are no nontrivial involutions.**

So, we are interested in HomG

Ä
L(λ)� L(µ),C[G]

ä
.

We need a little preparation. Let g = n− ⊕ h⊕ n+, and N± the group with Lie algebra n±. Then
we have a map N+HN− → G with Zariski-dense image. Question from the audience: How do
we know that when you exponentiate, it becomes algebraic? Answer: For N±, each matrix in n±

is nilpotent. For H, recall that we took a normalizer and took its connected component; these are
algebraic operations. The set N+HN− is the big Bruhat cell.
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Now, we discussed before that ψ ∈ HomG

Ä
L(λ) � L(µ),C[G]

ä
. Let v be a highest vector in L(λ),

and w a lowest vector in L(µ). Then N+v = v and N−w = w, so let ψ(v ⊗ w) = f ∈ C[G], and
then we see that for any n± ∈ N± and any g ∈ G we have f(n+gn−) = f(g).

So, if we study the values of f on N+HN−, a Zariski-dense set, it is completely determined by its
values on H.

There is even one more property. We know what happens to the vectors when we multiply by
elements of the torus. Let h ∈ h. Then (exph)v = eλ(h)v and (exph)w = eµ

′(h)w. **µ′ = −µ?**
Then f

Ä
(exph1)h(exph2)

ä
= eλ(h1)eµ

′(h)f(h), for h ∈ H.

So, we see that f |H ∈ Cλ � C−λ, so µ′ = −λ, so L(µ) ∼= L(λ)∗. Weights of the dual representation
are negative weights of the representation.

Therefore, we have proved:

dim HomG

Ä
L(λ)� L(µ),C[G]

ä
=

{
1, L(µ) = L(λ)∗

0, otherwise

This proves Theorem 9.2.

Actually, everything we did works for reductive groups, but we haven’t defined those.

For the last five minutes, consider the map ξ∗ : C[G · h] ↪→ C[G] dual to ξ : G � G · h. This is a
homomorphism of (left) G-modules.

At this moment, we must talk about the stabilizer. We have: StabG(h) = H. Why? First of all,
h is the centralizer of h in g. So NG(h) ⊆ StabG(h). But NG(h)/H ∼= W . And StabW h = {e} by
regularity. This proves the claim.

Therefore in fact, we identify G/H ∼= G · h. And Im ξ∗ = {f ∈ C[G] s.t. f(xg) = f(x) ∀g ∈
H}.

So, look at C[G]Hright = (
⊕
L(λ)� L(λ)∗)Hright =

⊕
L(λ)�L(λ)H . This proves Proposition 9.1.

Question from the audience: Why can we drop the ∗? Answer: What is L(λ)H . From the
perspective of the weight representation, this is the weight-zero part.

Next time, we will talk about the connection with symplectic geometry and the coadjoint repre-
sentation.

Lecture 10 Feb 10, 2010

Last time we had a question about algebraic groups and faithful representations. So we will begin
with several general facts about algebraic groups: a few things you should know.
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10.1 General facts about algebraic groups

Strangely, there is no course about algebraic groups here. As we will see in the semisimple case,
compact groups and algebra groups are the same thing, but this does not cover the characteristic-p
case, or even nilpotent groups. Certain things are easier to do in the framework of algebraic groups,
and certain things are easier in the Lie framework.

We pick K algebraically closed and characteristic 0. An (affine) algebraic group is an algebraic
variety with group structure m : G × G → G, i : G → G that are all morphisms of algebraic
varieties. Then it’s clear that the shift maps (left- and right-multiplication) are algebraic.

Some facts:

1. If f : G → H is a homomorphism of algebraic groups, then its image is Zariski-closed.
(Henceforth, “closed” means Zariski-closed.) Why is this so? We will use the following fact
from algebraic geometry. For any algebraic map of varieties f : X,Y , then f(X) contains an
open dense set inside f(X).

So, let U ⊆ f(G) open with U = f(G). Then for y ∈ f(G), we have yU ∩ U non-empty, as it
is again Zariski-dense open. But then y ∈ U · U , and so f(G) = U · U = f(G).

2. Let m : G × G → G be the multiplication, and pull it back to ∆ : K[G] → K[G × G] =
K[G]⊗K[G] via ∆f =

∑s
i=1 fi⊗f i where f(gx) =

∑s
i=1 fi(g)f i(x). But then the image of the

action of the group on K[G] lies in the span of finitely many functions: g ·f(x) ∈ span{f i(x)}.

So any finite-dimensional subspace W ⊆ K[G] (considered as a G-module with respect to left
translation) is contained in some G-invariant finite-dimensional subspace.

3. But from 2. we see that if G is an algebraic group, then it has a faithful representation: pick
up regular functions that separate points — you can always do this with finitely many of
them — and consider the finite-dimensional invariant space containing them.

4. So, if H ⊆ G is a (Zariski-)closed subgroup, and both are algebraic, then H has an ideal IH
in K[G]. Then IH is clearly an H-invariant subspace. So we can ask about the normalizer in
G of IH . In fact, we have:

H = {g ∈ G s.t. f(gx) ∈ IH ∀f ∈ IH}

Actually, this is obvious in both directions, but in one direction it took VS some time.

What you do is: suppose f(e) = 0; then f(g) = 0 for all g ∈ H.

5. The last fact is true for semisimple Lie algebras, but not Lie algebras in general. It is called the
Jordan-Chevalley decomposition. If you pick any g ∈ GL(V ), then we can write g = xs + xn,
where xs is semisimple and xn is nilpotent, and [xs, xn] = 0. In fact, these conditions
uniquely pick out xs, xn, and it turns out that there are polynomials p, q depending on g so
that xs = p(g) and xn = q(g). Moreover, if g ∈ GL(V ), then xs is also invertible, although
xn never is. So we write g = xs(1 + x−1

s xn) = gsgn. This is the group Jordan-Chevalley
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decomposition. By the uniqueness, it doesn’t matter how you embed g in GL(V ). There is
only one way to write g as a product of unipotent and semisimple elements that commute.

6. If G is an algebraic group, g ∈ G, then gs, gn ∈ G. This follows from fact 4. Indeed, you
write G = {g ∈ GL(V ) s.t. f(gx) = IG ∀f ∈ IG}. But then any polynomial of g leaves
IG invariant. Question from the audience: But “polynomial” doesn’t make sense in the
group? Answer: No, but it makes sense in any embedding into GL, and the answer doesn’t
depend on the embedding.

7. This also all works in Lie algebras, where you think in terms of the adjoint action by deriva-
tions. Then a Lie algebra of an algebraic group is closed under Jordan-Chevalley decomposi-
tions.

8. So if you can present a Lie algebra that’s not closed under the JC decomposition, then it is
not algebraic.

Example 10.1 LetG =


Ö

1 y z
0 ex xex

0 0 ex

è
s.t. x, y, z ∈ C

. The bottom corner is exp
Ä
x x
0 x

ä
,

so this is a closed group. And the adjoint representation is algebraic **maybe I mis-
heard?**, but on the other hand, you can see that (Adg)s, (Adg)n 6∈ G, so G is not an
algebraic group. ♦

9. Let G be semisimple and connected G ⊆ GL(V ). Then G is algebraic. The point is you look
at the G-action in End(V ). Then End(V ) = g⊕m, and [g,m] ⊆ m, because any representation
of a semisimple group is completely reducible. So take the normalizer NGL(V )(g)0 = G0 ×Ä
ZGL(V )(g)

ä
, where we took connected components. **missed a sentence**

10. If V is any finite-dimensional representation of algebraic G, then we can construct the map
V ⊗ V ∗ → K[G]; last time we said that the map is injective if V is irreducible, but in fact it
is always injective. The action of G is on the left on K[G], on V , and trivial on V ∗. So we
have a homomorphism of representations V 7→ K[G]⊗ V , which moves the action from V to
K[G]. So this is K[G]⊗ V ∼= K[G]⊕ dimV .

Question from the audience: Wait, how are you constructing the map V ⊗ V ∗ → K[G]?
Answer: You tensor with V on the right, and take the trace. Question from the audience:
But then you’re throwing something away? Answer: No, let’s write it out. If V is finite-
dimensional, then there is a canonical isomorphism Hom(A,B ⊗ V ) ∼= Hom(A⊗ V ∗, B).

But in general, if your group is not reductive, then you can get finite-dimensional representations
of arbitrary length in Jordan-Holder series.

10.2 Compact Groups

So, to make the difference with G, which is usually complex, we will denote by K a compact Lie
group. Let V be a finite-dimensional complex representation of K. Then we have the operation of
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taking averages, which implies that V is completely reducible. In fact, V is unitary with respect
to some K-invariant positive-definite Hermetian form. You do the standard thing: pick up some
positive-definite Hermetian form, and then since K is compact, you can integrate. So let B be any
Hermetian form; then:

B̄(x, y) def=
∫
K
B(gx, gy) dg

and if B was positive-definite, then B̄ is K-invariant and positive-definite.

So, if K was a compact group, let’s look at k = Lie(K) and its adjoint representation. Then it is
completely reducible: k splits as a direct sum of irreducible ideals. Moreover, we have kC = k⊗R C.
Then it also is a direct sum of irreducibles. But then kC is the direct sum of a semisimple and and
abelian, so so is k: k = k′ ⊕ z, where k′ = [k, k] is seimsimple, and z is abelian. And of course, k′C is
semisimple.

So it’s clear that the classification of compact groups is reduced somehow to the classification of
semisimple Lie algebras.

We will not prove the following theorem, which you can easily prove from above:

Theorem 10.2 If K is a compact connected Lie group, then K ∼= (K ′×T )/Γ, where T is a torus,
K ′ is semisimple compact, and Γ is a finite central subgroup of K ′ × T .

We will see very soon, but maybe not today, that if K is semisimple, and you take any connected
cover, then the cover is compact.

So the classification is straightforward, and follows from the following basic question. Suppose we
have a semisimple complex Lie algebra. How many ways can we get a compact group from it?

So, let k be semisimple, and g = k⊗R C. The question is going back. Suppose we start with g: can
we get k? The answer is “yes”, and more or less in a unique way.

For this we do the following thing. Suppose that g is semisimple: then it has a standard set of
Chevalley generators {xi, hi, yi s.t. i = 1, . . . , n}. Then consider the skew-linear automorphism
σ : g→ g. By skew-linear, we mean that σ(λx) = λ̄σ(x), and by automorphism we want σ([x, y]) =
[σ(x), σ(y)]. So it suffices to define it on generators. We will present the Cartan involution.

So, what it does is: σ(xi) = −yi, σ(yi) = −xi, and σ(hi) = −hi. This is clearly an automorphism:
everything is defined over Z, so you can definitely extend this to an involution.

So, let’s take k = gσ = {x ∈ g s.t. σ(x) = x}. The point is that this is an R-Lie subalgebra of g,
and it’s not difficult to see that g = k⊕

√
−1 k = k⊗R C.

Now look at the Killing form on k. We claim that it is negative definite. So check this, we just hve
to check it on the generators. Look at how it goes on sl2. Then it is:

σ :
Ç
a b
c −a

å
7→
Ç
−ā −c̄
−b̄ ā

å
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So this is a Hermetian matrix. Then you look at the root spaces, which are orthogonal pretty much,
and the calculation is not difficult.

So this means that if you look at Ad : K → GL(k), then actually the image lies in the orthogonal
group O(k), and this is compact when the form is negative-definite, and the image is closed. So
this means that AdK is compact.

In fact, we will see that this construction is more or less unique.

Lecture 11 Feb 12, 2010

11.1 Unitary Representations

The plan today is to start talking about unitary representations, and to get from this some re-
sults about compact groups. We will not prove everything: it is based on some basic functional
analysis

Unitary representations are very important, and for the last 50 years people have wanted to classify
unitary representations of specific groups. The whole subject was started by Hermann Weyl, and
is motivated by quantum mechanics. In fact, the unitary representation theory of real Lie groups
is an ongoing project.

So, let V be a Hilbert space, i.e. a vector space over C with a positive-definite Hermitian form (, ),
inducing a norm ‖v‖ =

»
(v, v), and V is complete with respect to ‖ · ‖. Then B(V ) = {X ∈

End(V ) s.t. |X| < ∞}, where X is operator norm, is the set of bounded operators. Then we also
have the unitary operators U(V ), the operators preserving the norm. B(V ) is an algebra, but U(V )
is a group.

So let G be a Lie group. A unitary representation of G is a homomorphism G → U(V ) such that
(gx, y) is continuous in each variable. Actually, this is a little subtle, because we have multiple
topologies, but we don’t want to go into this. V is (topologically) irreducible if any closed invariant
subspace is either 0 or V .

Lemma 11.1 (Schur) If V is irreducible and T ⊆ B(V ) ∩ EndG(V ), then T ∈ Cid.

Proof: Any bounded self-adjoint operator is diagonalizable. **There are many complaints
about this statement, because it is wrong, depending on what “diagonalizable” means.
There is a proposed proof of the statement. The general agreement is that the state-
ment is true but nontrivial.** �

The point is that Hilbert spaces correctly generalize linear algebra.

Let K be a compact Lie group.

Example 11.2 L2(K) is an example of a unitary representation, where the action is gφ(x) =
φ(g−1x). ♦
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Example 11.3 Any finite-dimensional representation of K is unitary, by averaging to get the
invariant form. ♦

In fact, for a compact group K, any continuous representation on a Hilbert space can be made into
a unitary representation. But these don’t give more examples:

Proposition 11.4 Any irreducible unitary representation of K is finite-dimensional.

Proof: Pick up v ∈ V with ‖v‖ = 1. Then define a projection T : V → V by T (x) = (x, v)v. Then
take the average T̄ =

∫
g T g−1 dg. Then T is self-adjoint and compact, so T̄ is as well. Moreover,

(Tx, x) ≥ 0, so (T̄ x, x) ≥ 0. But T̄ is compact and self-adjoint, and so has an eigenvalue. Then
ker(T̄ − λid) is an invariant subspace. So T̄ = λid, but it is also compact, so this is only possible
if dimV <∞. �

This also proves:

Proposition 11.5 Any unitary representation of K has an irreducible subrepresentation.

So, if I pick up all irreducible subrepesentations of a unitary representation, take their sum, and then
take the closure, I should get the whole thing, because otherwise I take the orthogonal complement.
This holds only for compact groups: Any unitary representation is the closure of its irreducible
subrepresentations.

From this, we can actually figure out that K has always a faithful finite-dimensional representation.
This is very similar to the case of an algebraic group. The only change is to take L2(K). Indeed,
L2(K) is clearly a faithful representation. Then pick up different irreducible subrepresentations.
Suppose Vt ⊆ L2(K) is an irreducible subrepresentation, and so we have πt : K → U(Vt). Then⋂

kerπt is trivial. But in a compact group, any set of closed subgroups will eventually stop: we
have kerπ1 ⊇ (kerπ1 ∩ kerπ2) ⊇ . . . eventually stops at kerπ1 ∩ · · · ∩ kerπs = {1}. So then
V = V1 ⊕ · · · ⊕ Vs is a faithful finite-dimensional representation of K.

So, let’s star with a compact group K. Assume it is semisimple and connected. Then it has a Lie
algebra Lie(K) = k. Denote g = kC = k ⊗R C. Then we know all finite-dimensional complex irre-
ducible representations of k. We have the generators Vω1 , . . . , Vωn corresponding to the fundamental
weights. Then we can take V = Vω1 ⊕ · · · ⊕ Vωn , and construct an algebraic group G ⊆ GL(V ).
Then we take K ⊆ G corresponding to k. Question from the audience: Wait, so G = exp g in
GL, and how do I know it’s algebraic? Answer: We discussed this last time. It follows from the
semisimplicity of G.

Question from the audience: So the two Ks are different? Answer: Yes, we start with k, and
then do above, and construct K.

Proposition 11.6 Let k be the Lie algebra of a compact semisimple group, and K constructed from
k as above. Then K is simply connected.

Proof: Let K̃ → K be the simply-connected cover. So K = K̃/Γ. If Γ is finite, set K ′ = K̃, and
otherwise pick Γ′ ( Γ of finite index — it is an abelian discrete group. Then we have a finite cover
K ′ → K. So K ′ has a faithful representation, as it is compact, but all the faithful representations
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are already there, so K ′ = K.

The point is that the adjoint form of k is compact, and our proof says that the simply-connected
cover of a compact semisimple group is compact. �

Indeed, we know that the center Z(K) = ker Ad. But also Z(K) = P/Q, the quotient of the
weight lattice by the root lattice. Because inside K we have the maximal torus T , whose group
of characters is P . And in the adjoint form we have AdT ⊆ AdK, and its characters are Q. But
then the center is the quotient of one by the other.

Theorem 11.7 (Peter-Weyl) If K is a compact group, then:

L2(K) =
⊕

L(λ)∈Irr(K)

L(λ)⊗ L(λ)∗

Question from the audience: What is the bar? Answer: We must take closures, as opposed
to the algebraic case.

We basically have this for semisimples, but actually for any compact, it is a quotient of a torus
times a semisimple by a discrete group. The only thing to prove is that

⊕
λ∈P+ L(λ) ⊗ L(λ)∗ is

dense in L2(K). And this follows form the fact that polynomial functions are dense in L2.

11.2 Cartan decomposiiton

Let’s keep the notation of above. Then we have g = k ⊕ ik. And this we can lift to the group.
k K ⊆ G, and we construct a subset M = exp(ik) ⊆ G. Then the claim is that the multiplication
map K ×M → G is an isomorphism of real manifolds. Moreover, exp : ik→M is an isomorphism
of manifolds, so M ∼= Rm. So in particular, π1(G) = π1(K). So if we start with simply-connected
K, then G is also simply-connected. We also have Z(G) = P/Q = Z(K).

So, we have GL(V ) ⊆ G. Since the representation is unitarizable, we can pick an inner product so
that K ⊆ U(V ) ⊆ GL(V ).

Now, let H+ be the set of positive-definite Hermetian matrices. Then recall that the multiplication
map U× H+ → GL(V ) is an isomorphism. Indeed, injectivity is obvious, because the intersection
U ∩ H+ = {1}. But surjectivity is also standard. If X ∈ GL(V ), then XX̄t ∈ H+, and so we find
S ∈ H+ with S2 = XX̄t. But then XS−1 ⊆ U(V ). This is just linear algebra.

Lecture 12 Feb 5, 2010

First we will correct the Schur lemma, although we won’t use it. We thought there was a simple
proof, but the one we found depends on spectral theory.
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Proposition 12.1 If V is an irreducible unitary representation of G, then BG(V ) = C. Here
BG(V ) is the set of bounded operators that commute with G.

Proof: Pick X ∈ BG(V ), and think about A = X+X∗ and B = (X−X∗)/i. These are Hermetian
and commute with G. Then by some functional analysis:

A =
∫

SpecA
x dP (x)

The point is that if E ⊆ SpecA is a Borel subset, then P (E) is a projector and commutes with
A and also with G, and now the standard kernel-and-image argument works: kerP (E) is an
invariant closed subspace, so P (E) = λid, and therefore A, and by the same token B, are scalars,
so X = (A+ iB)/2 is as well. �

We might talk about unitary representations later when we talk about orbit methods.

12.1 Compact Groups

We now return to our discussion of compact groups. We will prove:

Theorem 12.2 (Cartan) Given a complex semisimple Lie algebra g, it has a unique up to iso-
morphism compact connected simply-connected Lie group K with g ∼= Lie(K)⊗R C.

We will write k = Lie(K).

So for each simply-connected complex group, there is exactly one compact group.

Proof: We already did the existence. Remember, we defined at some point the Cartan involution
on g by σ(hi) = −hi, σ(xi) = −yi, and σ(yi) = −xi, and extended by skew-linearity to an involution
of g. We picked up k = gσ. Then the compactness of k follows from the fact that the Killing form
is negative-definite **I actually don’t know why negative-definite Killing form forces a
Lie algebra to be compact**.

Now, suppose that we have a Lie algebra k over R such that k⊗RC = g. Now we can write g = k⊕ik,
and define θ to be skew-linear and the identity on k, so that k = gθ. This is art of a more general
construction. If you know some object over an algebraically closed field, and you want to know how
many objects over some subfield extend to your object, then the answer is determined by Galois
cohomology. So: the possible ks are determined by skew-linear involutions on g.

But furthermore, if θ1, θ2 are involutions of g, and θ1 = φθ2φ
−1 for some φ ∈ Aut g, then gθ1

φ

� gθ2 .

So we want to classify involutions up to conjugating by an automorphism.

So: since θ acts on g, then it also acts on Aut g by conjugation, and the restriction to the adjoint
action is what it should be.

So, K is compact, so there is a Hermetian form on g that’s invariant with respect to K. Question
from the audience: Can you just take the Killing form and skew one of the spots? Answer: Yes,
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but you must check that θ preserves the Killing form. **If θ is a Lie algebra automorphism,
then it must, right?**

So, we have: GL(g) = U(g) × H+(g), the unitary and other parts with respect to the invariant
form.

Now we look at Aut g∩U(g) = {φ s.t. θφ = θφ} and Aut g∩H+(g) = {φ s.t. θφθ−1 = φ−1 and positivity condition}.

Question from the audience: Wait, why? Answer: θ(X) = (X∗)−1. But these coincide on k,
and **missed**.

We have Aut g ∩U(g) = Aut gθ, and for notation let’s write Aut g ∩H+(g) = Aut g+.

Then we claim that Aut g = Aut gσ ×Aut g+. The proof follows from the following:

Lemma 12.3 Suppose that X ∈ (Aut g)+ and X = eA for some A Hermetian, although maybe not
positive-definite. Then eAt ∈ Aut g for t ∈ R. So then we can define any real power Xt.

For the proof of lemma 12.3, we choose an orthonormal basis {e1, . . . , eN} of g, and such that
A = λiei. Then we take the structure constants [ei, ej ] =

∑
ckijek. Then eA is an automorphism iff

λi + λj = λk whenever ckij 6= 0. But clearly this condition is well-behaved under multiplying by a
real number: eAt is an automorphism.

So, returning to the claim, we can take a square root. Last time, when we did the proof for the
general linear group, all we needed was to take the square root. So the proof goes in exactly the
same manner.

One more remark: Suppose we take θ and multiply by some automorphism φ ∈ Aut g+. Then
θφ = φ−1/2θφ1/2.

Now we are in the following situation. We know there is this σ, and another involution θ, and they
both give compact groups. Now take θσ = φ. This is an automorphism, and σ = θφ. So without
loss of generality, by the lemma and the immediately-previous remark, we can assume without loss
of generality that φ ∈ Aut gθ. But then θ commutes with φ, and so with σ.

Now, if we have two commuting operators in space, then they have common eigenvalues, and these
two are involutions, so they have only + and − eigenspaces. So, we write g = gσ ⊕ igσ, and gσ is
θ-invariant. So we have gσ = (gσ)θ + (gσ)′, where the latter is (gσ)′ = {x s.t. θx = −x}. But by
skew-linearirty, we have gθ = (gσ)θ + i(gσ)′.

But finally, the claim is that if these give compact groups, then (gσ)′ = 0.

Indeed, if x ∈ gσ (or gθ), then adx is skew-Kermetian, and so adx is semisimple with imaginary
eigenvalues. But then i adx is a problem. So then (gσ)′ = 0, and so σ = θ.

Question from the audience: Where did you get the ad-Hermiticity? Answer: Because θ, σ
give compact groups, and **missed**. �

You can easily now also show:
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Proposition 12.4 Let K be semisimple. Then K is compact iff the Killing form on k is negative-
definite.

**Did we already prove one direction of this? It seems we used it in the above
proof.**

By the way, here’s a good exercise. Take the classical series SL(n,C), SO(n,C), and SP(2n,C).
What are their compact real forms? The answer for SL(n,C) is the special-unitary group SU(n).
For SO(n,C), you get SO(n) = SO(n,R). For SP(n,C), it is not so well known. You must take the
n-dimensional space Hn over the quaternions. The quaternions are not commutative, but there is a
well-defined notion of conjugation, and of Hermitian form. Then SP(n) is the group of all H-linear
operators preserving the form on Hn.

Question from the audience: We’ve said that the complex representation of a compact group
is the same as of the complex group. What about the real representation theory? Answer: It’s
not much harder. We didn’t prepare it, but let’s talk about it.

12.2 Real representation theory

Let K be a Lie group, V a finite-dimensional irreducible representation over R. Then the Schur
lemma doesn’t quite work, because R isn’t algebraically closed. But anyway EndK(V ) must be a
finite-dimensional division algebra over R. So it must be EndK(V ) = R, C, or H.

Now, what happens when we complexify? Then in each case, it just complexifies. I.e.: let VC =
V ⊗R C. Then EndK(VC) = EndK(V ) ⊗ C = C in the first case, C ⊕ C in the second case, and
Mat2(C) in the quaternionic case.

In the first case, VC is still irreducible. In the second, it must be the sum of two irreps: VC = V1⊕V2,
and they must be different. These are called “conjugate”. In the third case, it’s the sum of two
copies that are the same: VC = V ′ ⊕ V ′. **So this is something like “ramification”.** So
the point is: you can ask, we have a highest weight vector, and when you restrict to the real part,
you get into one of these types.

You have the list: an infinite list of irreducible representations. Then some representations are
fixed by this involution, V1 ↔ V2. This is related to the automorphisms of the Dynkin diagram. In
An, there is one involution of the Dynkin diagram. You look at the weights of your representation,
restrict and complexify, and then you can see what happens to it. For compact groups, there is a
way to just write down some integral, and see if it’s 0, 1,−1. Question from the audience: I
think it has something to do with the square of the character. Answer: Yes.

This involution is essentially passing to the dual. There are two things that can happen: either the
dual of a representation is not the isomorphic to the original, in which case you’re in the second
situation. If it is the same, then it has a complex form, and a pairing that’s either symmetric or
skew-symmetric. And from this you can figure out what you have: quaternionic or real.

We will include some of this stuff in the problem sets.
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12.3

Next time, we will begin looking at the coadjoint representation g∗. We will see that it is a Poisson
manifold. In fact, we will see that the set of orbits are precisely the symplectic leaves. Then we will
move to the compact case, and then coadjoint orbits are really going to be complex manifolds. They
come in “flag varieties”. Then we will look at flag varieties: projectivity, Bruhat decomposition,
etc.

Lecture 13 Feb 19, 2010

Today we will talk a little bit about the connection between coadjoint orbits and symplectic geom-
etry.

13.1 Poisson Algebra

A Poisson algebra is:

1. an associative algebra A

2. along with a Lie bracket {, } on A

3. such that {a, ·} is a derivation: {a, bc} = {a, b}c+ b{a, c}

Example 13.1 Let A be filtered: A =
⋃∞
i=0, with filtered multiplication. And suppose that

A = grA is commutative. Then A is naturally Poisson: you take representatives a, b ∈ A of your
elements of A, take their bracket, and project, and this is well-defined.

In particular, Sg = grUg is Poisson. ♦

Now, letM be a manifold — analytic, smooth, whatever you want — and suppose that C∞(M) is
a Poisson algebra. Then actually you do know that derivations of functions are vector fields, so the
Poisson structure gives you a map C∞(M)→ Vect(M) by f 7→ {f,−} = Df . In fact, you can show
— it is not difficult — that this map must factor through the differential d : C∞(M)→ Ω1M. So
actually a POisson structure on a manifold is determined by a section γ ∈ ∧2 TM. **VS writes
TM for VectM = Γ(TM) in the classical notation. I will do this as well.**

Question from the audience: Why must the map factor as you say? Answer: Because it is
also a derivation in the first spot, and any derivation factors like this.

Example 13.2 g∗ is a Poisson manifold. The definition is as follows. Let x ∈ g∗; then Txg
∗ = g∗

naturally. If f, g ∈ C∞(g∗), then dfx, dgx ∈ g by the identification Txg
∗ = g∗. Then we define

{f, g}|x = 〈x, [dfx, dfg]〉. ♦

Example 13.3 Let M be a symplectic manifold. I.e. it comes with a nondegenerate closed ω ∈
Ω2M. The nondegeneracy determines an iso Ω1M→ TM. ♦
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We will not prove the following, but it is not difficult **It was one of my qual questions last
year. I think to do the complete proof takes about 40 minutes — for my qual, I only
outlined the proof. The hard part is to show that it is a manifold, and requires a
little of the theory of integrable distributions.**. First: The vector field Df = {f, ·} is the
Hamiltonian vector field for the function f .

Theorem 13.4 Let M be Poisson and x ∈M. Then define Mx to be the set of all y ∈M which
you can reach from x by Hamiltonian vector fields (maybe composing several such fields). Then
Mx is a symplectic manifold, called the symplectic leaf.

So, every Poisson manifold is a disjoint union of symplectic leaves.

Example 13.5 Let M = g∗. Then symplectic leaves are **connected components of** G-
orbits in M.

Indeed, let x ∈ g∗, and then Tx(G · x) ∼= g/ Stabg(x), where Stabg(x) is the stabilizer of x in g.
Then you can define the form ωx(y1, y2) = 〈[y1, y2], x〉. It is easy to see that the kernel of this form
is the stabilizer.

Question from the audience: Why isn’t the tangent space a quotient of g∗? Answer: If you
have a G-action M, then you have g→ VectM, and for each x, a map g→ Tx(G · x).

Indeed: y ∈ kerωx iff∀z ∈ g, 0 = 〈[y, z], x〉 = 〈z, ad∗y x〉, but this happens iff ad∗y x = 0. So ωx is
well-defined **and nondegenerate** on g/Stabg x. **Why is it closed?** ♦

Corollary 13.6 The dimension of any coadjoint orbit is even.

If g is semisimple, then g ∼= g∗ as g-modules. **There is a C× ambiguity in how to make
this identification.**

Example 13.7 Look at the nilpotent cone N ; it has an open dense “regular” orbit Nreg. Then we
now know that the complement N rNreg consists of even-dimensional components. This implies
that C[N ] = C[Nreg]. ♦

13.2 Coadjoint orbits for compact groups

We know what are compact groups, and the torus part acts trivially on the coadjoint representation.
So we can assume that your group is semisimple.

Example 13.8 K = U(n). You can take SU(n) if you want. Then the coadjoint representation,
which is the same as the adjoint representation, can be easily identified with Hermitian matrices.
So k∗ ∼= k ∼= Hermitian matrices.

So the orbits are classified by their eigenvalues: let x = diag(λ1, . . . , λn), with λi ∈ R, and we can
order them: λ1 ≥ λ2 ≥ · · · ≥ λn. Then to the orbit x, we associate a partition (m1, . . . ,mk) of n,
by keeping track of just the multiplicities: 3, 2, 2, 1 7→ (1, 2, 1).

Then it’s clear that StabU(n) x ∼= U(m1)× · · · ×U(mk).
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Now, we want to study K ·x. It is a symplectic manifold, but it is also an almost-complex manifold,
and it has a Riemannian structure, and in fact the almost-complex structure is a complex structure.

How to see this? One simple way is just to say what manifold it is. We pick up Cn, and inside it
we will pick up the flag Cn = Vk ⊇ · · · ⊇ V2 ⊇ V1 ⊇ V0 = 0, which is a flag of a certain type: we
demand that dim(Vi/Vi−1) = mi. So we pick up the complex manifold of such flags of this type,
and these numbers in the partitions are called the“type” of the flag. So for a partition ~m we have
the flag type Fl(m1, . . . ,mk). Question from the audience: This depends on the ordering of the
partition? Answer: There is some ambiguity, yes. But at the end of the day you get isomorphic
manifolds.

And GL(n,C) acts transitively on Fl(m1, . . . ,mk). But in fact U(n) already acts transitively on
Fl(m1, . . . ,mk). This is more or less obvious from linear algebra.

And indeed, Fl(m1, . . . ,mk) is a projective algebraic variety. Question from the audience: I
don’t know what that means. Answer: You take an affine space, and look at a collection of
homogeneous polynomials. The solution set is a closed variety, and is projective. Now, you have
to know how to embed Fl(m1, . . . ,mk) into a big affine space. Actually, to do this, it suffices to
understand the embedding of the Grassmanian Gr(n, k) = Fl(n−k, k) = {V ⊆ Cn s.t. dimV = k}.
Then in fact there is the Plücker embedding: Gr(n, k)→ P(

∧k Cn) by V = 〈e1, . . . , ek〉 7→ e1 ∧ · · · ∧
ek. ♦

Ok, so we did it for K = U(n), but actually it works for any compact (semisimple) group. What
you do is you have k ⊆ g, and you pick x ∈ k semisimple. Now we look at i adx, which has all
real eigenvalues. Let kx be the stabilizer, and define gx = kx ⊗R C the complexification. Maybe we
should put ix here, but we hate it, so we multiply everything by i at the beginning. Basically this
means that we’re taking the stabilizer in g. How to classify this? We need the root data.

So take x ∈ h where h is the Cartan subalgebra of g. Then we can consider ∆0 = {α ∈ ∆ s.t. α(x) =
0}. As well, let’s define ∆± = {α ∈ ∆ s.t. ± α(x) > 0}.

So what we do is take a hyperplane. And if it is in generic position ∆0 = 0, but otherwise it is
not.

Then you can check that gx = h ⊕⊕α∈∆0
gα. So this is a certain reductive subalgebra of g. And

we can add to it another one which is px = g0 ⊕
⊕
α∈∆+ gα.

So for example, go back the the unitary group, and take x to be the block matrix with k 1s on
the diagonal and the rest 0. Then gx = glk ⊕ gln−k, and px is the block-upper-triangulars. On the
other hand, if x is regular, then px = b and gx = h.

13.3 G/P as a projective algebraic variety

We take G/Gx → G/P , because Gx ⊆ P . (Here P,G are the corresponding groups to above.) This
is a G-equivariant map, and hence a bundle of homogeneous spaces. And the fiber is P/Gx. Let’s
write the nilpotent group m =

⊕
α∈∆+ gα. It’s nilpotent, so the exponential map is an algebraic
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isomorphism, and so P/Gx = exp m = m. So under this identification, G/Gx → G/P is a vector
bundle. And what kind of bundle is it? We claim that it is a cotangent bundle.

Why? Look at m− =
⊕
α∈∆− gα. Then the Killing form identifies m+ ∼= m−, and look at the Killing

form m− → g∗. Then p = (m−)⊥. So therefore m− ∼= (g/p)∗. This is the tangent space at a specific
point, but everything is equivarient.

So actually that tells you that this bundle is nothing but the cotangent bundle. Now if you know a
little bit of symplectic geometry, you know that the cotangent bundle is an example of a symplectic
manifold.

Next time, we will classify compact homogeneous spaces, and we will do it in the algebraic category.
It happens that G/P , G/B, etc., play extremely important roles.

Lecture 14 Feb 22, 2010

Any questions?

Question from the audience: We finished last time showing that G/Gx is a cotangent bundle.
Is there a characterization of P? Answer: We will talk about that today. Basically the goal —
maybe we won’t finish it today — is to let G be an algebraic group over K, and we assume that
char K = 0 because we’re not sure how the story goes otherwise, and we want to classify connected
homogeneous projective G-spaces. Basically we will prove that this is always G/P .

14.1 Homogeneous spaces

If you have a pair G and algebraic group and H ⊆ G a closed subgroup, then we can write down
X = G/H. This is some space, but the question is to make it into an algebraic variety. You can
prove that if G is a Lie group and H a closed subgroup, then X makes sense as a nice topological
space. The problem in the algebraic case is that even if G,H are affine, then X is not affine
generally. So you cannot just write down X as the spectrum of something. Instead, we will use a
trick due to Chevellay.

Question from the audience: Is any closed subgroup of an algebraic group algebraic? Answer:
When we say “closed” we mean “Zariski-closed”, so yes.

Theorem 14.1 Let H ⊆ G be a closed subgroup. Then there exists a representation V of G and a
line ` ⊆ V such that H = StabG `.

Proof: Recall that H is given via its ideal IH ⊆ K[G]. Then recall that H = NG(IH) the normalizer
of the ideal. Then K[G] is Noetherian, so any ideal is finitely generated; we pick up generators
f1, . . . , fn of IH , and as we discussed before, there exists a finite-dimensional G-invariant subspace
Ṽ containing f1, . . . , fn.
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Then set W = IH ∩ Ṽ . Then it’s an easy exercise to show that H = NG(W ): it contains all the
generators. So actually you can say that H is the stabilizer of some space W .

If dimW = d, then to get a line we can take powers. Set V =
∧d Ṽ , and ` =

∧dW . �

Corollary 14.2 G · [`] ∼= X locally closed in P(V ).

Here [`] is the point in P(V ) corresponding to the line ` in V . Thus X is a quasiprojective vari-
ety.

Question from the audience: Here we’re using the theorem that we had before that **missed**.
Answer: Yes.

Now we will discuss the special case that H is normal. Then X is a group, and the point is that
it’s affine algebraic:

Theorem 14.3 If H ⊆ G is closed an normal, then there exists a representation π : G→ GL(V )
such that H = kerπ.

Then clearly the image is a closed group, and it’s going to be an affine group as it’s in GL(V ).
Question from the audience: The image is closed? Answer: Yes, we proved that before. Any
locally closed subgroup in a group is closed.

Proof: We start with V ′ as in the previous theorem, and choose `′ ⊆ V ′ a line such that H =
StabG(`′). So let’s write down what this means: if v ⊆ `′, then ∀h ∈ H, hv = χ(h)v. So what is
this χ? It is a character of H. Because H is normal, if we take g ∈ G, then hgv = g(g−1hg)v =
χ(g−1hg)gv, and h 7→ χ(g−1hg) is another character. So the point is that G acts on the characters
Ĥ by conjugation, because H is normal.

So, if η ∈ Ĥ, then we set V ′η = {v ∈ V ′ s.t. hv = η(h)v ∀h ∈ H}. So we set W =
⊕
η∈Ĥ V

′
η . This is

G-invariant, and G permutes the V ′η . So now we construct V as:

V =
⊕

EndK(V ′η)

the sum of matrix algebras. It’s clear that this is a representation of G, so call it π : G→ GL(V ).
If you start calculating the kernel — it’s an easy exercise — you find out that kerπ = H. Oh, what
is this action? It’s just conjugation. �

So this explains why we can quotient by any normal subgroup and get something affine.

There is something that I’m not going to prove here, that this construction does not depend on
the representation. You can construct **something** that shows that this map H → GL(V ) is
actually a morphism.

Proposition 14.4 Suppose that G is abelian connected affine algebraic group. (“Algebraic” always
means “affine algebraic”.) Then the only projective homogeneous space is a point.

This is just because G/H is a group, so it’s affine, but also projective, and the only connected affine
projective space is a point.
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Example 14.5 (Warning) We know for example that we have a torus, and it is a projective as
it is an elliptic curve, but it is not over an affine algebraic group. Because then you’d have to make
it as C×/Γ, but then Γ is not closed. So the action of C× on the torus is not algebraic, because the
stabilizers are not Zariski-closed. ♦

So there are things that are quite different in the algebraic category and in the Lie category.

14.2 Solvable groups

Proposition 14.6 If G is algebraic, then G′ = [G,G] is algebraic.

In Lie groups, this is not true: you need G to be simply-connected.

Proof: Let Yg = gGg−1G; it is a contractible **constructible?** set. Then:

G′ =
⋃
g∈G

Yg = Yg1 ∪ · · · ∪ Ygn

Question from the audience: Why is the union finite? Answer: This is an algebraic variety,
and you use the Noetherian condition.

So then G′ contains an open dense set in G′.

Question from the audience: **missed** Answer: Don’t take the union: let’s take the
product. Actually, we should take the product in the first one too:

G′ =
∏
g∈G

Yg = Yg1 · · ·Ygn

The point is: why can you take it to be finite? The answer is that you construct a chain, and
chains are only finitely long. This always causes problems. �

We mention an exercise: LieG′ = [g, g] is G is connected.

We now make an important definition. G is solvable if the chain:

G ⊇ G′ ⊇ G′′ ⊇ . . .

stops at G(n) = {1}.

Example 14.7 The fundamental example is the group N(n) of upper triangular matrices in GL(n).♦

Theorem 14.8 Let G be a connected solvable group acting on a projective variety X. Then G has
a fixed point on X.

Proof: If G is abelian, then you pick up the closed orbit, which always exists, and it must be a
fixed point by Proposition 14.4.

An exercise: G connected implies that G′ is connected.
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Now we do induction on dimension. Let Y be the set of points fixed by G′. Then since G′ is normal,
Y is G-invariant. So actually the G-action factors through G/G′, but this is abelian, and we are
done. �

This has many nice consequences:

Theorem 14.9 (Lie-Kolchin) If G is connected solvable and V a representation of G, then there
is a full flag fixed by G. In other words, G ↪→ N(V ). More precisely, we have 0 = V0 ( V1 ( · · · (
Vn = V invariant under G.

Proof: Take the variety of all flags. This is a projective variety, and so we use Theorem 14.8. �

Question from the audience: This is the group version of Lie’s theorem? Answer: Yes. It’s
so easy, because we’re in the algebraic case. It’s amazing how some things become so easy in the
algebraic category. The hard part is algebraic variety.

Now, let G be an affine algebraic group. A Borel subgroup is a maximal solvable connected closed
subgroup. It is unclear that it is unique or not, but we will see soon that it is unique up to
conjugation.

Theorem 14.10 If B is a Borel subsgroup in G, then G/B is projective. Any two Borel subgroups
in G are conjugate.

Proof: First, pick up B of maximal dimension. When we say “maximal” in the definition, we
mean inclusion of sets. So now we pick B of maximal dimension.

We know that there is a faithful representation G→ GL(V ). Then we can pick a B-invariant flag
F ∈ Fl(V ). Now take the G-orbit of this F ; then we claim that it is closed. Ah, the point is that
the stabilizer of a flag is a subgroup of N(V ), so it is solvable. So the stabilizer of F cannot be any
bigger that B. Or, anyway, the connected component isn’t any bigger. So B = StabG(F )0. Then
G · F is closed, because if it is not, then we have an orbit of smaller dimension, which then has
stabilizer a larger group, but we picked B of maximal dimension.

Actually, we haven’t finished this yet. We will finish it next time.

The point about conjugacy: Let B′ be another Borel group, then it acts on G/B, so it has a fixed
point x ∈ G/B. But StabG x is conjugate to B, but then use maximality of B′ to claim that
B′ = StabG x. �

Question from the audience: Is there a good reason to worry about whether a group is dis-
connected? Answer: There’s some interesting examples, especially subgroups. By itself, a dis-
connected group, its representations you can construct from the representations of the connected
component. But it’s sometimes important to consider quotients by disconnected subgroups.
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Lecture 15 Feb 24, 2010

Theorem 15.1 If B is a Borel subgroup (maximal connected solvable) then G/B is projective.
Moreover, any two Borel subgroups are conjugate.

Proof: Let V be a representation of G such that StabG ` = B for some line ` ∈ V . Then look
at F = {Vn ) Vn−1 ) · · · ) V2 ) V1 = ` ) V0 = 0} ∈ Fl(V ). Then G · F is closed under the
assumption that dimB is maximal. Indeed: suppose G ·F ⊆ G · F . Then dim(StabG F ′)0 > dimB,
but StabG F ′ is solvable, as it lies in the upper-triangular matrices. But this contradicts the
maximality of B. **I don’t see why we need that dimB be maximal among all Borels,
just that B is not contained in a larger connected solvable.**

Ok, so suppose that B′ is another Borel. Then B′ has a fixed point x ∈ G/B. Then B′ ⊆ StabG x =
gBg−1, and gBg−1 is solvable, so by maximality of B′, B = gBg−1. �

Theorem 15.2 Let P be a closed subgroup in G. Then G/P is projective iff P contains some
Borel.

Such a subgroup is called parabolic.

Proof: In one direction it should be clear: we have a map G/B → G/P if B ⊆ P , and the image
of a projective variety is projective.

In the other direction, suppose that G/P is projective. Let B be some Borel in G. Then by the
fixed point theorem, B has a fixed point x ∈ G/P . Then StabG x = gPg−1 ⊇ B, so P ⊇ g−1Bg.�

Question from the audience: Is there an analogue in the Lie category? Something with compact
homogeneous spaces? Answer: More or less: we will show that they all come from coadjoint orbits.
But the Lie case has more things, like the torus, which is not projective. See, there is a trick: if
you have a complex group, you can still construct compact homogeneous spaces, but the action
will not be algebraic. Perhaps the statement is for simply-connected things.

But the next step for us is to reduce to the semisimple case. This is useful, as it helps to understand
the structure theory for algebraic groups.

So, construct Nil(G) =
Ä⋂

π∈Irr(G) kerπ
ä

0
. Then this is normal and unipotent **all elements

are unipotent**. Let V be a faithful representation of G, and pick a Jordan-Holder series
V ) V1 ) · · · ) Vk so that each Vi/Vi+1 is irreducible. Then with respect to this flag, Nil(G)
consists of upper-triangulars with 1s on the diagonal. Then in fact you can prove that Nil(G) is
the maximal unipotent **other adjectives**. We also have nil g = Lie(NilG), the nilradical of
the Lie algebra.

Lemma 15.3 If Nil(G) = {1}, then G is reductive.

In particular, G/Nil(G) is reductive. We haven’t defined reductive: we mean it’s a quotient of
Gss × T/finite group, where Gss is semisimple and T is a torus. Question from the audience:
Is the converse false? Answer: No, it’s iff. But in the other direction it’s quite simple, since we
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have the description of all the reductive groups, so you just check.

Proof: Let V be a faithful representation of G. Then V = V1⊕· · ·⊕Vk, where each Vi is irreducible.
We can have Vi ∼= Vj . In any case, rad g acts as a scalar on each Vi; this is a standard fact. So
then rad g = Z(g) — that’s exactly the definition of a reductive Lie algebra. But we need to see
that Z(G)0 is an algebraic torus. But since Z(G)0 acts as a scalar on each Vi, we see that it is a
connected closed subgroup in K×× · · ·×K×. Then the end of the proof is the not-difficult exercise
that any closed connected subgroup of an algebraic torus is a torus. �

So now consider the projection p : G → G/Nil(G). Then consider p−1
Ä
Z(G/NilG)0

ä
0
. It is a

maximal normal connected solvable subgroup in G. So it is an algebraic group, and it is called the
radical of G: Rad(G). Of course, Lie(RadG) = rad g. And G/RadG is semisimple.

But what we claim next is that any parabolic subgroup contains this radical.

Question from the audience: So this is like the Levi decomposition? Answer: Not exactly, as
for that you need a semidirect product. We think it’s true that you can write the reductive part
as a semidirect product of the nilradical and a **?**. But it’s not true that you can write GL(n)
as a semidirect product: you need to take a quotient.

Anyway: every parabolic subgroup of G contains RadG, because RadG has a fixed point on G/P ,
but since RadG is normal it acts trivially on all of G/P , so in particular it is contained in P .

But actually, the point is you can forget about RadG completely, since it doesn’t contribute to the
action of G on any G/P .

Corollary 15.4 Any projective homogeneous space is isomorphic to G/P where G is semisimple
is P is some parabolic subgroup.

Question from the audience: Wait, I’m confused. I guess at some point we dropped semisim-
plicity as an assumption? Answer: That’s right, we dropped it. But now we get it back.

Henceforth, we assume that G is connected. Because if it is allowed to be not connected, then you
can put on any finite group, so you’re stuck with the theory of finite groups.

In fact, we will give the classification of connected semisimple groups and their parabolic sub-
groups.

15.1 Parabolic Lie algebras

We let G be connected and semisimple.

Let P be a parabolic subgroup of G, and p = Lie(P ). Then p ⊆ b for some Borel, and they are all
conjugate, so let’s pick one: g = n− ⊕ h⊕ n+ with b = h⊕ n+, the standard Borel. We also recall
the generators h1, . . . , hn, x1, . . . , xn, y1, . . . , yn.

Lemma 15.5 There exists a subset S ⊆ {1, . . . , n} such that p is generated by {h1, . . . , hn, x1, . . . , xn}
and yj for j ∈ S.
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How do you usually use this? You draw the Dynkin diagram, and shade a few of the nodes: the
unshaded nodes are S. **picture, and an example with sl(6)**

Proof: This follows from a very simple fact. If α, β ∈ ∆+, and [yα, yβ] ∈ p, then take xα ∈ p,
and since yα, xα form an sl(2)-triple, then [xα, [yα, yβ]] = cyβ for c 6= 0, so yα, yβ ∈ p. Then do
induction. �

Lemma 15.6 1. Let V = L(λ). Then P(V ) has only one closed orbit: the orbit of the line of
the highest vector, which we will call `λ.

2. If V is not irreducible, then any closed orbit in P(V ) is contained in P(W ) for W some
irreducible invariant subspace of V .

Actually, this is a trivial statement: We know that the closed orbit is projective, and has a fixed
line, there is only one fixed line in L(λ). On the other hand, an invariant line in an arbitrary V is
a highest weight space. The only thing that is not clear is if there are multiple isomorphic direct
summands. But this part is a simple exercise.

Corollary 15.7 P is the stabilizer of some `λ ⊆ L(λ).

So this is a sort of description of P : You pick up some representation, pick some highest vector,
and then you get a parabolic subgroup, and moreover any P can be obtained in this way. **We
return to the sl(6) example from before.**

From the point of view of lemma 15.5, λ =
∑
i∈S ωi, where {ωi} are the fundamental weights.

Example 15.8 If P = B is the standard Borel, then λ is the sum of all the fundamental weights.
For example, for sl(n+ 1), this gives an embedding of the flag variety into Cn+1 ⊗∧2 Cn+1 ⊗ · · · ⊗∧n Cn+1. ♦

Everything today was when P was connected.

Lecture 16 Feb 26, 2010

We first finish the business of the parabolic subalgebra.

Theorem 16.1 Suppose that G is connected and semisimple.

1. Conjugacy classes of parabolic subgroups are in bijection with S ⊆ Γ, via S 7→ PS.

2. If we pick λ =
∑
i∈Smiωi, with mi > 0, then PS = StabG(`λ). Notice: it does not depend on

the coefficients, just that they are non-zero.

3. If P is parabolic, then it is connected and NG(P ) = P .

Example 16.2 The biggest parabolic is the whole group, whence S is empty; the smallest is the
Borel, whence S is all the simple roots. ♦
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Proof: We proved last time that the conjugacy class of any parabolic contains P = StabG(`λ) for
some irreducible representation L(λ).

A remark: If λ = µ + ν, then StabG(`λ) = StabG(`µ) ∩ StabG(`ν). This is because L(µ) ⊗ L(ν)
contains a unique canonical component isomorphic to L(λ), and `λ = `µ ⊗ `ν . So something
stabilizes `λ iff it stabilizes each of `µ, `ν .

Therefore, if λ =
∑
i∈Smiωi, then StabG(`λ) =

⋂
i∈S StabG(`ωi). So it depends only on the support

of λ.

So basically, that implies 1. and 2.

So now think about Lie(PS). It is generated by h1, . . . , hn, x1, . . . , xn, yj for j ∈ S. This implies
that the PS are distinct. So to prove 3., if P0 is a connected component of the identity, then P0 is
also parabolic, so P0 = StabG(`λ) = P , since Lie(P0) = Lie(P ) depends only on S.

Then the fact that it is self-normalizer also follows from this. Suppose that P = StabG(`λ), and
take g ∈ NG(P ). Then g(`λ) is fixed by P , but P has only one fixed point, because P contains B,
and B has only one fixed point, so g(`λ) = `λ, so g ∈ P . This finishes 3. �

16.1 Flag manifolds for classical groups

Before we proceed, let’s discuss some classical flag manifolds. Sometimes any G/P is called a flag
manifold, and sometimes only G/B is the flag manifold and G/P are “partial flag manifolds”.

Let’s begin with G = SL(n), i.e. of type A. Then pick k1 < · · · < ks, and pick a flag of type
Fl(k1, . . . , ks, n). These are all of them. How do you read it from the diagram?

By the way, the easiest weight. The parabolic has the Levi decomposition: PS = GS o Nil(PS),
where GS is the reductive part. The semisimple part (GS)′ of GS can be read from the diagram,
simply by deleting the marked nodes from the diagram.

Example 16.3 We take SL(7) = A6 and mark the third and fifth nodes. Then (GS)′ = SL(3) ×
SL(2)× SL(2), and we have the flag variet Fl(3, 5, 7). ♦

Now let’s move to the types Bn, Cn, which are SO(2n+1) and SP(2n). Let’s work over C. Then we
have representations on C2n+1 with symmetric form (, ) or C2n with antisymmetric form 〈, 〉.

The possible flag manifolds are isotropic submanifolds, and so never get to dimension past half the
total:

OFl(m1, . . . ,ms) = {V1 ( · · · ( Vs s.t. (Vi, Vi) = 0}
SpFl(m1, . . . ,ms) = {V1 ( · · · ( Vs s.t. 〈Vi, Vi〉 = 0}

For example, take Cn with the last node marked. This is the Lagrangian grassmanian, i.e. the set
of Lagrangian subspaces in C2n.
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Finally, Dn. Then G = SO(2n) acting on C2n, (, ). Then you have the same as before, but
OGr(n, 2n), the Grassmanian of n-dimensional isotropic subspaces in C2n has two connected com-
ponents. The two components correspond to the last vertices of the Dynkin diagram.

How to see that there are two components? In n = 2, it’s clear: there are two isotropic lines
x = iy and x = −iy. For C2n = Cn ⊕ Cn isotropic, you see that there are two projections. Take
π : C2n → Cn, and then rank(π(L)) = n or n − 1. The point is that the matrix of the projector
is skew symmetric, and a skew symmetric matrix can have only even rank. Sorry, two irreducible
components, so two connected components in the projectivisation.

For example, for the full flag variety, you have V1 ( · · · ( Vn−1, and then you have two choices of
how to extend to the last one, Vn and V ′n. By the way, what representations are these? The spinor
representations.

16.2 Bruhat decomposition

Theorem 16.4 Let G be connected and semisimple. Then G =
⊔
w∈W BwB =

⊔
w∈W N−wB.

The last equality is obvious, because we can write the torus in one of these places, because B =
T oN+.

Then look at N−wB = Uw ⊆ G/B — think of it as a set of left cosets of B. So then we see that
G/B =

⊔
w∈W Uw is a disjoint union of |W | many N− orbits.

And each orbit is very simple as a topological space. We have Uw ∼= C`(w0)−`(w), where w0 is the
longest element of W , and `(w) is the length of w ∈W . We could work over any field: C K.

Example 16.5 In G = SL(2,C), then G/B = P1 is the Riemann sphere. So the cells we have is
the north pole Uw0 , which is fixed by N−, and what is left is Ue, the big Bruhat cell. ♦

So you see that actually over the complex numbers, we’ve constructed a cell complex. And all the
(real) dimensions are even, so we know the homology: dimH2i(G/B,Z) = {w ∈ W s.t. `(w) = i}.
So it’s clearly a very useful result.

Uw is called a Shubert cell.

Proof: We will do it for G = GL(n). Then B is upper-triangular matrices, and N− is lower-
triangulars with 1s on the diagonal. So pick up x ∈ G. Then we want to find axb, where a is
lower-triangular with 1s on the diagonal and b is upper-triangular. We want axb = w ∈ W , which
is to say that it is a permutation matrix. And we want to know how many ways we can do this.

But when you think in terms of matrices, this is a very easy procedure. See, multiplying on the
left by a lower-triangular is some operation on the rows of the matrix, where what you can do is
pick any row, and subtract from is any row above. And when you multiply on the right, you can
do exactly the same thing, but with columns.

So what we’re going to do is the Gaussian elimination process. So how you get your permutation
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matrix is the very simple thing. You look at your matrix x, and look at the very first column, and
find the first non-zero element. Then by multiplying on the left, we can make 0s all below it, and
on the right we can make all zeros to the right.

Then you move to the next row, and do the same thing. Then in the end, you multiply on the
right by a diagonal matrix, and then you get a permutation matrix. So this gives you one of your
double cosets.

But, see, the minors being non-zero are preserved by the thing. Pick up the first non-zero minor
from the first column. Then find the first non-zero minor in the first two columns that contains
the one you picked already. Continue. So for x, you have a unique permutation matrix you can
get. That’s why the double cosets do not intersect.

Finally, we want to understand Uw. Then see what you can do. Write down the permutation, and
see what multiplications by a lower-triangular that don’t break it. This is N−/ StabN− w. And
dim = #{i > i1}+ #{i > i2, i 6= i1}+ . . . , where w is the permutation k 7→ ik. But this dimension
count is #{(i < j) s.t. w(i) < w(j)}. This is n(n−1)

2 − `(w), and the
(n

2

)
is `(w0). �

In fact, if you think of a general proof, it may be even easier to write down, but does not explain
what’s going on. We will start it today, but maybe not finish it.

Proof: 1. Proof for SL(2).

2. Use the indices and the special sl(2) subalgebra gi = 〈xi, hi, yi〉. These lift to algerbaic
subgroups Gi ⊆ G, which may be the adjoint forms or may be SL(2)s, but the point is that
the Gis generate G.

3. Show that N−WB = G. To do this, it suffices to show that N−WBGi = N−WB. This is a
little bit of work — it is some sort of calculation, and we don’t have time today. It’s nothing
difficult, but involves some induction. �

Next time, we will finish this, and then do the Borel-Weil-Bott theorem.

Lecture 17 March 1, 2010

Today we finish the proof from last time.

Question from the audience: Can you clarify the Bruhat decomposition? Why N− and not N+?
Answer: Yes. We had N−wV , but w0(N−)w−1

0 = N+, so that’s the same. We prefer to consider
the orders of N−, because it lets us talk about highest vectors instead of lowest vectors.

We now turn to a general theorem, including some properties of the Weyl group.

1. The first thing is to show that N−WB = G.

G is generated by the little sl(2)s Gi corresponding to simple roots. And, as we did GL(n),
it’s clear that for SL(2) is works. So we just need to show that the left-hand-side is closed

56



under multiplication by Gi. Then the point is that we have Gi = N−i Bi tN
−
i riBi, because

there are only these two elements {e, ri} of this little Weyl group — ri is the ith simple
reflection **which we may have called si earlier**. But set Pi = GiB = Gi o Nil(Pi),
where Nil(Pi) ⊆ B. Then wee see that Pi = N−i B tN

−
i riB.

Ok, so we want to check that N−WBGi = N−WB. So we’re going to multiply on the right
by g ∈ Gi. Then using the previous paragraph, we see that either:

(a) g = exp(tyi)Ki exp(sxi), or

(b) g = exp(tyi)riKi exp(sxi)

where xi, yi are the generators of the ith sl(2), s, t are numbers, and Ki ∈ T ∩Gi is an element
of the torus.

We will work out case (a), and case (b) is similar and an exercise. So, Ki exp(sxi) ∈ B.
So it’s sufficient to consider N−wB exp(tyi). But then B exp(tyi) ∈ Pi. So in particu-
lar NwB exp(tyi) is in either N−w exp(t′yi)B or N−w exp(t′yi)riB. Suppose for now that
w(αi) ∈ ∆+, whence w exp(t′yi)w−1 = exp(t′w(yi)) ∈ N−, and exp(t′yi)ri = ri exp(t′′xi). So
in the first case, N−w exp(t′yi) = N− exp(t′w(yi))w.

In the second case, w(αi) ∈ ∆−, and so w = σriτ with τ(αi) = αi) and σ(αi) ∈ ∆+. But then
w exp(t′yi) = σri exp(t′yi)τ , which is either σ exp(t′′yi)ri exp(s′xi)τ or σ exp(t′′yi) exp(s′xi)τ .

Question from the audience: I’ve lost the train of thought. Answer: We considered a few
cases. We want to move one term past the Weyl group. To do this, we do a few calculations,
considering a few cases, using the fact from SL(2).

Then case (b) above is similar, and is left as an exercise.

2. We want to show that N−wB = N0σB implies that σ = w, where σ,w ∈ W are arbitrary.
Thus the number of double cosets is the same as the number of terms in W .

To do this, we study N−-orbits on G/B. To do this, we will embed G/B ⊆ P(L(λ)), where
λ is any regular dominant weight. So look at the W -orbit of λ — the regularity condition
implie that this has |W | many elements.

So now look at Uw = N−`w(λ). Here a little picture might help. We do it for sl(3). Our
λ generates a hexagon {λ, r1λ, r2λ, r1r2λ, r2r1λ,w0λ}, where w0 = r1r2r1 = r2r1r2. So pick
vw(λ) ∈ `w(λ). But N− = exp(n−), so N− can only move us down.

So, see, then if Uw = Uσ, then we have σ(λ) ≤ w(λ) and also w(λ) ≤ σ(λ). But this is only
possible if σ(λ) = w(λ), which implies that σ = w as λ was regular.

(In fact, you never loose the top weight when you apply N−.)

3. The last part is that Uw = K`(w0)−`(w).

We start with some extremal weight µ = w(λ). Then pick up the line `µ 3 vµ, and consider
the map n− → G/B = P(G · `λ). Let’s call this map exp, i.e. exp(x) = exp(x)vµ. But x is
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nilpotent, so this exponential map is algebraic.

Then exp−1(vµ) = Stabn−(vµ). But this subalgebra has a root decomposition: =
⊕

α∈Φ gα,
for some Φ ⊆ ∆−.

Question from the audience: What is this map exp? Why is it as you say? Answer: We
have Uµ ∼= N−/ StabN− vµ, but since n− is nilpotent, we can identify this with n−/ Stabn− vµ.

So we want to describe this Φ = {α ∈ ∆− s.t. g−αvµ = 0}. Let α ∈ ∆. Then xαvµ = 0. Now
let µ = w(λ). Then xw(α)vλ = 0 iff w(α) ∈ ∆+. So Φ = {α ∈ ∆− s.t. w(α) ∈ ∆+}, and the
cardinality of this set is `(w). So then dim(n−/Stabn− wµ) = `(w0)− `(w).

This completes the proof from last time.

17.1 Bruhat order

The orbits are ordered by closure: Uw ⊆ Uσ. We give the opposite order: w ≤ σ iff Uσ ⊆ Uw.

For example, for sl(3), we have e ≥ r1, r2 ≥ r1r2, r2r1 ≥ w0.

Now suppose that σ = rβ1 . . . rβkw. Then `(σ) = k + `(w). **I must have missed an adjec-
tive.**

We won’t explore this, but it has nice combinatorics. The closures Uσ are Shubert varieties, and
are singular.

By the way, everything we’ve done so far works for arbitrary parabolics: the cell decomposition is
known for G/P as well as for G/B.

17.2 Geometric induction

We are working in the algebraic category, but we could instead work in analytic category (e.g.
complex holomorphic functions), and everything works.

But, anyway, let G be an algebraic group acting on X, and suppose that L → X is a vector bundle.
It is a G-vector bundle is there is a G-action on the bundle that extends the action on X. I.e. for
each g ∈ G, there should be a map of bundles {L → X} g→ {L → X} that’s linear on fibers and
restricts to the map X

g→ X.

We will study the case X = G/H where H is a closed subgroup. Then there is a standard procedure
for how you can construct G-vector bundles. Suppose we have a representation π : H → GL(V ).
Then we define — it is not a fiber product — G×H V = G×V/ ∼, where the equivalence relation is
that (gh, h−1v) ∼ (g, v) for each h ∈ H, v ∈ V , and g ∈ G. Then this gives a bundle G×HV → G/H
by forgetting the second part, and the fiber is clearly identified with V .

Now, consider the bundle G → G/H. It may not be affine, but you cover it by affine subsets:
G/H =

⋃
Ui. Then we have gluing functions φij : Ui ∩ Uj → H, and we can get a new gluing

58



function by composing with π : H → GL(V ). Then you can check that this indeed gives you a
bundle.

On the other hand, basically what we have done is to construct a functor from representations of
H to G-bundles on G/H. The inverse functor is easy to construct: you pick up a point on G/H,
and then the stabilizer. I.e. you pick up x = eH ∈ G/H, and then you have a natural — if you
have a G-bundle — of H = StabG x acting linearly on the fiber over x = eH. This is actually an
equivalence of categories.

So, let’s say we have V → L(V ) = G×HV . Then the next step is to consider sections Γ(G/H,L(V )).
It is a representation of G — it might be infinite-dimensional. The way you describe it is pretty
simple. We have G ×H V → G/H. We want to construct a section γ : G/H → G ×H V .
Then for each g ∈ G, we try to define γ(g) = (g, φ(g). But then we have a condition on φ:
φ(gh) = h−1φ(g).

So, you can actually realize the sections as functions. Γ(G/H,L(V )) = {φ : G → V s.t. φ(gh) =
h−1φ(g) ∀h ∈ H, g ∈ G}. The action of G is actually a left action: gφ(x) = φ(g−1x).

So, see what we have done. We took a representation of H, and get a representation of G, so it
is a kind of induction. Question from the audience: What kinds of sections? Answer: We
are working in the algebraic category, but you can of course work in the analytic category. If you
want unitary representations, take L2-sections.Question from the audience: Even the smooth
category? Answer: You can define it, but what you get is very different.

Anyway, so we have a functor Ind : H-rep → G-rep. It is an embedding, so it is exact on the
left.

Incidentally, you can sort of forget about bundles. You have H-representations, G-bundles, and
this is an equivalence of categories, but you also have just the straightforward induction.

Lecture 18 March 3, 2010

We begin by fixing some notation. We have H ⊆ G. From an H-module V we constructed a vector
bundle G×H V = L (V ). Then we had an induction functor given by:

ΓG/H(V ) = Γ
Ä
G/H,L (V )

ä
=
¶
φ : G→ V s.t. φ(gh) = h−1φ(g)∀g ∈ G, h ∈ H

©
Question from the audience: When you say function? Answer: Algebraic. But there is also
a holomorphic version of the story.

18.1 Frobenius reciprocity

We will study this induction functor. As opposed to the finite case, we do not have complete
reducibility. For example, the Cartan is solvable. So it’s important to have the correct state-
ment.
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Theorem 18.1 Let M be a G-module, and V an H-module. Then:

HomG

Ä
M,ΓG/H(V )

ä ∼= HomH(M,V )

And this isomorphism is canonical.

So in this sense the induction functor is right-adjoint to the restriction functor.

Proof: You write out the definitions.

HomG

Ä
M,ΓG/H(V )

ä
=
¶
φ : G→ HomC(M,V ) s.t. φ(g−1xh) = h−1 φ(x) g ∀x, g ∈ G, h ∈ H

So we pick φ ∈ HomG(M,ΓG/H(V )), and send it to φ(e) ∈ HomH(M,V ). We claim this is a
canonical homomorphism, because we can go back: if we have α ∈ HomH(M,V ), we can move it
to φα : x 7→ αx−1. (We leave for you to check if this should be x or x−1. The point is that the
value at any point is determined by the value at e.) �

One of the properties that is sort of important to us, which we will use later on, is:

Corollary 18.2 If V was an injective H-module, then ΓG/H(V ) is an injective G-module.

A remark: Let G be reductive (e.g. semisimple). Then C[G] =
⊕
L(λ) � L(λ)∗. Then, recalling

that we have actions both on the left and on the right, then it is immediate that:

ΓG/H
Ä
C[G]

ä
=
⊕

L(λ)�
Ä
L(λ)∗ ⊗ V

äH
and so you get that the multiplicities are:

=
⊕

L(λ)�HomH

Ä
L(λ),C[G]

ä
Let’s then describe induction for the universal enveloping algebra. Let g ⊆ h, and V an h-module.
Then we define:

Indg
h V = U(g)⊗U(h) V (18.1)

Notice that this is of very big dimension. Recall that many g modules do not integrate to groups,
and indeed this one will not, because it is too large. But there is another different, in the ordering:

Homg

Ä
Indg

h(V ),M
ä

= Homh(V,M) (18.2)

This is a standard result, that we let you do it. **So the point is that for universal enveloping
algebra, induction is left-adjoint.**

We will talk about this a bit more later: when you move away form finite groups, you have the
group algebra, and the function algebra, but also the universal enveloping algebra.

Question from the audience: So this works always? Answer: Yes. In equations 18.1 and 18.2,
you can put any algebras A ⊆ B, and no extra structure on the modules.
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Anyway, we want to get the ordering in the same direction as in Theorem 18.1. We can define
coinduction:

Coind(V ) def= HomUh(Ug, V )

Then we do have:
Homg(M,CoindV ) = Homh(M,V )

But this is humongous. As soon as you take the dual space to a countable-dimensional space, you
get something uncountable.

So we need to cut it down. Let’s define Z(M) = {m ∈ M s.t. dimUgm < ∞}. Here M is any
g-module. This is closely related to the superman functor **?**. And for reductive groups, using
this gets close to the original.

Question from the audience: How can I describe the g-action on the G-induction? Answer:
Take x ∈ g. Then look at K[G] ⊗ V . Then x(f ⊗ v) = Lx(f) ⊗ v + f ⊗ x(v). The Lie algebra is
always the right-translation-invariant derivations.

One more property, which is very standard, so we skip the proof:

Lemma 18.3 If we have a chain G ⊇ K ⊇ H, then the composition works:

ΓG/K ◦ ΓK/H = ΓG/H

Just by definitions. **A canonical (natural in G,K,H) isomorphism of functors.**

In any case, ΓG/H is exact on the left **being an adjoint**. But it is not exact, so we will study
the derived functor. But for this, we need enough injective modules.

Proposition 18.4 Let H be an algebraic group. We claim that C[H] is injective.

Proof: In fact, HomH(V,C[H]) ∼= V ∗. How do you see this? Think about it for a moment in a
different way. You have the functions in V ∗. And you think about the LHS as the algebraic maps
φ : H → V ∗ such that φ(h−1x) = hφ(x). But such functions are completely determined by their
values at e. So this is very similar to what we did previously: if I know φ(e) I know it everywhere.
So we constructed a map LHS→RHS.

And now I need the inverse map, which is also very clear. If I have ξ ∈ V ∗, I construct φ(g) = gξ.

Question from the audience: This is Frobenius reciprocity induced from the trivial subgroup.
Answer: Yes, exactly.

Now, V 7→ V ∗ is clearly an exact functor, so then C[H] is injective. �

Finally, we want to show that any V can be mapped to an injective representation. But a repre-
sentation is actually a map V → C[G]⊗ V . This is the Hopf algebra definition of a representation.
**We are using the notation C[G] to mean the Hopf algebra of functions on G, not the
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C-linear combinations of elements of G.** The point is that we have:

V C[G]⊗ V

C[G]⊗ C[G]⊗ V

ρ

∆⊗ id id⊗ ρ

And the two paths are the same.

Then there is a fact. The g action on V and on C[G]⊗V , where on this it is g(φ(x)⊗v) = φ(g−1x)⊗v,
is intertwined by ρ.

So, every H-representation V has an injective resolutions:

0→ I0 → I1 → I2 → . . .

and H0(I∗) = V .

Question from the audience: Can you clarify the definition of the action? Why isn’t it V ∗?
Answer: When V is finite-dimensional, it is the same, by a diagram chase. When V is infinite-
dimensional, Aut(V ) is not an algebraic group, and so you’d better take what we said as a defini-
tion.

Oh, so we define: ΓiG/H(V ) def= RiΓG/H(V ). Then there is a fact — if you don’t know what it
means, we won’t use it — that ΓiG/H(V ) = H i(G/H,L (V )).

Also, a remark: if H is reductive, then ΓiG/H(V ) = 0 for i > 0, by complete reducibility.

Ok, so we now use a little bit of homological algebra. If you don’t know it, look it up in any book.
So what we do is we take:

0→ ΓG/H(I0)→ ΓG/H(I1)→ . . .

And then we define ΓiG/H
def= H i(ΓG/H(I•)).

Ok, so we are interested in the case H = B, but actually there is a certain shift for this one, so
we switch to B− = w0(B). Then G/B− = G/B. And as we discussed before G-line bundles on
G/B− are in bijection with one-dimensional representations of B−. But B− = T oN−. But on any
one-dimensional representation, the nilpotent part acts trivially. So in fact they are in bijection
with one-dimensional representations, i.e. characters, of T . So actually it is a remarkable fact: not
only all G-modules, but B-modules, are in bijection with characters of T .

And what are the characters of T? They are the weight lattice. Now we are in some trouble: we
want to denote this by P , but we want to call this also a parabolic subgroup, so we use bold: P is
the weight lattice.

Also, the category of line bundles is a group under tensor product, and this group is isomorphic to
the weight lattice:

P ∼= PicG(G/B−) fact=
without proof

Pic(G/B−)
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So, if λ ∈ P, we denote by Cλ the one-dimensional representation of B− with character λ. Question
from the audience: It is sort of a different λ? Answer: We will prefer the additive notation, so
that we identify them.

So, we set O(λ) def= G×B− Cλ. This is standard notation.

The motivation is from G = SL(2). Then G/B− = P1, and O(−1) is the tautolical line bundle.
When you tensor it, or take its dual, you get the other line bundles.

We found a nice proof for the following, which we will give next time:

Theorem 18.5 Let λ ∈ P, and recall the weight ρ. If λ+ρ is not regular, i.e. it lies on a wall, then
H i(G/B−,O(λ)) = 0 for all i > 0. On the other hand, if λ + ρ is regular, then there is a unique
Weyl group element which moves it to the interior of the chamber, i.e. w(λ + ρ) is dominant. In
this case:

H i(G/B,O(λ)) =

{
0 if i 6= `(w)
L(w(λ+ ρ)− ρ) if i = `(w)

So you see in the geometry we have the same shifted action as in the Weyl character formula.

Lecture 19 March 5, 2010

Recall from last time, we have O(λ) = G×B− Cλ, and:

Theorem 19.1 Assume G is simply connected (there is a version without too). Let µ ∈ P. If
µ+ ρ is not regular, then H i(G/B−,O(µ)) = 0 for all i. If µ+ ρ is regular, then there is a unique
w ∈W with µ+ ρ = w(λ+ ρ) for λ ∈ P+, and in this case:

H i(G/B−,O(µ)) =

{
0 i 6= `(w)
L(λ) i = `(w)

We will prove this today.

Proof: 1. If µ is not dominant, then Γ(G/B−,O(µ)) = 0. If µ is dominant, then Γ(G/B−,O(µ)) =
L(µ). Then:

HomG(L(ν),ΓG/B−(Cµ)) =

{
0 ν 6= µ

C ν = µ

**I missed part of this argument**

2. Let G = SL(2), and pick n ∈ Z. Then I(n) = ΓB−/T (Cn). Here T is the maximal torus. Last
time we proved that if we start with something injective, then we get something injective, and
over the torus all one-dimensional representations are injective, and Cn is the one-dimensional
on which S1 = T acts n-fold.
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Then, we have b− = 〈h, y〉, and I(n) = 〈tn+2k s.t. k ∈ Z≥0〉. Then h acts by 2t ∂∂t and y by ∂
∂t .

In the picture, we have an infinite-dimensional module, starting with degree n at the bottom,
and then n+ 2, n+ 4, etc., in a chain: y decreases us by one step each time.

So what is Cn? It is the **co?**homology of:

0→ I(n)→ I(n+ 2)→ 0

So, then HomB−(L(m), I(n)) is easy to write down. It is zero unless m ≥ n, and thence it is
just the horizontal maps on weights. So, for positive n, we have:

ΓG/B−(I(n)) =
∞⊕
k=0

L(n+ 2k)

and for negative n it is:

ΓG/B−(I(n)) =
∞⊕
k=0

L(−n+ 2k)

And for n ≥ 0, we have:

0→
∞⊕
k=0

L(n+ 2k) ∂→
∞⊕
k=0

L(n+ 2 + 2k)→ 0

and we can calculate the cohomology. ker ∂ = L(n), and all the rest maps injectively and
surjectively. So, if n ≥ 0, then:

H i(G/B−,O(n)) =

{
L(n), i = 0
0, i = 1

If n < 0, then we do not have sections, and so the map ∂ must be injective:

0→
∞⊕
k=0

L(−n+ 2k) ∂→
∞⊕
k=0

L(−n+ 2k + 2)→ 0

Then the result is that, for n < −1:

H i(G/B−,O(n)) =

{
0, i = 0
L(−n− 2), i = 1

The picture is symmetric around −1.

And finally:
H i(G/B−,O(−1)) = 0 for i = 0, 1

This gives the proof in the case of SL(2).
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3. For the general case, we need some general properties of ΓiG/H , which is the derived functor
of sections.

(a) There is a long exact sequence. Suppose you have an exact sequences 0 → A → B →
C → 0 of H-modules. Then there is a long exact sequence:

0→ Γ0
G/H(A)→ Γ0

G/H(B)→ Γ0
G/H(C)→ Γ1

G/H(A)→ Γ1
G/H(B)→ Γ1

G/H(C)→ . . .

This is general: as soon as you have a right-derived functor, you have a long exact
sequence. The only thing to check is a little homology.

(b) We said last time that ΓG/H(ΓH/K(V )) = ΓG/K(V ) if G ⊇ H ⊇ K. Thus, if ΓiH/K(V ) =
0 for all i, then ΓiG/K(V ) = 0 for all i. Why? Because we start with injective resolution,
do the induction, and if already have an exact sequence of injectives and apply the
functor, we get an exact sequence, because Γ is exact on injective modules. Actually,
more generally we can compute one from the other via a spectral sequence, but we don’t
need it.

(c) Let M be a finite-dimensional G-module and V some H-module. Then ΓiG/H(V ⊗M) ∼=
ΓiG/H(V )⊗M . Why is this true? First of all, the functor ⊗M , if M is finite-dimensional
representation, moves injective modules to injective modules. So if I is injective, then
I ⊗M is injective. This is because ⊗M has an adjoint functor ⊗M∗.

And because of this, it suffices to prove the statement for Γ0, which is just Γ. But we
construct:

M ⊗ ΓG/H(V )→ ΓG/H(M ⊗ V )

in the way that you can. We recall the definition of induction, and then: (m⊗ φ)(g) def=
g−1m⊗ φ(g). And to construct the inverse, we do the following trick:

ΓG/H(M ⊗ V )⊗M∗ → ΓG/H(M ⊗M∗ ⊗ V ) tr→ ΓG/H(V )

Then pulling the M∗ over to the right, we get the inverse map

4. We are now ready to finish the proof of the theorem. We will prove:

Lemma 19.2 Let µ ∈ P, and αi a simple root, and assume that µ(hi) ≥ 0. Then let
ν = ri(µ+ ρ)− ρ. Then H i(G/B−,O(µ)) = H i+1(G/B−,O(ν)).

Before proving this, let’s explain why lemma 19.2 implies the theorem. Indeed, choose w0 =
ri1 ◦ · · · ◦ ri` . Then in the middle we count to |mu: rip ◦ · · · ◦ ri`(λ + ρ) = µ + ρ. Then
O(w0(λ + ρ)) has cohomology only in the highest possible degree. And then we go back,
using the facts above, tracking where the cohomology goes. Oh, and we also have to show
that the highest cohomology cannot be bigger than the dimension of the flag, which is obvious
form the geometric picture.

Oh, by the way, lemma 19.2 **or maybe the theorem** is due to Bott, and the proof we
give **or maybe lemma 19.2** is due to Demazure.
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5. Proof (of lemma 19.2): We will pick G ⊇ Pi ⊇ B−. Here pi = b− + gαi . Geometrically,
what does this mean? We have G/B− → G/Pi, and the fiber is Pi/B−. But Pi/Nil(Pi) =
Gi · T , where Gi is the SL(2). So Pi/B− = P1.

So, what are the irreducible representations of Pi? They are the same as of Gi ·T . (We write
· because it is not a direct product: they intersect.) So they are V (η) where η ∈ P, with one
more condition: η(hi) ≥ 0. **picture with blocks**

So, then, first remark: O(−ρ) does not have cohomology. Why? Because we know this for
SL(2). So Hj(Pi/B−,O(−ρ)) = 0. So now the trick. We pick up C−ρ a B− module, and
tensor it with V (µ+ ρ). Then **missed** V = C−ρ ⊗ V (µ+ ρ) is acyclic everywhere.

Hj(Pi/B−, C−ρ ⊗ V (µ+ ρ)) = 0

Hence the same is true for G/B−.

Now we look in more detail what is this module. What is V (µ+ρ)? It is basically the module
over SL(2) plus additional weight. So we have a three-step filtration. We have Cµ on top,
and Cν on the bottom, and there is a big piece between. What is this big piece actually? Oh,
this piece is a simple thing. It is V ′ = C−ρ⊗V (µ+ ρ−αi), because it can be obtained in the
same way.

So this gives us two exact sequences. We have:

0→ Cν → V → X → 0

0→ V ′ → X → Cµ → 0

for some X. And now you know what to do. You do know that V is acyclic, and V ′ is also
acyclic. So we write down long exact sequence, but we do not have terms at V ′ at all. So the
cohomologies match up:

H i(G/B−,L (X)) ∼= H i(G/B−,O(µ))

And for the first sequence, there is a jump:

H i(G/B−,L (X)) ∼= H i+1(G/B−,O(ν)) �

So that’s what we need, and we are done. Our theorem is proven, and our time is up. �

Lecture 20 March 8, 2010

Is it OK, the Borel-Weil-Bott proof?

Question from the audience: What is a good reference for the material from the last few days?
Answer: The book [7] is good, as is [4] at the end. But we don’t feel comfortable following any
book for this course. Perhaps we will write something.
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Today, let’s think philosophically about what we did last time. We gave a certain geometric con-
struction of finite-dimensional representations: the Borel-Weil-Bott theorem allows you to realize a
finite-dimensional representation of G, a semisimple group, as the sections of some line bundle. We
want to push this farther. We would like to do something with infinite-dimensional representations.
Thus, we are led to the following question: is it possible to get some geometric realization of the
representations of the Lie algebra g?

The point is: if you think about the group action, it clearly acts on sections of the line bundle.
And we do have O(λ), and clearly Γ(O(λ)) is a representation g, as it is a representation of the
group. But in fact we can go further: if we take any open set, and the sections above that open
set, then we do not have a representation of the group — it would move us out of the open set —
but we do have a representation of the Lie algebra. Again: if U ⊆ G/B− is any open subset, then
Γ(U,O(λ)) has the natural structure of a g-module.

Question from the audience: What do we mean by this in the algebraic category? Answer:
This is absolutely algebraic. We have a homomorphism g → Vect(G/B−), to the algebraic vector
fields. The point is, if we have our functions, and take an open set, then restricting to the open set
the space of functions enlarges.

Example 20.1 Let G = SL(2), and then G/B− = P1, and so we take any open subset of this
projective line. For example, let U be the open Schubert cell, i.e. it is the sphere without the
north pole, i.e. C. Then if we look at Γ(U,O(n)), then any line bundle over U ∼= C is trivial, so
Γ(U,O(n)) ∼= C[z]. **Any line bundle is trivializable, but doesn’t it require choices to
make this?** Then we can figure out the formulas for the Lie algebra action. We have g = 〈y, h, x〉
acting on C[z] by:

y 7→ ∂

∂z
h 7→ 2z

∂

∂z
− n x 7→ −z2 ∂

∂z
+ nz

So you see, these are not really acting as vector fields, because of the −n there. But the ac-
tion is by first-order differential operators, and the commutators are correct. **So is there a
parameterization in which the action is by derivations?** ♦

Example 20.2 (How to realize Verma module?) We now consider generalized functions. In-
deed, let’s consider δ0 the delta function with support at 0. What does this mean in this setting?
We don’t have any topology, so we think of it formally: zδ0 = 0. So then we freely define δ′0, δ

′′
0 , . . .

the derivatives of z.

Let’s tell this in another way. Look at the formal Weyl algebra generated by z, ∂∂z . Then we will
construct a certain representation of this algebra. Question from the audience: So δ0 is: you
take C[z] and freely adjoint δ0 subject to zδ0 = 0? Answer: Yes. Then we try to extend the
representation of the Weyl algebra.

Then an easy calculation shows that xδ0 = 0, and hδ0 = (−n − 2)δ0. And y acts freely. So what
we get is the Verma module M(−n− 2). ♦

Now, you can get plenty of other representations. For example, remember from one of the first
homeworks we can construct the weight modules. We can also remove both the north and south
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poles form P1, and then get some local system with two points removed. So you see, we can get
lots of representations.

Let’s now proceed with some results. First, a definition. Let X be a non-singular algebraic variety,
e.g. a variety over C given by algebraic equations. Let L be a line bundle over X, and U ⊆ X
and affine open set. We are going to construct a certain algebra D(U,L), which can be read as the
differential operators on U with coefficients in L. It is a filtered infinite-dimensional algebra, and
will live in D(U,L) ⊆ End(Γ(U,L)).

We start with D0(U,L): by definition, it is the linear maps along the fiber, i.e. the functions. We
use the notation O(U), the regular functions on U . Then we define the next step inductively:

Di(U,L) =
¶
δ ∈ End(Γ(U,L)) s.t. [δ, φ] ∈ Di−1(U,L) ∀φ ∈ D0(U,L)

©
Then D(U,L) =

⋃
Di.

For example, look at D1(U,L). Then what we’re trying to say is that locally this is vector fields
and functions. I.e. let us trivialize: if we identify Γ(U,L) ∼= O(U), then the condition gives
δ(f · g) = δ(f) · g + f · δ(g). So [δ,−] is a derivation for δ ∈ D1. If you go to the next step,
you get differential operators of second, third, or any order. This definition applies to any affine
variety, or actually to any commutative rings. Question from the audience: So this gives some
sheaf of algebras. Is this different from saying that you have an action of the ordinary ring of
differentional operators on the line bundle L? Answer: You see, locally, your sheaf is just the
ordinary differential operators, but when you start gluing together, it will be different.

Example 20.3 If U = Cn and L is trivial, then D(U) is nothing else but the Weyl algebra. If our
coordinates on Cn are x1, . . . , xn, then

D(U) = T (x1, . . . , xn, ∂1, . . . ∂n)/
¨
[xi, xj ] = 0, [∂i, ∂j ] = 0, [∂i, xj ] = δij

∂
The filtration is given by deg ∂i = 1, deg xi = 0. ♦

We are not very familiar with differential operators on singular manifolds. So we will continue to
suppose that our variety is non-singular.

More or less by definition, if you look at it, gr D(U,L) is commutative. So we are in the situation
where we can make the Poisson bracket.

Oh, we should say: if U is affine, then everything is good, but if not, e.g. if U is projective space,
then we have to glue, and we get the sheaf. So: if X is not affine — we try to avoid terminology from
algebraic variety — we can cover X by open affine subsets X =

⋃
Ui, so we have

∐
D(Ui,L). Then

we can glue them together, and D(X,L), the things defined everywhere, is a filtered associative
algebra; it is the sections of the sheaf D(−,L).

Theorem 20.4 If X is non-singular, then gr D(X,L) = Γ(X,S•(TX)). Here TX is the tan-
gent bundle, and S• is the sheaf of symmetric functions. There is another way to look at this:
Γ(X,S•(TX)) = O(T ∗X). This is a Poisson manifold, and we are asserting that this is an iso-
morphism of Poisson algebras.
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Question from the audience: Even if L has no global sections, this algebra will have lots of
sections. Answer: That’s exactly right. This is why we have to glue, and work in the sheaf
language.

We will not prove Theorem 20.4, but we give some sort of explanation. It suffices to prove it in the
affine case, and then go to the cover.

If R = O(X), and X is affine, then remembera that D1(X) consists of certain **linear, not
algebraic** endomorphisms R→ R. Indeed, if δ ∈ D1, then as we explained before, [δ,−] : R→ R
is a derivation. Indeed, D1(X)/R ∼= DerR = Γ(X,TX). So than you can prove that if you have a
derivation δ : R→ R, then it factors through the differentials d : R→ Γ(T ∗X). Then we just take
the contraction of the one-form with a vector field.

So the point is that if we go farther, then it is going to work in the same way. In fact, if δ ∈ Dn(X),
then δ ∈ Dn(X)/Dn−1(X) acts as a derivation R → Γ(X,Sn−1(TX)). Then exactly in the same
manner as before, it factors through the de Rham differential. So what we do is first apply the
differential and then contract with γ ∈ Γ(X,Sn(TX)). And what you have to show is that those
are all.

So, the fact is: the graded algebra does not depend on the line bundle that you have, but the
Poisson bracket already does.

So, we will apply this to our situtation. Let X = G/B− the flag manifold, and L = O(λ). Then you
can check that we have a homomorphism g→ D1(X,O(λ)). And actually in the examples we gave
the formulas for SL(2). So what we’re saying is that you can extend this to Ug→ D(X,O(λ)). Let’s
call this map θλ. It is a homomorphism of associative algebras. Question from the audience:
I’m still a bit confused. Answer: You also have the G action on sections. So the g action is not
a vector field, but just a differential operator of the first order on the space of sections. Question
from the audience: The line bundle O(λ) comes with a canonical connections. Is this the lift
via the connection of the vector fields on the base? Answer: Yes, you can describe it that way.
Question from the audience: How does the group action give a connection? Answer: We will
explain this next time.

The point is, that we have a homomorphism θλ : Ug→ D(X,O(λ)) of filtered associative algebras.
We will formulate the following theorem, and next time prove it. It requires recalling some things
that we did some time ago.

Recall the Harish-Chandra homomorphism. If you remember, this sends Z(g) → S(h) = Pol(h∗).
Then we consider the dual map h∗ → Hom(Z(g),C). Then to each weight λ we consider the central
character χλ. Then:

Theorem 20.5 θλ(kerχλ) = 0. Therefore, θλ pushes through Ug → Ug/(Ug kerχλ). Then θλ :
Ug→ Ug/(Ug kerχλ)→ D(X,O(λ)) is an isomorphism.

So what does this mean? If you pick up any representation so that the center acts by a certain
scalar, then this is the same as a representation of the totally geometric algebra D(X,O(λ)).
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Question from the audience: We are sneaking up on D-modules? Answer: Yes, of course.
Those are my favorite topic.

Our plan is: we will talk a little about this, and then after the Spring break, we will move immedi-
ately to quantum groups. So we want to do everything else before then, so we don’t know how far
we can go in this direction. But, yes, D(X,O(λ)) makes sense even when λ is not integral, when
we don’t have a line bundle.

Lecture 21 March 10, 2010

Last time there were some questions. So we will return to the construction from last time, before
presenting a theorem.

The point is: if we have a G-action on X, and we have a G-line bundle L, then this is more or
less equivalent to saying that you have a map g → D1(X,L), or at least in one direction this is
absolutely true. The construction is as follows. Trivialize, and think about the sections Γ(X,L) as
functions with values in the fiber of π : L → X. So we’ve trivialized, and π−1(x) = L, and locally
γ ∈ Γ(X,L) looks like γ(x) ∈ L. (Actually, everything we say works for general vector bundles,
but then you need matrix-valued differential operators.) So, we have G-actions on X,L. Then the
compatibility is that:

g∗γ(x) = φ(g, x) γ(g−1x) (21.1)

And φ is a one-cocycle, but the point is that we have this function, and φ(e, x) = 1. So now we
take a curve g(t) in G. Then differentiating equation 21.1 gives:

d

dt
g∗(t) γ(x)

∣∣∣∣∣
t=0

=
dφ(g(t), x)

dt

∣∣∣∣∣
t=0

γ(x) +
d

dt
γ
Ä
g−1(t)x

ä∣∣∣∣∣
t=0

(21.2)

This is just the Leibniz rule. Now, g′(0) = ξ ∈ g, and the action is ξ · γ = Lξ(γ) + ϕ(x, ξ)γ, where
ϕ ∈ O(X), and γ is a function after the trivialization. So then you have to check that:

ξ(φ · γ) = Lξ(φ) γ + φ(ξ · γ)

and then ξ acts as a differential operator of the first order.

So this isn’t quite a connection. We know how to differentiate γ in directions along the orbits of G,
by the above, but to get a connection, the G-action on X should be free and transitive. Question
from the audience: Why free? Why not just transitive? Answer: Suppose we have X = G/H
and x ∈ X. Then we have g → TxX. But we think this should be injective and surjective to be
a connection. So if the action is free and transitive, then there is an isomorphism. If the action
is not free, then you have g/h ∼= TxX, and so you don’t know how to lift this. Question from
the audience: If you have a metric? Answer: Maybe. Question from the audience: If H is
discrete? Answer: Then everything is OK.
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Ok, so we move now to X = G/B−, and L = O(λ). Then by the previous remarks, we have
g→ D1(X,L), and this is a homomoprhism of Lie algebras. In fact, we have an exact sequence of
Lie algebras:

0→ O(λ)→ D1(X,L)→ TX → 0

**TX is the sections — the vector fields.** Question from the audience: This is the
exact sequence from the first level of associated graded? Answer: Yes, exactly.

Today we will study θλ : Ug→ D(X,L). Some time ago, recall the Harish-Chandra homomorphism.
Recall that Z(g) is the center of U(g), and the HC map is Z(g)→ Sh. Define the map χλ : Z(g) HC→
Sh

λ→ C.

Lemma 21.1 If z ∈ Z(g), then χλ(z) = θλ(z).

Proof: Pick x ∈ X such that StabG(x) = B−, and let U 3 x be an open set. Then O(U) ⊇ Ix the
ideal of X, and B−(Ix) = Ix. Then let ξ ∈ b− and ϕ ∈ O(U). Then:

(ξ · ϕ)(x) = λ(ξ)φ(x)

Oh, and λ : b− → b−/n−.

Now recall that if x ∈ Z(g), then z = p(h) mod n−U(g) where p(h) ∈ Sh. This is more or less the
definition: Ugh = Uh⊕ n− ⊕ Ug⊕ n+.

Ok, so now we look at (z · ϕ)(x). But n− kills the whole function: n−O(U) = Ix. Therefore, only
the p(h) part survives. But then we know how the h part plays a rule: (z · ϕ)(x) = χλ(z)φ(x).

So we did it at one point, but now we can do it at any point, because z is in the center. Indeed,
since z ∈ Z(g), z commutes with the action of G, which is transitive, so we can start with x and
move it to any other point: z · g∗(φ) = g∗(z · φ), �

Corollary 21.2 θλ factors through Ug→ Ug/Ug kerχλ.

Theorem 21.3 θλ : Ug/(Ug kerχλ)→ D(X,L) is an isomorphism.

The trick is to look at the associated graded algebras on both sides. Each side is naturally filtered,
and θ respects the filtrations, so we will then use the standard fact that we discussed before that
lets us go back.

Let’s introduce some notation: Uλg def= Ug/(Ug kerχλ).

Lemma 21.4 Let N be the cone of nilpotent elements in g. Then gr(Uλg) = C[N ], the ring of
regular functions on N .

Proof: For this we have to recall what is this ring of functions. We proved that it is a polynomial
algebra, and a stronger theorem that the center acts freely. So, let g ∼= g∗ via the Killing form.
Then remember what we did before: we took I(N) the ideal of the cone, and then Sg = I(N)⊕Y ,
where Y was a homogeneous compliment. Then we proved that SgG⊗Y → Sg is an isomorphism.
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Moreover, we have the natural maps γ : Sg→ T g→ Ug, and so we have:

SgG ⊗ Y Sg

Z(g)⊗ γ(Y ) Ug

∼ ∼

�

Ok, so we know gr(D(X,L)) = O(T ∗X).

Then we have the Springer resolution: X ∼= {bx among Borel subalgebras in g}. I.e. rather than
thinking about X, think about a collection of Borels.

Now, let us describe T ∗X. What is it? It is {(x, ξ) s.t. x ∈ X, ξ ∈ (g/bx)∗}, because we identify
TxX ∼= g/bx. But by the Killing form, (g/bx)∗ ∼= nx, where nx = [bx, bx]. Why? Because (bx)⊥

with respect to the Killing form is just nx.

So now, we can think about the elements of T ∗X as a pair bx a Borel subalgebra and ξ ∈ nx =
[bx, bx]. In particular, ξ is nilpotent. Then the map p from the cotangent bundle to the nilpotent
cone T ∗X → N is just forgetting b: p : (bx, ξ) 7→ ξ ∈ N . Question from the audience: Wait,
how can we project onto the fiber? Answer: We have T ∗X is a subbundle of X × g.

Lemma 21.5 1. p is surjective.

2. If ξ ∈ N is regular, then p−1(ξ) is a single point.

3. p−1(ξ) is a connected projective variety.

4. p∗ : C(N)→ O(T ∗N) is an isomorphism.

So in algebrogeometric language, p is proper, and is an isomorphism on open parts.

Proof: 1. we proved before. 2. Fix b. Pick up a regular ξ. Then ξ can be embedded in a principle
SL(2) = {η, h, ξ}. Then Cg(ξ) ⊆ b, but it can live in only one b. Think about it: you pick up the
regular piece. And you look at a centralizer. Then what we try to say is that the centralizer of the
pair (b, ξ) is the same as the centralizer of ξ, and therefore there is only one b. The best way to see
this is to pick up one particular b, and then construct the centralizer and see that there are only
positive weights. For 3. and 4., we explained already. �

Oh, by the way, we posted new homework. So far only two people have done homework, but we
hope that the new one is easy.

Then we are saying that gr θλ = p∗. Why? We have C[N ] ⊆ Sg → S(TX). What does this map
do? At each point x ∈ X, we want to construct a vector field. Well, we pick ξ ∈ g, and then
project to g/bx, and this defines ξ → TxX, and thus a vector field. But Sg → S(TX) is p∗, and
θλ : Ug→ D(X,L), if you go to the graded part it is what’s going on.

This proves ??.

72



Lecture 22 March 12, 2010

**I was out of town. These notes are copied from the hand-written notes by Matt
Tucker-Simmons. Naturally, any errors are mine, rather than his.**

Last time: D(X,O(λ)) ∼= Uλg = Ug/
Ä
ker(χλ)Ug

ä
, where λ ∈ P is an integral weight.

But: the right-hand-side can be defined for λ not necessarily integral, and the left-hand-side can be
defined also: twisted differential operators are the sheaf of algebras locally isomorphic to the sheaf
of differential operators D1(U) = Γ(U, TX) ⊕O(U), where X =

⋃
i Ui and U = Ui ∩ Uj . We need

to understand the automorphisms of D1(U) for the transition maps, and they should preserve the
filtration. They must be: for v ∈ Γ(U, TX),

v 7→ v + 〈α, v〉

for some α ∈ Ω1(U). And we must have dα = 0 to get the commuting relations. So the twisted
differential operators tdo correspond to H1(X,Ω1

d(X)).

For example, let X = G/B, and consider OX/C:

0→ C→ OX → (Ω1
d)X → 0

Take the long exact sequence in cohomology; we know that Ox has only nonzero cohomology in
dimension 1. Therefore:

H1(X,Ω1
d)X ∼= H2(X,C)

The RHS gives Schubert cells. And if an element of the LHS gives a sheaf of twisted differential
operators on a line bundle, then the corresponding class on the RHS is the Chern class.

Now take g to be complex semisimple. Then the sheaf of functions to g is Ox ⊗ g = g̃. We have
g→ TX, and so:

[f ⊗ ξ, g ⊗ η] = fg ⊗ [ξ, η] + f Lξ(g)⊗ η − g Lη(f)⊗ ξ
This is a Lie algebroid, i.e. a sheaf of Lie algebras and OX -modules.

In fact, we have a more general notion. Given a map of sheaves α : g̃ → TX such that [ξ, ϕη] =
ϕ[ξ, η] + Lα(ξ)(ϕ)η, then we get D(X,O(λ)) by taking the enveloping algebroid of . . . something
. . . .

ker(α) = {ϕ : X → g s.t. ϕ(x) ∈ bx ∀x ∈ X}

[ker(α), ker(α)] = {ϕ : X → g s.t. ϕ(x) ∈ nx}
And bx/nx ∼= by/nx for all x, y ∈ X canonically, since the choice is up to conjugation by B. But
bx/nx ∼= h.

Thus, we set Ũ = OX ⊗ Ug, and λ ∈ h∗ gives λ : bX → C for any x, since bx/nx = h. Let’s denote
by Jλ the ideal in Ũ generated by

Ä
ϕ(x) − λ(ϕ(x))

ä
. Then we define Dλ

X = Ũ/Jλ for any λ ∈ h∗.
For Uj ⊆ X, we have g 7→ D1(U1) and D1(U2), and this defines the gluing maps for the sheaf of
twisted differential operators.
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Lemma 22.1 1. Dλ
X is a tdo sheaf.

2. Γ(X,Dλ
X) def= Dλ(X) = Uλg.

Proof: For the second statement, go to associated graded, same as before. For the first statement,
calculate: for U ⊆ X, Dλ

0 (U) = O(U), and:

Dλ
1 (U)

Dλ
0 (U)

=
O(U)⊗ g

kerα
= Γ(U, TX)

and so we are locally isomorphic to differential operators. �

Theorem 22.2 (Beilinson-Bernstein) Assume that λ is dominant and λ+ ρ is regular, but not
necessarily integral. Then:

• Dλ(X) ∼= Uλg-modules.

• Dλ
X-modules (sheaves of modules, quasicoherent as Ox-modules)

For F ∈ Dλ
X-mod, Γ(X,F) ∈ Uλg-mod. On the other hand, if F ∈ Dλ(X) ∼= Uλ(g)-mod, put

F(U) = Dλ(U) ⊗Dλ(X) F as the localization functor. Then we claim that Γ and localization give
an equivalence of categories.

Aside: What is quasicoherence? Take an algebraic variety X, and OX the sheaf of functions. Then
M is quasicoherent if for a small enough cover, for V ⊆ U , we haveM(V ) =M(U)×O(U)O(V ). For
X affine, quasicoherent sheaves are the same as C[X]-modules, e.g. sections of vector bundles.

The point is that this is not true for projective things, because usually there are too few global
sections.

When λ is integral, we can see that the dominance and that λ+ ρ is regular are necessary, by the
BWB theorem.

Proof: It suffices to prove the following: If F is a Dλ
X -module, then H i(X,F) = 0 for i 6= 0, and

H0(X,F) 6= 0 for F 6= 0.

Let V be a finite-dimensional irrep of B, and set V = G ×B− V = OX ⊗ V . Then V has a
B−-invariant filtration with 1-dimensional quotients, and this gives a filtration of V:

0 ⊆ V1 ⊆ · · · ⊆ Vk = V

Here V1
∼= O(ν), where ν is the lowest weight of V , and Vk/Vk−1

∼= O(µ), where µ is the highest
weight.

Then F(γ) = O(γ)⊗F , and so consider F → F(ν)⊗V and F ⊗V → F(µ), induces respectively by
the maps V → O(µ) and O(ν)→ V . To complete the proof we need Serre’s Theorem: if X ↪→ Pn
and F is a coherent sheaf on X, then F⊗O(m) does not have nonzero cohomology for large enough
m. �
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Lecture 23 March 15, 2010

We are in the middle of the program of localization theorem. Let’s recall where we are:

We have X = G/B and hence an action map α : g → TX. Then we take Ũ = Ug ⊗OX , which is
a trivial sheaf, and we quotient by the ideal Iλ =

Ä
{ξ − λ(ξ) s.t. ξ ∈ kerα}

ä
. This gives the sheaf

of twisted differential operators DλX = Ũ/Iλ. Locally, it is the sheaf of differential operators. Then
we showed that Γ(X,DλX) = Uλg.

Then our goal is to prove that if λ+ ρ is dominant and regular, then:

1. H i(X,F) = 0 for all i > 0

2. H0(X,F) 6= 0

where F is a DλX ⊇ OX **a module over this?**, and F must be quasicoherent over OX . As
we explained last time, this is a sort of analog of the Borel-Weil-Bott theorem, in a much more
general setting.

So, first we explain the tensor product construction. Let F and S be Ũ-modules. Then F ⊗OX S
is again a Ũ-module.

Then if F is a DλX -module, then for µ ∈ P, we set F(µ) def= O(µ)⊗OF . This is going to add weights
(because we have the infinitesimal action on the fiber), as is clear from the definition, so actually
this is a Dλ+µ

X -module.

Now let µ be dominant integral, and consider V = L(µ). Then we have the induced bundle
V = G ×B V . And this induced bundle is a Ũ module. Now, V has a b−-invariant filtration
0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vs = V , such that the quotients are all one-dimensional b−-representations.
In fact, Vi/Vi−1 = Cγi , where γi is a weight of V . In all this theory, this is kind of an important
trick, and we almost played it when proving the BWB theorem.

Now, when we do this, we notice that γ1 is the lowest weight of V , by construction, and the last
one is the highest weight, and these are fixed — you cannot vary them.

But then, if you do this sheafification, or whatever, you actually do have an absolutely similar
filtration at the level of line bundles:

0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vs = V

Then Vi/Vi−1 = O(γi).

Now we do the following thing. We take F(−ν) ⊗OX V, and we naturally have a map to this
from F(−ν) ⊗OX V1, and also a map to this one form F . So we naturally have a map i : F →
F(−ν)⊗OX V1 → F(−ν)⊗OX V. Is instead we take the highest term, using the map V → Vs, we
get a map j : F(−ν)⊗OX V → F(µ).

Lemma 23.1 i has a right inverse and j has a left inverse.
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So basically what we are saying is that although we have a filtration, in fact F splits as a direct
sum.

Proof: Here is the idea. In the quotient, we have the action of Dλ+γi
X . So then we will prove:

1. If γi 6= ν the lowest weight, then Uλ−ν+γig 6= Uλg. Reminder: what is Uλg? It is a quotient
by a central character. So the point is that we may have other central characters, but none
of them is like this.

2. If γi 6= µ then highest weight, then Uλ+γig 6= Uλ+νg.

So 1. is required to prove that i exists, and 2. that j exists.

But how do we prove this? We have the Harish-Chandra theorem: if two weights define the same
central character, then they are on the same orbit of the shifted Weyl group.

So, let’s prove 1.: We must show that λ + γi − ν 6= w(λ + ρ) − ρ for any w ∈ W . Assume the
opposite. Then we do have w(λ + ρ) − (λ + ρ) = γi − ν. But now, ν is the lowest weight, so
γi − ν > 0. But w(λ+ ρ)− (λ+ ρ) ≤ 0, as it is dominant. (We did not use that it is regular: that
is for 2.)

Proof of 2.: We assume w(λ+ γi + ρ) = λ+ µ+ ρ, and so λ+ ρ− w(λ+ ρ) = w(γi)− µ. But the
RHS is ≤ 0, and the LHS is > 0 because λ+ ρ is regular. �

So, the trick is, we prove it under the assumption that F is coherent, i.e. finitely-generated, and
then use the usual trick: quasicoherent is an inductive limit of coherent, and so the coherent case
suffices. We will skip this limit: it is not difficult, but you have to check various maps.

Ok, so now use that H i(X,F(−ν)) = 0 for i > 0 if −ν is sufficiently large. This is an algebraic
geometry result, because this is the Serre theorem, which says that if you pick up ν, and then
multiply it by and integer, and then by the Serre theorem you get vanishing cohomology.

Then H i(X,F(−ν)⊗OXV) = H i(X,F(−ν))⊗V = 0. But we also know that F is a direct summand
of F(−ν)⊗OX V, and so H i(X,F) = 0.

Question from the audience: Wait: ν is just an integer? How does it relate to the twist in the
sheaf? Answer: Oh, let’s explain this. Remember that π : X ⊆ P(L(λ)), where λ = −ν of µ.
Then we thought we explained this once: O(λ) = π∗O(1). So we multiply λ by some integer, and
then it works. See, you have different embeddings, and different line bundles. . . .

Finally, for i = 0 part, we do the same thing. Again, for sufficiently large µ, H0(X,F(µ)) 6= 0 by
the Serre theorem. Assume that H0(X,F) = 0. Then H0(X,F ⊗Ox V) = 0 by the argument as
before. But then since we have the splitting, H0(X,F(µ)) = 0, because it is a direct summand,
but this is a contradiction.

And so the theorem from last time is proven.

So see the condition at the top of today shows you that taking global sections is an exact functor,
and the second that **?**. So we have an equivalence of categories between **?**
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There are many applications, usually via applying the theory of D-modules to questions in repre-
sentation theory. For example, we can classify unitary representations. D-modules require a course
in themselves, but we will give some simply examples.

Question from the audience: Can you explain the equivalence of categories more? Answer:
The point is that you can localize back, and generally you get something bigger. We have Γ :
DλX -mod → Uλ-mod. We also have L : Uλ-mod → DλX -mod. Question from the audience: A
priori: I take global sections and localize, and that’s the identity on Uλ-mod. But the other way is
by exactness? Answer: So we have Γ◦L = id, because we don’t get more sections, by faithfulness.
There is this general theorem — one is adjoint of another — that says that if you have two functors
between two categories, and one is adjoint of another, and if they are exact and faithful, then you
have an equivalence of categories. It goes like this: it should be a bijection on irreducibles. If we
remember correctly the statement is:

Proposition 23.2 If you have two adjoint functors, exact, and gives bijection on irreducibles, then
they give equivalence of categories.

So the idea is that there is a map like 0 → M → Γ ◦ L(M) → T → 0. Then we do localization
of this, and if we apply ΓL again, then we get something non-trivial. We’ll stop; it’s based on the
proposition, but we cannot figure it out immediately on the board.

Question from the audience: Ok, so we proved that Γ is exact. Did we already have the
bijection on irreducibles? Answer: This should follow from faithfulness, i.e. the H0 part. You
take a module on a sheaf, and take global sections, then the module remains (ir)reducible. And
it’s clear that localization never gets 0: if you localize from something non-zero, you do not get
zero, but the question is whether you localize from something that does not have global sections.
We will try to do this next time. Of course, this is some standard statement that works for any
sheaf.

Ah, yes. One thing we know that is kind of nice:

Corollary 23.3 If we µ ∈ P+, then we have a functor

DλX-mod
⊗O(µ)−→ Dλ+µ

X -mod

It is an equivalence of categories. Moreover, if λ+ρ is regular dominant, then we get the translation
principle:

Uλg-mod→ Uλ+µg-mod

Example 23.4 If λ was itself integral dominant, then we have an equivalence Φ : Uλg-mod →
U0g-mod.

In fact, we can construct this Φ, or rather its inverse. It is Φ(M) =
Ä
M ⊗ L(λ)

ä
/(kerχλ), and

the adjoint is F (M) =
Ä
M ⊗ L(λ)∗

ä
/(kerχ0). For example, the trivial module goes to a finite-

dimensional module. These are translation functors. ♦
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One example is BGG-resolution. We can prove that there exists a resolution:

0→M(−2ρ)→ · · · →
⊕

`(w)=k

M(w(ρ)− ρ)→ · · · →M(0)→ 0

Then L(0) is just the cohomology in the last term. And if you think about this complex, it is pretty
natural, and in fact it is dual with the De Rham complex.

Indeed, you take G/B = U0 = N− · x, and StabG x = B, and N− ∼= n−. Then the De Rham
complex, you get

Ωk(U0) ∼= S•(n−)∗ ⊗
k∧

(n−)∗

This is an isomorphism of vector spaces, but in fact, the differential commutes with **?**, and so
we get the one above, except in the opposite direction:

0→ Ω0(U0) d→ Ω1(U0) d→ . . .
d→ Ω`(U0)→ 0

This is a complex of g-modules. We get the cohomology of this complex for free, because it is the
De Rham complex. We take its restricted dual, and we get:

Mk
def= Ωk(U0)∗ = Ug⊗Ub

k∧
(n−)

and n− = g/bb, and it’s easy to prove that we do get a b-filtration.

Then we have:
0→M` → · · · →M2 →M1 →M0 → 0

The only problem is that we have too many Verma modules, so we quotient by the kernel, and
Mk/(kerχ0) =

⊕
`(w)=lM(w(ρ)− ρ). The details we will put in the next exercise set. The weights

you get: they are w(ρ)− ρ =
∑
α∈∆−∩w(∆+ α.

Our plan for the next two sections: we will mostly change topics, and discuss the cohomology of
Lie algebras.

Lecture 24 March 17, 2010

Warning: we may have to move rooms soon.

There was a question from last time. We have a functor Γ of global section, and L the localization,
and they are adjoint:

HomDX (L(F ),F) = HomD(X)(F,Γ(F))

where F is a module and F is a sheaf, and DX is the sheaf of twisted differential operators (“tdo”)
and D(X) is the sections of DX . Question from the audience: Is this the correct direction?
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Answer: We think so. Localization is like taking a tensor product. If we localize at one point, we
have HomD(U)(D(U)⊗D(X) F,F(U)) = HomD(X)(F,F(U)). So from this we get:

HomDX (LF,LF ) ∼= HomD(X)(F,ΓLF )

and so this induces a map F → ΓLF . And we also have:

HomD(X)(ΓF ,ΓF) ∼= HomDX (LΓF ,F)

and that gives a map LΓF → F . So we do have: LΓLF ∼= F , and ΓLΓF ∼= ΓF . In fact, we have
these isomorphisms whenever we have an adjoint pair of functors.

But now we use that Γ is exact and faithful. Question from the audience: We proved that
it does not take non-zero objects to 0. Is this the same as faithful? Answer: Yes if it is exact,
because you just look at the kernels.

So, we want to prove that LΓF → F is an isomorphism. We do this by looking at the exact
sequence

0→ X → LΓF → F → Y → 0

and apply Γ:
0→ ΓX → ΓLΓF ∼→ ΓF → ΓY → 0

but then ΓX = ΓY = 0, and so X = Y = 0, since we proved that non-zero objects are not sent to
zero.

On the other hand, let F ∈ D(X)-mod. Then we take a free resolution

· · · → A2 → A1 → A0 → 0

and apply L:
· · · → LA1 → LA1 → LA0 → 0

and apply Γ:
· · · → ΓLA1 → ΓLA1 → ΓLA0 → 0

But on free modules it is clear that ΓLAi ∼= Ai, so there is no cohomology except in the last spot
of the third sequence, but then since L is exact and faithful, the sequence of LAj is exact, and
so ΓLF ∼= F . Question from the audience: Wait, why on free things? Answer: Because we
calculated that ΓLD(X) = D(X). We did this by calculating Γ(D(X)) = Ug/something, and we
already did this. So we’re not sure about the general statement from last time, but it’s like when
you do a localization on an affine variety to get a quasicoherent sheaf: you can go back.

24.1 Cohomology of Lie algebras

This is a fairly major change of pace, although next time we will connect to BWB theorem.
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We start with a definition, which requires no assumptions on the field K **VS uses F**, the
modules, the dimension, etc.

Let g be a Lie algebra and M a g-module. We construct the cochain complex via:

Ck(g,M) def= HomK
Ä
g∧k,M

ä
In other words, skew-symmetric k-multi-linear functions from g toM . The differential d : Ck(g,M)→
Ck+1(g,M) is:

dc(g1, . . . , gk+1 =
k+1∑
i=1

(−1)i+1gic(g1, . . . , ĝi, . . . , gk+1)+
∑
i<j

(−1)i+jc([gi, gj ], g1, . . . , ĝi, . . . , ĝj , . . . , gk+1)

The ĝ is standard notation, meaning that we leave that term out. We will not check that d2 = 0,
but it is not hard: you can almost just do it by pointing. Most parts just cancel, and there is
a triple term that cancels by the Jacobi identity, and there is a term that cancels by the module
axioms. So indeed we get a complex.

So then the cohomology we define in this way is the usual:

Hk(g,M) =
ker d ∩ Ck(g,M)
Im d ∩ Ck(g,M)

How would you come up with this complex? We will explain the origin. It can be formulated as
the following proposition:

Proposition 24.1 This cohomology is nothing else but the Ext functor. I.e. Exti(K,M) = H i(g,M).

And it is not hard to define the Ext functor because we have free resolutions using universal
enveloping algebra. Actually, it follows that Exti(N,M) = H i(g,HomK(N,M)). Question from
the audience: Ext is taken in which category? Answer: The category of all g-modules. There
is a version if you restrict to some other category. Question from the audience: And if we
look in finite-dimensional modules we get 0? Answer: Not exactly. First of all, that’s only in the
representations of a semisimple module. And H3 still caries data **I missed the more precise
statement of when it does so**.

We also have homology. In the finite-dimensional case it is dual to this one. We have chains:

Ck(g,M) = g∧k ⊗M

∂(g1 ∧ · · · ∧ gk ⊗m) =
∑

(−1)i+1g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gk ⊗ gi+

+
∑

(−1)i+j [gi, gj ] ∧ g1 ∧ . . . ĝi . . . ĝj · · · ∧ gk ⊗m

So then you can analogously define Hk(g,M) to be the homology of this complex.

Lemma 24.2 Hi(g,Ug) =

{
K, i = 0
0, i > 0
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Proof: The complex . . .
∂→ ∧k g ⊗ Ug

∂→ . . . has a filtration induced by the filtration on Ug —
actually, we take the filtration that is the sum: degree in Ug plus degree in g∧k. We take the
graded, and then we get the Koszul complex:

· · · → g∧k ⊗ Sg→ . . .

And for V any vector space, we know that this complex has cohomology only in degree 0. Indeed,
we have two maps:

V ∧k ⊗ V ∨`
∂
�
d
V ∧(k−1) ⊗ V ∨(`+1)

**VS uses
∧k V ⊗ S`V , which we like too; but

∧
behaves differently in displaystyle.**

These are:

∂(v1 ∧ · · · ∧ vk ⊗ w1 . . . w`) =
∑

(−1)iw1 ∧ . . . v̂i · · · ∧ vk ⊗ viw1 . . . w`

d(v1 ∧ . . . vk ⊗ w1 . . . w`) =
∑

v1 ∧ · · · ∧ vk ∧ wi ⊗ w1 . . . ŵi . . . w`

Then the point is that d∂ + ∂d = (k + `)id. And d is a chain homotopy. So the Koszul complex is
exact except at k + l = 0.

And it is a general fact: if the graded has homology only in one place, then the original complex
only has homology in that same place. So the only thing left to check is that H0 = K, and this is
because of 1 ∈ Ug. �

There is another thing to check: that the d, ∂ are all g maps. Then we see that Ck(g,Ug) = g∧k⊗Ug

gives a free resolution of K. So now we take the complex Homg(Ug ⊗ g∧k,M), and compute the
homology. But by Frobenius reciprocity,

Homg(Ug⊗ g∧k,M) ∼= HomK(g∧k,M)

which is just the cochain complex Ck(g,M). In the above, Ug ⊗ g∧k is a g-module, where g acts
either by left multiplication or by the adjoint action. In general, the idea is to think of Ck as
induced by Ug⊗ g∧k: we are inducing from the zero subalgebra.

Ok, so more generally, we use the associativity of tensor products to tensor again with N :

Homg(Ug⊗ g∧k ⊗N,M) = HomK(g∧k,HomK(N,M))

So this should explain why this is the right definition.

So now we will get an interpretation of the lower-dimensional cohomology. And next time we will
calculate some of the cohomology for simple Lie algebras, and we will see that the many of the
structure theorems of simple Lie algebras follow from them. By the way, injective modules in g-rep
are very complicated, but projective modules, you just take a free resolution.

Question from the audience: This may by Priddy’s resolution? Answer: We haven’t seen
that, but maybe.
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Ok, so: H0(g,M) = Mg = Homg(K,M) are just the invariant.

We already explained that H1(g,HomK(M,N)) = Ext1
g(M,N). We will now explain this in a

different way using short exact sequences. Because what are we studying here? We are actually
studying extensions 0 → N → X → M → 0. And we would like to established an equivalence
between 1-cocycles and extensions. The idea is, as a vector space X = M ⊕N . Then we will define
a new action by g · (m,n) = (gm, c(g)m + gn), where c is a one-cocycle. So this defines a new
action. Here c(g) ∈ HomK(M,N). But we have to check that this is indeed an action:

g1 · g2 · (m,n)− g2 · g1 · (m,n) = [g1, g2] · (m,n)

And this condition gives a condition on c, that c([g1, g2]) = [g1, c(g2)]− [g2, c(g1)]. And this is just
the condition that dc = 0. So actually, you can calculate this precisely. If the extension splits,
what does this mean? It means that there is a map M → X that commutes, and so this map
is φ(m) = (m,ϕ(m)), where ϕ ∈ HomK(M,N), and the condition that this is a submodule is
that:

g · (m,ϕ(m)) = (gm,ϕ(gm))

and you write this out, what do you get? c(g) = [g, φ]. And that means that c is coboundary. So
indeed we see that the abelian group of exact sequences quotient by the splitting extensions gives
you the first cohomology group. Question from the audience: What is the group operation on
extensions? Answer: You check that if two sequences are isomorphic, then the cocycles differ by
a coboundary.

Lecture 25 Feb 5, 2010

Today we will talk first about some symmetries in the Lie algebra cochain complex, and then we
will prove that the cohomology of semisimples with nontrivial coefficients are trivial.

So, we have the cochain complex Ck(g,M) d→ Ck+1(g,M) → . . . , and g acts in several ways. For
notation, we have x ∈ g, and recall that Ck(g) =

∧k g∗ ⊗M . So we have some actions:

1. ixc(g1, . . . , gl) = c(x, g1, . . . , gk) gives a map ik : Ck+1 → Ck.

2. αx = βx + adx, where βxc(x1, . . . , xk) = x · c(x1, . . . , xk), and

adx c(x1, . . . , xk) =
r∑
i=1

c(x1, . . . , adx(xi), . . . , xk)

3. It’s helpful to adopt the formulation of superalgebras. We have d ◦ ix + ix ◦ d = αx. This
shold be familiar from the de Rham complex, where the RHS would be the Lie derivative.
Then it follows that [αx, d] = 0. And if dc = 0, then αxc = dixc, and so ker d/ Im d is a trivial
representation of g.
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4. [d, βx]c(x1, . . . , xk) =
k∑
i=1

(−1)i+1β[xi,x]c(x1, . . . , x̂i, . . . , xk)

Theorem 25.1 Let g be semisimple over characteristic 0. Let M be a nontrivial finite-dimensional
irreducible representation of g. Then H i(g,M) = 0 for all i.

Proof: It’s clear that the cohomology doesn’t change when you extend fields, so we will suppose
that K is algebraically closed, so that we can work over an orthonormal basis. Then the Casimir is

Ω =
dim g∑
j=1

ujuj

where {uj} is an orthonormal basis in g with respect to the Killing form. Then let h =
∑
j βuj iuj .

Then:

d ◦ h+ h ◦ d =
∑
j

[d, βuj ]iuj +
∑
j

βujαuj∑
j

[d, βuj ]iujc(g1, . . . , gk) =
∑
j

[d, βuj ]c(uj , g1, . . . , gk) =
∑
i,j

(−1)iβ[ui,uj ]c(uj , . . . , ĝi, . . . , gk)∑
j

βujαujc(g1, . . . , gk) =
∑
j

βujβujc(q1, . . . , gk) +
∑
i,j

βujc(uj , g1, . . . , [uj , gi], . . . , gk)

If there is a sign mistake, you can fix it: we work with super algebras, and we’ve learned that the
signs always work out.

Then we claim that d ◦ h+ h ◦ d =
∑
j βujβuj . This follows if we can show that the two sums

∑
ij

cancel. We will show that they cancel for each i when gi = up, and then use linearity. Define the
tensor c via:

uj , up] =
∑

cqj,puq

Then cqjp = −cqpj , and then we have:∑
cqjpβuq(−1)ic(uj , . . . , ĝi, . . . , gk) +

∑
cqjpβujc(q1, . . . , uq, . . . , gk)

and it works.

We did not find a coordinate-invariant proof. **I bet the translating all this into the Penrose
notation would achieve that.**

Now, if M 6= 0 is irreducible, then Ω|M = Cid for C 6= 0 (by characteristic-zero), and so h is the
desired homotopy. �

Remark: H i(g,K) = 0 for i = 1, 2, but not higher. For i = 1, this is easy to see: H i(g,K) =
[g, g]⊥ = 0 when g is semisimple. We will explain in a moment why H2 as well.

And this, plus the theorem, implies the Weyl theorem: any finite-dimensional representation is
semisimple, i.e. completely reducible. See, we proved that H1(g,M) = 0 for M 6= K irreducible,
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but then for any 0 → K → M → N → 0 we have the long exact sequence → H1(g,K) →
H1(g,M) → H1(g, N) →. Then we do induction on the rank of M , that H1(g,M) = 0 for any
M . But from last time, this tells us that there are no nontrivial extensions of finite-dimensional
modules: Ext1

g(M,N) = H1(g,M∗ ⊗N) when everything is finite-dimensional.

Then the point is: whenever I look at this complex, I can pick up only the invariants. Look at
Ck(g,K). Then pick up only the invariant part: this is a new complex:

· · · → Ck(g,K)g → Ck+1(g,K)g → . . .

and since ker d/ Im d is invariant, and since g is semisimple, then we can split each Ck, and so the
cohomology of Cg is the same as for C.

Now,
∧2(g∗)g = 0 if g is semisimple, and also Hk(g1 ⊕ g2,K) =

⊕
H i(g1,K)⊗Hk−i(g2,K).

Then also we should point out that H•(g,K) is a supercommutative ring, since we can take wedge
products, and H•(g,M) is a module over this.

So this gives a simple proof of **?**, and a neat interpretation of H2(g,M).

This is very similar to what we did last time. You look at exact sequences 0 → M → g̃ → g → 0,
where M is an abelian ideal in g̃, and the sequence splits is g̃ = g E M is a semidirect sum. **And
since M is abelian, the g̃ action on M factors through g, so M is a g-module.**

So, let’s say that g̃ = g⊕M as a vector space, and try to define the bracket:î
(g1,m1), (g2,m2)

ó
=
Ä
[g1, g2], c(g1, g2) + g1m2 − g2m1

ä
So Jacobi identity implies that — in fact, is equivalent to — dc = 0. So suppose that the sequence
splits as g-modules: g → g̃, then we’d have [(g1, φ(g1)), (g2, φ(g2))] = ([g1, g2], φ(g1, g2)), but from
another point of view it would be ([g1, g2], g1φ(g2)− g2φ(g1) + c(g1, g2)) at least up to signs. And
so dφ = c.

So this means that if H2(g,M) = 0, then 0→ M → g̃→ g→ 0 always splits. So that gives you a
very simple proof of the Levi decomposition theorem:

Theorem 25.2 If g is any finite-dimensional Lie algebra and r ⊆ g is its radical, and gss = g/r,
then we have gss ↪→ g so that g = gss E r. All such decompositions are conjugate.

Proof: Existence: r is abelian is done; if r′ ⊆ r so that r/r′ is abelian, then 0 → r/r′ → g/r′ →
gss → 0, and we know g = g′ + r and g′ ∩ r = r′, and so g′ = gss E r′ by induction.

For the conjugacy, first do when r is abelian. So suppose we have g = gss ⊕ r = g′ss ⊕ r, we have
ψ : gss ↪→ g, and ψ(gss)g′ss. Then g′ss = {(g, ψ(g)) s.t. g ∈ gss and φ(g) ∈ r}; then dφ = 0 so
H1(gss, r) = 0, and so φ(g) = gm and so exp(adm)g = g′.

And for the last part you do induction which we will skip. �

Ok, so how to calculate this cohomology. We will ssume that g is the Lie algebra of a compact group
— nothing depends on the field, so we might as well work over R, and we know that each semisimple
Lie algebra, you complexify and then take the compact form: sl(2,R)→ sl(2,C)→ su(2).
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Now look at C(g,R). You can identify this with the complex of right-invariant differential forms on
the group: C(g,R) ν→ Ωr-inv(G). Question from the audience: Why right versus left? Answer:
It doesn’t really matter, of course. The point is that if g ∈ g, then Lg(µ(c)) = µ(αg(c)). So in fact,
in this case, when the group is compact, the Lie algebra cohomology is the same as the cohomology
of G as a manifold, because it is the same as the right-invariant cohomology:

H i(g,R) = H i
dR(G,R)

if G is compact.

And this can be calculated. We will say a few words about U(n) (or gl(n,R)):

Proposition 25.3 If g = gl(n,R), gl(n,C), u(n), then H•(g,K) is a free grassman algbera (super-
commutative ring) with generators in degrees 1, 3, 5, . . . , 2n− 1.

Why 2n − 1? If you look at U(1), this is just the circle. In U(2), SU(2) is the three-dimensional

sphere, and we know its cohomology. And more generally, we have bundles: U(n)
U(n−1)−→ S2n−1.

And so you can calculate cohomology inductively, using the long exact sequence.

H•dR(U(n− 1))� H•dR(U(n))← H•dR(S2n−1)

So then you can prove that H•(U(n)) = H•(U(n− 1)) + ωH•(U(n− 1)). Here ω is the unique up
to proportionality invariant form on S2n−1.

Next time we will formulate one more thing about BWB theorem, and then start quantum groups.

Lecture 26 March 29, 2010

26.1 Kostant theorem

We are in the following situation: suppose that g = n− ⊕ h⊕ n+ is semisimple over C, and that M
is a finite-dimensional g-module. We are interested in describing H i(n+,M). Then you look at the
chain complex

∧i(n+)∗ ⊗M , and there is an h action (on both pieces, either the adjoint action of
the h ↪→ g-action) that commutes with the action of the differential. So H i is an h-module.

If λ ∈ h∗, then by Cλ we denote the one-dimensional h-module with weight λ.

Theorem 26.1 H i(n+, L(λ)) =
⊕
`(w)=iCw(λ+ρ)−ρ

We will give two proofs.

Proof (1): The first proof is based on BGG resolution, which is a pretty strong result in itself.

Recall that the Killing form identifies (n+)∗ ∼= n−. Then it’s not too difficult to see that the
homology Hi(n−, L(λ)) is the same as the cohomology H i(n+, L(λ)). Then the BGG resolution tells
us that we have:

0→M` →M`−1 → · · · →M0 → 0
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a resolution of L(λ), where Mi =
⊕

`(w)=iM(w(λ+ ρ)− ρ).

And what is M(µ)? As an n− module, it is M(µ) ∼= Un− ⊗ Cµ. Actually, this is an isomorphism
of h⊕ n− modules. And the point is that it is free over n−, and we proved that a free module has
homology only in the first term. So:

Hi(n−,M(µ)) =

{
0 i > 0
Cµ i = 0

Moreover, we have Hi(n−, L(λ)) = H0(n−,Mi), and the result follows. �

Proof (2): The second proof uses the Borel-Weil-Bott theorem.

We look at a certain category, which we denote by the category of (b, H)-mod. What is this
category? In general, these are Harish-Chandra modules. In our case, we will write is explicitly.
The objects are b-modules that are locally nilpotent over n+ and semisimple over h with weights
in P the weight lattice of g.

So if we would like to study the extensions, we have:

H i(n+, L(λ))µ = Exti(b,H)(Cµ, L(λ))

where the left-hand side is the weight-µ space, and the right-hand side is computed in this category
(b, H)-mod. Indeed, you take a projective resolution, and take its semisimple part, and its still
projective **I think this is what VS said, but I might have misheard**.

On the other hand, we have an equivalence of categories B-mod ∼→ (b, H)-mod. In one direction it’s
clear how to go — every B-module if (b, H) — and in the other direction we have exponentiation.
And so we have:

H i(n+, L(λ))µ = ExtiB(Cµ, L(λ)) = ExtiB(L(λ)∗, C−µ)

So we pick up an injective resolution of C−µ:

0→ I0 → I1 → · · · → I` → 0

And so from our point of view, how do you compute? You take the Hom functor, and look at
HomB(L(λ)∗, Ii). But on the other hand, by Frobenius reciprocity, this is the same as:

= HomG(L(λ)∗, IndGB(Mi)) = HomG

Ä
L(λ)∗, H i(G/B,O(−µ))

ä
And on the other hand, HomB(L(λ)∗, Ii) = Exti(n+, L(λ))µ. Incidentally, the above isn’t quite in
the form that we have used, and there is always the business of twists. But in any case, if you
dualize:

HomG

Ä
L(λ)∗, H i(G/B,O(−µ))

ä
= HomG

Ä
L(λ), H i(G/B−,O(µ))

ä
And if you look at it, this gives the theorem. �
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Or alternately, this gives the BWB theorem as a corollary of the Kostant theorem: originally
Kostant proved his theorem using spectral sequences. On the other hand, the existence of a BGG
resolution is stronger, because cohomology doesn’t know everything.

Our final remark is that one can prove the Weyl character formula using the Kostant theorem. It
is not the quickest way to prove it, but it is not very difficult.

26.2 Quantum Groups

We will spend the rest of today and the next lecture discussion Hopf algebras and duality between
them, because quantum groups are nothing else but certain deformations of Hopf algebras.

The most remarkable thing is that most of these results can be done for quantum groups, if you do
them appropriately.

We begin by fixing some notation. Fix a field K, and later on we will have restrictions on character-
istic, but not right now. A Hopf algebra over K has in fact two structures: it is an associative algebra
and coalgebra, satisfying certain axioms that all can be drawn **if you type fast enough**. We
have

m :A⊗A→ A multiplication∆ :A→ A⊗A comultiplication

Such that:

A⊗A⊗A A⊗A

A⊗A A

m⊗id

id⊗m m
m

A A⊗A

A⊗A A⊗A⊗A

∆

∆ id⊗∆
∆⊗id

The first diagram is the associativity you are used to. The second is its dual. We also demand that
∆ be a homomorphism of algebras, and also that we have an antipode and unit and counit:

A A⊗A

K

A A⊗A

∆

ε

1

m

id⊗S S⊗id

Example 26.2 IfG is a finite group, and A is its group algebra, then we set ∆g = g⊗g, S(g) = g−1,
and ε(g) = 1. ♦

Example 26.3 If A is a finite-dimensional Hopf algebra, then so is A∗ **up to choosing some
left-right conventions**. ♦

Example 26.4 The dual of the group algebra is K[G] = {f : G → K}. Then ∆f(x, y) = f(xy),
S(f)(x) = f(x−1), and ε(f) = f(e). ♦
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Example 26.5 When we have an algebraic group, we do not have the group algebra. But we do
have its dual K[G]. We must have the group algebraic, so that the comultiplication is well-defined:
in the algebraic category, K[G×G] = K[G]⊗K[G] by definition. ♦

Example 26.6 When G = K = A1, we have K[G] = K[x], and ∆x = x ⊗ 1 + 1 ⊗ x, S(x) = −x,
and ε(x) = 0. When G = K∗, then K[G] = K[t, t−1], ∆t = t⊗ t, S(t) = t−1, and ε(t) = 1. ♦

In fact, we have a theorem that every algebraic group is a Zariski-closed subgroup of GL(n). So
our next example is a universal example:

Example 26.7 G = GL(n). K[G] = K[xij ], localized at detx. Then ∆xij =
∑
k xik ⊗ xkj ,

S(xij) = (x−1)ij , and ε(xij) = δij . ♦

Changing gears, our next example is the universal enveloping algebra:

Example 26.8 Let g be a Lie algebra. Then Ug is a Hopf algebra with ∆x = x ⊗ 1 + 1 ⊗ x,
S(x) = −x, and ε(x) = 0 for x ∈ g. This requires a bit of checking to see that it is a Hopf algebra.
What you have to check is that ∆ extends to a homomorphism. The easiest way to do it is to look
at the tensor algebra T g, which is a free algebra, so there is nothing to check, and then quotient
by J the ideal generate by elements of the form x ⊗ y − y ⊗ x − [x, y]. So all it amounts to is a
certain calculation, that ∆([x, y]) = [x, y]⊗ 1 + 1⊗ [x, y], which follows from an easy calculation.♦

In general, x ∈ A is primitive if ∆x = x⊗1+1⊗x. The set of primitive elements in a Hopf algebra
is a Lie algebra.

There is a general fact: K[G] and Ug are “dual”. To make this precise, we must introduce the Hopf
algebra oflocal distributions supported at e ∈ G. We denote is SG, defined as follows. Take the
ideal Ie ⊆ K[G], which is the maximal ideal of e. Then we say that:

SG =
¶
α : K[G]→ K linear such that α(INe ) = 0 for sufficiently large N

©
We set degα to be the minimal n such that α(In+1

e ) = 0. This gives a natural filtration on
SG.

We now must define the multiplication and comultiplication on SG. To do this, we use the pairing
〈, 〉 : SG ×K[G]→ K. Then:

〈∆S (α), f ⊗ g〉 def= α(fg)

〈mS (α⊗ β), f〉 def= 〈α⊗ β,∆f〉

Question from the audience: Is it obvious that ∆f ∈ S ⊗S , and not in some completion?
Answer: Not yet, but it will follow from the filtration.

We denote the multiplication by convolution: mS (α⊗ β) = α ∗ β.

Proposition 26.9 1. S (G) is a filtered associative algebra, i.e. S (G)m ∗S (G)n ⊆ S (G)m+n

2. S (G)0
∼= K · eve.
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3. Te(G) = g = {α ∈ S (G)1 s.t. α(1) = 0}. These are precisely the maps K[G] → K such that
α(fg) = α(f) g(e) + f(e)α(g).

4. g is the Lie algebra [α, β] = α ◦ β − β ◦ α.

We have to check certain things, but the point is that we have a natural homomorphism Ug →
S (G).

Theorem 26.10 If char K = 0, then Ug→ S (G) is an isomorphism of Hopf algebras.

In fact, this justifies the Hopf structure on Ug. Next time we will define quantum GL(2) as both a
group algebra and a DJ algebra.

Lecture 27 March 31, 2010

We have posted a new homework set.

Today we will prove a statement about the duality between universal enveloping algebra and the
coordinate function algebra.

Recall that we defined S (G) the algebra of distributions supported at e. We defined it by dual-
ization, and gave it a filtration. We need to show that it is actually a filtered algebra.

Lemma 27.1

S (G)0 = Kδe

S (G)m ∗S (G)n ⊆ S (G)m+n and ∆(S (G)n) ⊆∑S (G)i ⊗S (G)n−i

TeG = g = {α ∈ S (G)1 s.t. α(1) = 0} and ∆α = α⊗ 1 + 1⊗ α.

Proof: 1. is obvious. For 2., we see had the ideal Ie, and it is actually a Hopf ideal — ∆Ie ⊆
Ie⊗K[G] + K[G]⊗ Ie, because e · e = e. And so ∆Ine ⊆

∑
Ike ⊗ In−ke , and using duality gives 2. For

3., we see that α
Ä
(f − f(e))(g − g(e))

ä
= 0, and since α kills constants, using the Leibniz identity

we actually have a derivation: α(fg) = α(f)g(e) + f(e)α(g), which is one of the definitions of the
tangent space, and this also implies the final statement. �

Now we will define the convolution with an arbitrary function. If you’ve worked with generalized
functions, you know that in general you can convolve them with ordinary functions. We define:
α ∗ f def= (id⊗α)(∆f), for any f ∈ K[G] and α ∈ S (G). And so if α ∈ g, what we have defined is a
left-invariant vector field α∗ on G. Now you can check the following property: (α∗β)∗f = α∗(β∗f).
So what we are actually saying is that S (G) act on G as left-invariant operators. Question from
the audience: Remind me what is α ∗ β? Answer: It is (α ∗ β)(f) = 〈α ⊗ β,∆f〉. Question
from the audience: And the reason that this is left-invariant is because we put id on the left?
Answer: Yes, I think it is left-invariant. But this depends on what you call left and right.
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To do these calculations, we introduce Sweedler notation, where you have ∆f =
∑
i f

1
i ⊗ f2

i , and
in the Sweedler notation you simply ignore the summation over indices, writing this instead as
f1 ⊗ f2. **I’ve seen this more commonly written as ∆f =

∑
f(1) ⊗ f(2).** Then you see

that:

(α ∗ β) ∗ f = f1(α ∗ β)(f2)

= f1〈α⊗ β,∆f2〉
= (id⊗ α⊗ β)(id⊗∆(∆f))

α ∗ (β ∗ f) = α ∗ (f1β(f2))

= β(f2)〈id⊗ α,∆f1〉
= (id⊗ α⊗ β)(∆⊗ id(∆f))

And the statement follows from the coassociativity of ∆.

So, we have g → VectGG the left-invariant vector fields, and so Ug → S (G). But if you take
graded, you see that grUg → gr S (G) is actually an isomorphism of graded algebras, because
gr S (G) = S(TG)G, and TG = g×G is trivial. Here we use that S (G) is generated by VectGG,
and this uses characteristic-zero: in characteristic-p this is not true. So we see:

Theorem 27.2 Ug ∼= S (G) if char K = 0.

On the other hand, in characteristic p, the point is that (∂/∂x)p. So the point is to use divided
powers.

Historically, the first thing that was defined was quantum SL(2) for the group, and then the
deformation of universal enveloping algebra was constructed. VS was very young when she attended
Gelfand seminar and Drinfeld gave a talk on quantum SL(2).

27.1 SLq(2) and GLq(2)

The idea is to define these as algebras of linear transformations of quantum plane. So how to define
quantum plane? We set Kq[x, y] = K〈x, y〉/(yx − qxy). Later on, we will assume that q2 6= ±1,
where q ∈ K×.

Now, it’s not hard to see that {xkyl} form a basis of Kq[x, y], but we do not have the same notion
of homogeneity any more.

So before we say more, let’s define this as a functor. Any algebraic variety is a functor from rings
to sets. So what we will define is:

A2
q(R) = {(x, y) ∈ R×R s.t. yx = qxy}

Sometimes it’s easier to work in this language: you check something by checking it on any ring R,
and it is functorial.
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The other thing we will now define are the q-binomial coefficients. First we introduce the q-
number: (n)q = 1 + · · · + qn−1 = qn−1

q−1 . Then the q-factorial: (n)q! = (1)q · · · (n)q. Then finally:(n
k

)
q

= (n)q !
(k)q ! (n−k)q !

In particular, you can check by induction that:

(x+ y)n =
n∑
k=0

Ç
n

k

å
q

xkyn−k

You always have to think about xy versus yx, and q versus q−1.

Ok, so now we will talk about matrices. The idea is that we do not deform the **co?**multiplication
— it is already noncommutative. But the idea is that we should declare that:Ç

a b
c d

åÇ
x
y

å
=
Ç
x′

y′

å
and

Ä
x y

äÇa b
c d

å
=
Ä
x′′ y′′

ä
are automorphisms of Kq[x, y].

So this gives relations on a, b, c, d.

The point is that we want Kq[x, y] to be a comodule over the Hopf algebra GLq(2). Question from
the audience: So we are working out the endomorphisms of A2

q? Answer: Yes, exactly.

Ok, so we have:
(cx+ dy(ax+ by) = q(ax+ by)(cx+ dy)

and so ca = qac, db = qbd, ba = qab, and you also do the other one, so you get at the end of the
day also dc = qcd, and a few more. All together:

ba = qab ca = qac db = qbd dc = qcd cb = bc ad− da = (q−1 − q)bc (27.1)

Then we define the bialgebra of quantum 2× 2 matrices to be Mq(2) = K〈a, b, c, d〉/the relations in
equation 27.1. The comultiplication is defined in the natural way via the multiplication of matrices:

∆(a) = a⊗ a+ b⊗ c ∆(b) = a⊗ b+ b⊗ d ∆(c) = c⊗ a+ d⊗ c ∆(d) = c⊗ b+ d⊗ d (27.2)

and the counit ε(a) = ε(d) = 1 and ε(b) = ε(c) = 0, and you extend these to algebra homomor-
phisms. To check that these really work, it is easy to work with the functor of points, and then
you just check with regular matrices. The point is that when you multiply matrices, you actually
just multiply row-by-row.

Now, Mq(2) is not a Hopf algebra, because there is no antipode: we do not have inverse matrices.
So we need to see if there is such a thing as “quantum determinant”.

Lemma 27.3 Define detq = ad − q−1bc = da − qbc ∈ Mq(2). It is a multiplicative function from
the functor-of-points perspective, and lies in the center of Mq(2).
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We don’t know any conceptual way to see that detq is central, but you can do it simply by com-
puting. But there is a conceptual way to see why it exists: you take the exterior algebra. We
define:

Λq(ξ, η) = K〈ξ, η〉/
Ä
ηξ + qξη, ξ2, η2

ä
If you now work with the functor of points, you see that m(ξη) = detqmξη. So Λq(ξ, η) has a
natural structure of a comodule over Mq(2).

So in addition, detq is grouplike: ∆(detq) = detq ⊗detq. This follows from detqm1 · detqm2 =
detq(m1m2), where m1,m2 are R-points, i.e. mi ∈Mq(2, R).

**There is an important question about representability and functors and modules,
but I missed most of it, sorry.** Question from the audience: We had a bialgebra of
“quantum matrices”. Were we guaranteed in advance that there is a maximal Hopf quotient of
that? Answer: This is the question of representability? Question from the audience: Well,
the group GLq(2) should be the biggest Hopf algebra quotient of Mq(2)? Answer: Ah, yes.
Incidentally, there is a general description of SOq, SPq, etc. We don’t know of a description of the
exceptional quantum groups, although there is are quantized enveloping algebras.

Now it is pretty clear how to define the groups:

SLq(2) def= Mq(2)/(detq −1)

The only thing that you have to check is that (detq −1) is a Hopf ideal, i.e. that ∆(detq −1) =
(detq −1)⊗detq + detq ⊗(detq −1), which follows from the fact that detq is grouplike. Then we can
define the antipode, because we know the formula for the inverse matrix:Ç

S(a) S(b)
S(c) S(d)

å
=
Ç

d −qb
−q−1c a

å
Then we see a new feature. In the usual case, the antipode is an involution, but here it is not any
more. In fact, S2 is conjugation by

Ä
q 0
0 q−1

ä
.

For GL:

GLq(2) = Mq(2)⊗K[t]/
Ä
t detq −1

ä
where ∆t = t⊗ t

Then the antipode is: Ç
S(a) S(b)
S(c) S(d)

å
= det−1

q

Ç
d −qb

−q−1c a

å
Then there is some checking, but in fact these are both Hopf algebras. Moreover, Kq[x, y] is a
comodule over Mq(2).

Next time, we will construct Uqsl(2), and see that it is dual to SLq(2).

Friday we are still here. On Monday we move rooms.

92



Lecture 28 April 2, 2010

**I arrive late, having missed the generators-and-relations presentation of Uqsl(2).**

We define the Verma module of Uqsl(2) as follows. We declare that it contains v0 a “highest weight
vector”, and pick λ; then we declare that M(λ) = span〈vi s.t. i ≥ 0〉, with action Kv0 = λv0,
Ev0 = 0, and Fvn = vn+1. Then we claim that this implies that Kvn = KFnv0 = q−2nλv0 and

Evn = [n]
q−(n−1)λ− qn−1λ−1

q − q−1
vn−1 (28.1)

We claim that:

Lemma 28.1 1. M(λ) is a Uqsl(2) module.

2. {F pK lEq} is a basis for Uqsl(2). **q is an unfortunate choice.**

Proof: 1. is a calculation, as is the check that {F pK lEq} span, by using the commutation relations.
For linear independence, we suppose that 0

∑
F pcp,q(K)Eq = A for cp,q ∈ K[K±1]. Then Av0 = 0

implies that cp,0(K) = 0, and Av1 = 0 implies that cp,1(K) = 0, and so on. �

Lemma 28.2 Uqsl(2) is a Noetherian algebra with no zero divisors.

Proof: The lack of zero divisors is by induction. You know that when you have a Noetherian ring,
and add polynomials, you get something Noetherian again. And K[K±1] is clearly Noetherian. But
in general there is a notion of skew extension or Ore extensions, which says that if A is both left-
and right-Noetherian, then A〈t〉/

Ä
at = tσ(a) + δ(a)

ä
is too, where σ : A→ A is an endomorphism

**and δ : A→ A is a derivation twisted by σ, I think**. �

Now, how to you see that Uqsl(2) is a deformation of the usual Usl(2)? Informally, you set q = et

and K = etH/2, and take the limit as t→ 0. More formally:

28.1 Classical limit (when q = 1)

When you cannot specialize at a point, the trick is to add a new element so that you can. You
add a new element H = K−K−1

q−q−1 . Then consider the algebra generated by K,E, F,H satisfying
the relations above and: [H,E] = q(EK + K−1E) and [H,F ] = −q−1(FK + KF ) **dropped a
−1?**. Then at q = 1, you get clearly Usl(2) = U1sl(2)/(K − 1).

28.2 Finite-dimensional irreducible representations of Uqsl(2)

It all goes pretty well and pretty similarly to the classical case until q is a root of unity.

Notice that the K action is diagonalizable, and that if Kv = λv, then KEv = λq2Ev and KFv =
λq−2Fv.
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So if V is finite-dimensional, then it is semisimple over K[K±1].

And so if q is not a root of unity, then there exists a vector v such that Ev = 0. And so we can
conclude that our module is a quotient of some M(λ), if it is irreducible.

So how do we check what are the conditions on λ so that our module is finite-dimensional? It must
be that some power of F kills the highest vector. Suppose that Fn+1v0 = 0 but Fnv0 6= 0. Then
recall equation 28.1: then λ = ±qn.

So all irreducible finite-dimensional representations are Vn,ε, where ε = ±1 and n ∈ Z≥0.

If you remember, at some point we constructed a principle sl(2) subalgebra of sl(n). And here the
formulas are just like the usual actions if you use not regular numbers but quantum numbers. We
rescale wn = vn/[n]!. Then you can write E,F,K as matrices:

E =


0 [n]

0 [n− 1]
. . . . . .

0 [1]
0

 F = ε


0
[1] 0

[2] 0
. . . . . .

[n] 0

 K = ε


qn

qn−2

qn−4

. . .
q−n


Ok, back to sl(2). Recall that we have an action on K[x, y] by E = x ∂

∂y and F = y ∂
∂x and

H = x ∂
∂x − y

∂
∂y .

Similarly, Uqsl(2) actions on Kq[x, y] via:

δxf(x, y) =
f(qx, y)− f(q−1x, y)

qx− q−1x
F = δxy E = xδy K(x) = qx K(y) = q−1y

See, we do not want to quantize the Hopf structure on the torus. Classically, we have SL2(K), and
exp h = T . The group algebra is K[T ] = K[K,K−1] ⊆ K[SL2(K)]. And when we quantize, we do
not deform this torus: it is rigid.

We would like now to describe the center. First of all, we construct the quadratic Casimir element.
We set:

Cq = EF +
q−1K + qK−1

(q − q−1)2
= FE +

qK + q−1K−1

(q − q−1)2

Then it is a little work so check that it is central. The hard part is E,F ; it commutes with K
almost automatically.

Proposition 28.3 Z(Uqsl(2)) = K[Cq].

Proof: Let V0 be the centralize of K. For sl(2), we use the fact that V0 = K[K±1, Cq] =
K[K±1, EF ]. To continue further, we proceed exactly as for sl(2), by constructing the Harish-
Chandra isomorphism. For u ∈ V0, it can be written in the form:

u =
N∑
i=0

F iPi(K)Ei
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where Pi is a Laurent polynomial. Then by definition the Harish-Chandra homomorphism is θ(u) =
P0(K). Then:

1. If u ∈ Z, then u|M(λ) = P0(λ), because everything else kills the highest vector.

2. We leave the following statement as an exercise: θ : Z → K[K±1] has trivial kernel.

Now pick up all finite-dimensional representation and take the direct sum: then you get a
faithful representation. So if something lies in the kernel, then it acts by zero on all finite-
dimensional representations, and therefore it is zero. Or take all Verma modules instead of
all finite-dimensional modules.

3. Now, if λ = qnε, then we have an exact sequence

0→M(λq−2(n+1))→M(λ)→ Vn,ε → 0

So let f ∈ Im θ. Then f(q−1λ) = f(q−1λ−1). Because this identity is true for any **?** and
so is true for any λ, since q is not a root of unity.

And so f(q−1K) is invariant under K ↔ K−1, and so it is of the form g(K +K−1).

But this is a polynomial in the Casimir, since θ(Z) = K[qK + q−1K]. This is just the shift
by ρ written multiplicatively. So Z = K(Cq). �

We move rooms next time.

Lecture 29 April 5, 2010

We continue to study Uqsl(2). So far we have only discussed it as an associative algebra; today we
describe its Hopf structure. Recall that we have generators K,E, F . We define the comultiplication
by:

∆K = K ⊗K (29.1)
∆E = 1⊗ E + E ⊗K (29.2)

∆F = K−1 ⊗ F + F ⊗ 1 (29.3)

Then equation 29.1 tells you that K is a grouplike element.

Then we extend ∆ to all of Uqsl(2) by demanding that it be a homomorphism Uqsl(2)→ Uqsl(2)⊗2.
It is rather easy to check that ∆ does in fact extend to such a map, because we need only check:

KFK−1 = q−2F (29.4)

KEK−1 = q2 (29.5)

[E,F ] =
K −K−1

q − q−1
(29.6)
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Then equations 29.4 and 29.5 are immediate, because we have a grading. For equation 29.6, we
check that:

[∆E,∆F ] = F ⊗ E − F ⊗ E + EK−1 ⊗KF −K−1E ⊗ FK+

+K−1 ⊗ K −K−1

q − q−1
+
K −K−1

q − q−1
⊗K = ∆

K −K−1

q − q−1
(29.7)

Then as soon as we know that ∆ is a homomorphism of algebras, to check coassociativity it is
sufficient to check it only on generators. We leave this as an exercise. So Uqsl(2) is a bialgebra.

Now we check that we have a counit and an antipode. The counit is ε(K) = 1, ε(E) = 0 = ε(F ).
The antipode is:

S(E) = −EK−1 S(F ) = −KF S(K) = K−1 (29.8)

Then how do we extend it to all elements? It is fairly easy to see that S extends to an antiauto-
morphism for Uqsl(2) — an antiautomorphism should satisfy S(u1u2) = S(u2)S(u1).

We remark that the antipode is not an involution. Rather, S2(E) = KEK−1, S2(F ) = KFK−1,
and S2(K) = K, so in fact for all u ∈ Uqsl(2), we have S2(u) = KuK−1.

Question from the audience: Can you mention which book uses these conventions? Answer:
[9], and [10]. I should say more. The choice of ∆ is not unique. But it is unique up to a twist.
See, for any φ ∈ K[K±1]⊗2 invertible, then you can consider ∆′ = φ ◦∆, where φ◦ is the adjoint
(i.e. conjugation) action of φ on Uqsl(2)⊗2. These are gauge transformations, and up to a gauge
transformation, ∆ is determined.

So, recall that as soon as you have a Hopf algebra, its category of representations is automatically
a tensor category. If V,W are representations, then the action on V ⊗W is given by composing
with ∆. Also, if V is a finite-dimensional representation of a Uqsl(2), and ϕ ∈ V ∗, then we define
uϕ for u ∈ Uqsl(2) by 〈uϕ, v〉 = 〈φ, S(u)v〉. More generally, for homomorphisms, we have: if
A ∈ HomK(V,W ), then

uA(v) =
∑

u1

Ä
A(S(u2)v)

ä
in the Sweedler notation.

Theorem 29.1 If q s not a root of unity, then the category of finite-dimensional Uqsl(2) modules
is semisimple.

All the irreducible modules are Vn,ε for n ∈ Z≥0 and ε = ±1 from last time.

Proof: The idea is to use the Casimir. Let’s recall how it goes for the semisimple Lie algebras.
We consider sequences

0→ V →M →W → 0

1. Any such sequence splits if W is a trivial Uqsl(2) module, i.e. dimW = 1 and uw = ε(u)w.
This corresponds to ε = 1, n = 0 case. For this, it suffices to prove for an irreducible V , and
then use the length.
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Now, recall we have a Casimir Cq, with

Cq|Vn,ε = ε
qn+1 + q−n−1

(q − q−1)2
id

**We should distinguish ε, ε for ±1 from the counit. But oh, well.**

If q is not a root of unity, then εqn+1 + εq−n−1 = q + q−1 if and only if ε = 1 and n = 0.

So now consider 0 → W → M → W → 0. Then dimM = 2, and K =
Ä

1 1
0 1

ä
if the

sequence does not split, and so by the relations E|M = F |M = 0, by the K-grading, and so
0 = [E,F ] 6= K−K−1

q−q−1 .

2. For the next step, we do it for arbitrary irreducible V,W . Then the general argument gives
the general case. We consider the sequence of homs:

0→ HomK(V,W )→ HomK(M,W )→ HomK(W,W )→ 0

This is still a sequence of finite-dimensional Uqsl(2) modules, since we have the Hopf structure.
Then pick up Kid ⊆ Hom(W,W ). Then we have

uid(w) =
∑

u1S(u2)w = ε(u)w

So Kid is the trivial representation

Now, since we have exact sequences, we can take N to be the preimage of Kid:

0→ HomK(V,W )→ N → Kid→ 0

And so by step 1, this sequence splits, and so we can find γ : Kid→ N a Uqsl(2) module. Let
π = γ(id) ∈ N . Then Kπ is a trivial submodule of N , and so K ·π = KπK−1 = π. Then since
∆E = 1⊗E +E ⊗K and S(E) = −EK−1, we have E · π = −πEK−1EπK−1, but this must
be 0. We can do something similar with F . So π commutes with all elements of Uqsl(2). So
π : M → W is a Uqsl(2) homomorphism, and kerπ is an invariant subspace complementary
to V ⊆M . **VS wrote W ⊆M here, but that doesn’t make any sense.** �

There are many reasons that this argument fails when q is a root of unity.

We will conclude today by discussing the duality between Uqsl(2) and SLq(2).

First, if A,B are Hopf algebras, we say that they are in duality if there is a nondegenerate pairing
between them — a bilinear map 〈, 〉 : A × B → K — and all the operations must be dual, one
to another. For example, 〈∆a, b1 ⊗ b2 = 〈a, b1b2〉 and 〈a1 × a2,∆b〉 = 〈a1a2, b〉. And there should
be something good about antipode and counit as well. For example, 〈1, b〉 = ε(b), and 〈S(a), b〉 =
〈a, S(b)〉.

Now, recall that GLq(2) was defined by

ba = qab ca = qac bc = cb db = qbd dc = qcd ad− da = (q−1 − q)bc (29.9)
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**and that the determinant is invertible?**, where we think of a, b, c, d as the coordinates of
the (quantum) matrix

Ä
a b
c d

ä
.

Now, there is a two-dimensional representation of Uqsl(2) in which E 7→
Ä

0 1
0 0

ä
, F 7→

Ä
0 0
1 0

ä
, and

K 7→
Ä
q 0
0 q−1

ä
. Then the main word is to say that if u ∈ Uqsl(2) and we define the coordinates

A,B,C,D by u 7→
Ä
A(u) B(u)
C(u) D(u)

ä
. So we check that A,B,C,D satisfy equation 29.9, and then we

have a map GLq(2)→ U∗q sl(2), and it is already a homomorphism of coalgebras.

Lecture 30 April 7, 2010

Today we complete the proposition from last time:

Proposition 30.1 Uqsl(2) is dual to SLq(2).

Proof: The main idea was to construct the duality by considering the standard representation of
Uqsl(2) by 2× 2 matrices. Recall, we had:

SLq(2) =
Matq(2)
(detq −1)

where Matq(2) is the space of quantum matrices, thought of as
Ä
a b
c d

ä
, with relations:

ba = qab ca = qac bc = cb db = qbd dc = qcd ad− da = (q−1 − q)bc (30.1)

Then the standard representation is that E 7→
Ä

0 1
0 0

ä
, F 7→

Ä
0 0
1 0

ä
, and K 7→

Ä
q 0
0 q−1

ä
. Then what

we do is define u 7→
Ä
A(u) B(u)
C(u) D(u)

ä
. Then we have to check that {A,B,C,D} satisfy equation 30.1.

Well, let x, y ∈ {A,B,C,D}. Then we have to check (xy)(u) =
∑
x(u1)y(u2), which is the Sweedler

notation ∆u =
∑
u1 ⊗ u2. We will check this on a basis, and extend by linearity. The trick is that

x(E2) = x(F 2) = 0 in our representation. So we need only check {EiF jK l} for i, j ≤ 2.

Recall that ∆E = (E ⊗K + 1⊗ E) and ∆F = (K−1 ⊗ F + F ⊗ 1) and ∆K l = K l ⊗K l.
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We make a big table:

K l FK l F 2K l EK l E2K l EFK l E2FK l EF 2K l E2F 2K l

BA β
AB q−1β
CA q2l αq2l−1

AC q2l−1 αq2l−2

DA 1 q
AD 1 q−1

BC 1
CB 1
DB q−2l

BD q−2l−1

DC
CD

and the rest is 0, where α, β are constants, approximately β = 1 + q−2 or so.

So, this proves that we have a homomorphism of algebras Matq(2) → Uqsl(2)∗. On the other
hand, we have a homomorphism of algebras Uqsl(2) → Matq(2)∗ given by the fact that we have a
representation. And therefore the map is a morphism of bialgebras, and so we have constructed
our pairing Matq(2)⊗ Uqsl(2)→ K, and it is a pairing of bialgebras.

However, this pairing has kernel, because you can check that 〈detq, u〉 = ε(u), for u ∈ Uqsl(2). And
therefore, in fact the map Matq(2)→ Uqsl(2)∗ factors through SL(2).

Now, is it clear how to check that 〈detq, u〉 = ε(u)? We have to check it only on generators, because
detq is a grouplike element, and ε is multiplicative.

So we have to check now only that the antipodes are well-behaved. Question from the audience:
Do we have to check that there is not more kernel? Answer: Ah, that’s true, and of course there
is something to check, because it is not true when q is a root of unity. We will save it as homework:
you can probably do it by thinking about all finite-dimensional representations.

Ah, yes, the antipode. We have to check that if x ∈ SLq(2) and u ∈ Uqsl(2), then 〈S(x), u〉 =
〈x, S(u)〉. Now, since S is an antipode, it is sufficient to check this for any x but only generators
u = E,F,K. What we play is that S is an antiautomorphism of Uqsl(2): if we know it for u, v,
then we say that 〈x, S(uv) = 〈x, S(v)S(u)〉 =

∑〈x1, S(v)〉〈x2, S(u)〉 =
∑〈S(x1), v〉〈S(x2), u〉 =∑〈S(x2), u〉〈S(x1), v〉 = 〈∆S(x), u⊗ v〉 = 〈S(x), uv〉.

Question from the audience: Wait, do I ever need to check this? Answer: Well, not if
the Hopf algebras are finite-dimensional, but the argument is not obvious for infinite-dimensional
representations.

Anyway, then you check the claim for u = E,F,K, which is a calculation left to the reader. �
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30.1 If q is a root of unity (degree l)

We will be interested actually in the number d =

{
l, l odd
l/2, l even

. Because we are interested when

q2d = 1. The interesting feature is that the center is too large: it is not generated just by the
Casimir.

Lemma 30.2 When q2d = 1, then Kd, Ed, F d lie in the center of Uqsl(2).

Proof: KdEK−d = q2dE, and similarly for F . Also:

[E,Fm] = [m]
q1−mK − qm−1K−1

q − q−1
Fm−1

and when m = d, then [m] = qm−q−m
q−q−1 = 0. �

Corollary 30.3 If V is an irreducible representation of Uqsl(2), then Kd, Ed, F d act by scalar
operators.

And from this we will see that the dimension cannot be larger than d, and generically must be
exactly d.

Proposition 30.4 dimV ≤ 0. Moreover, if any of the following conditions — F d 6= 0, Ed 6= 0,
Kd 6= ±1 — then dimV = d.

Proof: We start as before: we pick up some eigenvector v0 ∈ V such that Kv0 = λv0. Then if
vi = F iv0, then Kvi = λq−2ivi. But notice that if we come to i = d, it will repeat itself: rather
than being in a line, it will be in a circle.

So first assume that F d = a. Then it’s clear that the space spanned by v0, . . . , vd−1 is invariant
under the action of K and F . To see that it is also invariant with respect to E, we can use the
Casimir, which is also in the center. Recall that Cq = EF + q−1K+qK−1

(q−q−1)2
. So if we would like to

apply EF iv0 = EF · F i−1v0, but since we know that Cq acts as c, we can get rid of EF . So the
dimension is not more than d, and if F d is not zero, then the dimension is d. A similar calculation
works for E.

And finally, if Ed = 0, then we have a highest weight vector, so we are in a situation we understand.
Indeed, we have Ev0 = 0, and so EFmv0 = [m] q

1−mλ−qm−1λ
q−q−1 Fm−1v0, and if dimV < d, then this

coefficient must be zero. So then λ must be acting as a power of q. And therefore Kd = ±1. �

So, we see, only for very special scalars for Ed, F d,Kd do we have interesting representations. In
fact, there are very nice formulas, which we will put on the next homework.

The point is that we always have a map γ : IrrUqsl(2)→ SpecZ, where Z = Z(Uqsl(2)). Or maybe
SpecmZ, the set of maximal ideas. You have Schur’s lemma, so you look with which scalars each
element acts. Here the map is: for µ : Z → K, we set γ−1(µ) = {V ∈ IrrUqsl(2) s.t. z|v = µ(z)∀z ∈
Z}.
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Theorem 30.5 If µ(Ed) 6= 0 or µ(F d) 6= 0, then γ−1(µ) is just one representation of dimension
d.

Proof: Because dimUqsl(2)/(kerµ) ≤ d2, because EiKj for 0 ≤ i, j < d span the quotient. This is
a simple calculation that we know: there is an irreducible representation of degree d, so by density
theorem the image is the full matrix algebra, so is the full dimension. �

So, the most interesting representation theory is of the small quantum group, which is when we
quotient Uqsl(2) by Ed = F d = 0 and Kd = 1. This has many representations, and it is not a
semisimple algebra. Next time we move to higher rank.

Lecture 31 April 9, 2010

We’ve decided to follow [7] for a while. Also, we still don’t know how to show that the maps
Uqsl(2) → SLq(2)∗ and SLq(2) → Uqsl(2) are injections — i.e. how to show that the Hopf pairing
from last time is nondegenerate. Presumably the proof looks inside the two Hopf algebras and
shows that they have no Hopf ideals.

Today, we show how to go from g a semisimple Lie algebra over C to Uqg. The motivation for the
construction is from the theory of Kac-Moody algebras, so we will study that analogue first:

31.1 Kac-Moody Lie algebras

Let Π be a set of “indices” or “simple roots” and aα,β a matrix with α, β ∈ Π. In general, all you
want from this matrix a is to have aαα = 2, aαβ ∈ Z≤0 if α 6= β, and for many applications the
symmetrizability: there is some diagonal matrix d with aαβ · dβ symmetric **no sum**.

We will construct h so that dim h = 2Π− rank(aαβ). Usually we will have a nondegenerate, so that
dim h = Π.

Then we will enumerate the coroots via {hα}α∈Π, and we will set α(hβ) = aβα, so that we have
defined α ∈ h∗ the roots.

Then we construct a Lie algebra g̃ in the most natural way. First, you say h ⊆ g̃ is an abelian
subalgebra [h, h] = 0, and also you introduce generators {xα, yα} for each α ∈ Π and declare
[hα, xβ] = β(hα)xβ, [hα, yβ] = −β(hα)yβ, and [xα, yβ] = δαβhβ. Then it’s clear that {yα, hα, xα} is
an sl(2)-subalgebra.

So, and we will do this carefully in the quantum case, there is a triangular decomposition: g̃ =
ñ− ⊕ h⊕ ñ+, where ñ+ is generated by xα, ñ− is generated by the yαs, ñ± are free Lie algebras on
α ∈ Π.

Question from the audience: How all the rest of h comes in? Answer: We chose linearly
independent hαs, and made the declarations above. There might be more in h. But let’s just
assume that a is nondegenerate.
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Now, how do the Serre relations come in? We are looking for a maximal ideal I ⊆ g̃ such that
I ∩ h = 0.

Now, there is a very simple way to construct some elements of the idea. In particular, consider for
α 6= β the elements

u+
αβ = (adxα)1−aαβxβ and u−αβ = (ad yα)1−aαβyβ

Then they are both in I. Indeed, this follows from the sl(2) corresponding to 〈xα, hα, yα〉. Then
you pick up xβ, and it will be a lowest vector in its sl(2)α representation, and yβ is a highest weight
vector. So then a simple calculation with sl(2) shows that [yγ , u+

αβ] = 0 = [xγ , u−αβ]. When γ 6= α, β,
this follows from the commutation relations with h, and for γ = α, β it is from sl(2).

Ok, so take the root lattice Q, and you see that I+ = 〈u+
αβ〉, and then it’s pretty clear that

P (I+) ≥ P (u+
αβ), where by P we mean the weights. So I+ ⊆ ñ+, and similarly for −, and we

quotient by I, and g̃/I is the Kac-Moody algebra associated to a.

In fact, it’s a non-obvious result that there are not more relations, because we said we want the
maximal ideal. But in fact:

Theorem 31.1 If aαβ is symmetrizable, then the maximal ideal I is generated by u±αβ.

We think this is still true if a is not symmetrizable, but it was proven much later. **I missed
who proved what.**

Now, we’d rather write down the Serre relations as follows. Let r = 1− aαβ. Then we have:

r∑
s=0

(−1)2

Ç
r

s

å
xr−sα xβx

s
α = u+

αβ

Then this has a chance to be quantized, because we have the quantum binomial coefficients.

Recall: a is symmetrizable and positive-definite if and only if g = g̃/I is finite-dimensional. But
the point is that many things — the Weyl group, for example — survive moving to Kac-Moody
algebras.

So, anyway, we will move back to the finite-dimensional case, but you will see that most of the
construction works for KM algebras in general.

31.2 Quantum enveloping algebras for finite-dimensional semisimple Lie alge-
bras

Fix g a finite-dimensional semisimple Lie algebra over C, with ∆ a root system, W the Weyl group,
Q the lattice generated by W . Then we pick (, ) to be W -invariant, and we will normalize it as [7]
does — we think [7] is following [10] here — by letting Π be the set of simple roots and (α, α) = 2
for α a short root.
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Question from the audience: When g is semisimple but not simple, you do this for each
component of the Dynkin diagram? Answer: Yes. Or we can restrict our attention to simple Lie
algebras: U(g1 ⊕ g2) = Ug1 ⊗ Ug2 canonically, and we think this still holds for Uq.

Ok, so let’s declare dα = (α, α)/2, and qα = qdα . Then we define Uqg as follows. We pick generators
{K±α , Eα, Fα} with:

KαK
−1
α = 1 KαKβ = KβKα (31.1)

KαEβK
−1
α = q(α,β)Eβ KαFβK

−1
α = q−(α,β)Fβ (31.2)

EαFβ − FβEα = δαβ
Kα −K−1

α

qα − q−1
α

(31.3)

Then equations 31.1 to 31.3 define the algebra Ũqg = Ũ .

Then the point is that for α ∈ Π, we have a homomorphism Uqαsl(2)→ Ũqg.

Moreover, if λ ∈ Q, let Kλ =
∏
Kmα
α where λ =

∑
mαα. Then we have: KλEβK

−1
λ = q(λ,β)Eβ and

similarly for F . This defines a Q-grading on Ũ . We set Ũµ = {u ∈ U s.t. KλuK
−1
λ = q(λ,µ)u}.

Lemma 31.2 Ũ has a unique Hopf algebra structure with the following properties:

• ∆Eα = Eα ⊗ 1 +Kα ⊗ Eα

• ∆Fα = 1⊗ Fα + Fα ⊗K−1
α

• ∆Kα = Kα ⊗Kα

• ε(Eα) = ε(Fα) = 0 and ε(Kα) = 1

• S(Eα) = −K−1
α Eα and S(Fα) = −FαKα and S(Kα) = K−1

α .

Proof: Uniqueness is obvious, because theses are generators, so we need only check that ∆ respects
the relations. Except for one relation, everything is already checked in the sl(2) case. So we need
only check that [∆Eα,∆Fβ] = 0, which is straightforward. �

We remark that S is an antiautomorphism of Ũ and that S2(u) = K−1
2ρ uK2ρ, where ρ is the sum

of simple roots, so 2ρ is half the sum of the positive roots.

Now, notice that if q is a root of unity, then Ed, F d are central, and otherwise the construction is
just like in sl(2) case.

Ok, so now we will introduce the Serre elements, exactly as in the KM case, but with q-numbers.
As before, we set r = 1− aαβ, and define:

u+
αβ =

r∑
s=0

(−1)s
Ç
r

s

å
qα
Er−sα FβE

s
α

**The binomial coefficient should be in square brackets.**
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Lemma 31.3 The element u+
αβ is quasiprimitive, i.e. it is primitive up to a torus part:

∆u+
αβ = u+

αβ ⊗ 1 +Kr
αKβ ⊗ u+

αβ

Then antipode acts as S(u+
αβ) = −Kr

αK
−1
β u+

αβ.

There’s a similar statement for u−αβ. We will not prove lemma 31.3, because it is an intricate
calculation, but you can do it for yourself or read it.

Corollary 31.4 Let I be the ideal in Ũ = Ũqg generated by all u±αβ. Then ∆I ⊆ Ũ ⊗ I + I ⊗ Ũ ,
and S(I) ⊆ I.

Therefore we can take the quotient. We define the Drinfeld-Jimbo quantum universal enveloping
algebra to be Uqg = Ũ/I.

We will stop, but quickly mention what else should be done, but it is technical:

1. Triangular decomposition.

2. If q is not a root of unity, classify all finite-dimensional representations.

3. R-matrix.

4. The dual Hopf algebra.

Lecture 32 April 12, 2010

We continue today with basic facts about quantized universal enveloping algebra. Recall that we
defined a very large algebra Ũ = Ũqg, and then we constructed the Serre elements

u+
αβ =

r∑
s=0

(−1)s
ñ
r

s

ô
α

Er−sα EβE
s
α (32.1)

u−αβ =
r∑
s=0

(−1)s
ñ
r

s

ô
α

F r−sα FβF
s
α (32.2)

where r = 1 − aαβ. And if I is the ideal generated by u±αβ, then I is a Hopf ideal, and so
U = Uqg = Ũ/I is a Hopf algebra.

To do highest weight theory, we need a bit more. Today we will describe this story, in analogy with
the theory of Kac-Moody algebra.

Recall that we have g̃ = ñ− ⊕ h⊕ ñ+, where ñ± are free Lie algebras.

Now, let’s take β1, . . . , βk ∈ Π, pick an ordering I = β1, . . . , βk, then we define EI = Eβ1 . . . Eβk ,
and F I = Fβ1 . . . Fβk . Then if µ ∈ Q is the weight of I = β1 + · · ·+βk, then it’s clear that EI ∈ Ũµ.
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Lemma 32.1 As I, J run through sequences of roots and λ runs through the root lattice Q, then
{F IKλE

J} is a basis for Ũ .

Proof: By the commutation relations it is clear that the proposed basis spans. More difficult is to
prove the linear independence. We do this by constructing certain modules. Before we do this, we
report a straightforward calculation by induction:

∆(EI) =
∑

cIA,B(q)EAKwtB ⊗ EB (32.3)

∆(F I) =
∑

cIA,B(q−1)FA ⊗K−1
wtAF

B (32.4)

Here cIA,B are certain polynomials in q, and A,B are complementary subsequences of I.

Now, if we pick any function c : Π→ K, then we will construct a “Verma module” Mc, with a basis
given by the vI the set of sequences. The action is:

Fα · vI = vα,I Kα · vI = cαq
−(α,wt I)vI (32.5)

So, see, we try to make this into a weight module, hence the second relation, and the F s act freely
as if it’s a tensor algebra. Then the last relation raises degree:

Eα · vI =
∑
j

cαq
(−α,µj) − c−1

α q(α,µj)

qα − q−1
α

vIrβj (32.6)

Here I = β1, . . . , βk, and µj = βj+1 + · · ·+ βk.

This is a rather natural construction, but just like in the PBW theorem, you have to work a bit
with the induction to prove that Mc is a Ũ modules.

We picked up the proof from [7]. He uses the following trick: consider the dual module M ′c, which is
Mω
c , i.e. the same module twisted by the Cartan involution. Do you remember what is the Cartan

involution? It is the automorphism of Ũ given by ω(Eα) = Fα, ω(Fα) = Eα, and ω(Kα) = K−1
α .

The point is that then you can check things only for the positive part, and do the negative part by
Cartan involution.

Let’s denote the basis of Mω
c by wI .

Anyway, so now we will prove the theorem, provided the Verma module exists. Suppose that∑
aIλJF

IKλE
J = 0. Then pick I0 maximal such that aI0λJ 6= 0. Also, pick up M1, which is the

Mc above with c the constant function 1. And tensor it with Mω
c , i.e. act by A =

∑
aIλJF

IKλE
J

on M1 ⊗Mω
c . Then we have:

0 =
∑

aIλJF
IKλE

J(v∅ ⊗ w∅) (32.7)

=
∑

aIλJF
IKλ

∑
A,B

cJA,B(q)
Ä
EAKwtBv∅ ⊗ wB

ä
(32.8)

=
∑

aIλJF
IKλ(v∅ ⊗ wJ) (32.9)

=
∑

aIλJq
(−λ,wt J)cλF

I(v∅ ⊗ wJ) (32.10)

=
∑

aIλJq
(−λ,wt J)cλ

∑
cIC,D(q−1) vC ⊗K−1

wtCF
DwJ (32.11)
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In equation 32.8, the only term that does not kill it is when A = ∅. In equation 32.11, we look at
only the vI0 part: by maximality, it must vanish. I.e.:∑

λ

aI0λJq
−(λ,wt J)cλ−wt I0q

−(λ,wt J)+(wt I0,wt J)vI0 ⊗ wJ = 0 (32.12)

Because all other terms will be less than the I0 term. And so:∑
I0λJ

q(−λ,wt J)cλ = 0 (32.13)

But this must be true for any c, and so this proves the theorem when aI0λJ = 0 if |K| =∞, i.e. if
char K = 0. �

Corollary 32.2 There is an isomorphism of vector spaces Ũ = Ũ−⊗Ũ0⊗Ũ+, where Ũ0 is generated
by Kλ, and Ũ+(−) is generated by Eα (resp. Fα).

At the end of the day, we want:

Proposition 32.3 U = U− ⊗ U0 ⊗ U+.

This should follow from the statement for Ũ . Here U0 = Ũ0 and U± are the parts of U generated
by F,E respectively. This follows from:

Lemma 32.4 [Fγ , u+
αβ] = 0 = [Eγ , u−αβ] for all α, β, γ.

Because then
I = Ũ−Ũ0〈u+

αβ〉+ 〈u−αβ〉Ũ0Ũ
+ (32.14)

where 〈u±αβ〉 are ideals in Ũ±. Lemma 32.4 shows that the RHS of equation 32.14 is an ideal, and
hence we have the equality. Why does equation 32.14 imply the claim?

We have the following commuting square, where the horizontal maps are the multiplication maps:

Ũ− ⊗ Ũ0 ⊗ Ũ+ Ũ

U− ⊗ U0 ⊗ U+ U

∼

ker = I

So then the end is just linear algebra: we have I = I− + I+, and so U = Ũ−/I− ⊗ U0 ⊗ Ũ+/I+,
which does it.

Proof (of lemma 32.4): The point is that for any Hopf algebra we have the adjoint representa-
tion:

ad(x)y =
∑

xi1 y S(xi2)
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where ∆x =
∑
xi1 ⊗ xi2. Then we have:

ad(Eα)u = Eαu−KαuK
−1
α Eα (32.15)

ad(Fα)u =
Ä
Fαu− uFα

ä
Kα (32.16)

ad(Kα)u = KαuK
−1
α (32.17)

So then we see that u+
αβ = ad(Erα)Eβ and u−αβ = ad(F rα)Fβ, exactly as in the classical case.

But then recall that if γ 6= α, β, [Fγ , Eα] = 0 = [Fγ , Eβ], and so lemma 32.4 follows.

Now, if γ = α, then we use Uqαsl(2). We have already discussed the following identity:

FαE
r
α = [r]αEr−1

α

qr−1
α K−1

α − q1−r
α Fα

qα − q−1
α

(32.18)

where r = 1− r(α,β)
(α,β) **?**. So then along with [Fα, Fβ] = 0 **?**, we have:

ad(Fα) ad(Erα)Eβ = 0 (32.19)

And the case when γ = β is an easier direct calculation, which we will put in the homework. �

Next time we discuss the category of representations.

Lecture 33 April 14, 2010

Today we briefly describe the category of finite-dimensional U = Uqg modules when q is not a
root of unity. In fact, we will really assume that q is transcendental. Of course, we suppose that
char K = 0, but in fact we assume that K = C.

So, the main thing is that like in the case of Uqsl(2) when we had an extra sign, here we again has
a bit more combinatorial data.

From the classical theory, we have Q the root lattice and we define the weight lattice P = {µ ∈∑
α∈Πmαα s.t. 2(µ,α)

(α,α) ∈ Z}. Now, let σ : Q → {±1} = Z/2 be a morphism of abelian groups —
clearly this is the same as a function Π→ Z/2.

1. Let M be a finite-dimensional Uqg-module. Then we can define M =
⊕
Mλ,σ, where

Mλ,σ = {m ∈M s.t. Kαm = σ(α) q(λ,α)m ∀α ∈ Π}

In fact, we can do this from the sl(2) theory. For each α ∈ Π, we have Uqαsl(2) ↪→ Uqg,
where qα = q(α,α)/2. Then for each Kα, we have M =

⊕
Vn,ε(α), and M is semisimple over

U◦ = K[Kµ]. Then for m an eigenvector of U◦, we have Kαm = ±qnαα for some nα ∈ Z. And of
course we can simultaneously diagonalize the Kα actions, and so from the sl(2) decomposigion
we do have M =

⊕
Mλ,σ, where σ(α) = ± depending on the sign in Kαm = ±qnαα .
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Moreover, by qnαα = qnα (α,α)/2, we see that the λ in M =
⊕
Mλ,σ is in P .

So that gives the weight decomposition of modules.

2. The next thing is that we have the root decomposision of U =
⊕

µ∈Q Uµ. Then it’s clear that
UµMλ,σ ⊆Mλ+µ,σ. In fact, in the usual way, the weights are multiplicative (although in P,Q
we use additive characters):

(M ⊗N)λ+λ′,σσ′ ⊇Mλ,σ ⊗Nλ′,σ′

and (M∗)λ,σ = (M−λ,σ)∗.

Then usually people try to get rid of the σ as soon as they can. We set Mσ =
⊕
Mλ,σ for

each σ,, and clearly M =
⊕
Mσ. Then if we let F be the full category of finite-dimensional

U -modules, then we have F =
⊕

Fσ. Moreover, for each σ, you have a trivial representation
twisted by σ. And so you can go between the different subcategories: Fσ

⊗Cσ−→ F1.

How is this Cσ? We set σ(Kα) = σ(α)Kα and σ(Eα) = σ(Fα) = 0. And so Cσ is a one-
dimensional representation with character σ, and Fσ ↔ F1 is an equivalence of categories.

We say that the Type 1 modules are those in F1 ⊆ F .

So, so far the only placed we used anything about q is the semisimplicity over sl(2). We
will at some point prove the semisimplicity for arbitrary g, and today we will do it for q
transcendental. We were very lucky for sl(2), because we constructed the Casimir by hand.
In principle, that proof could be translated to the general case.

3. Ok, so if M ∈ F1, then there exists v ∈Mλ for some λ such that Eαv = 0. Indeed, what you
do is look at all weights — all the λs that occur with nonzero multiplicty — and we denote
this set P (M). Then we have EαMµ ⊆ Mµ+α. And exactly as in the classical case, we have
a partial ordering µ ≤ λ, µ, λ ∈ P , when λ− µ ∈ Q+. And so then we can just find a weight
λ ∈ P (M) that is not less than any other vector in P (M) — it is weakly maximal. Then we
have the claim automatically.

4. And so we can now again build the Verma module. For each λ ∈ P , we define M(λ) via:

M(λ) = U ⊗U0U+ Cλ

where in Cλ, the U0s act by weight λ and the U+ act by zero. Then we leave it as an exercise
that M(λ) has a unique simple quotient. You do this exactly as in the Lie algebra case: it
has a unique maximal submodule. This quotient is called L(λ).

Then it is clear that every irreducible finite-dimensional module **of type 1** is isomorphic
to some L(λ), but not every L(λ) is finite-dimensional.

The next thing we would like to say is that if dimL(λ) <∞, then λ ∈ P+, where P+ = {λ ∈
P s.t. 2(λ,α)

(α,α) ∈ Z≥0 ∀α ∈ Π}. Now why is this true? It’s true because of the sl(2) theory. We

must have q(λ,α) = qnαα , where nα ∈ Z≥0.
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The slightly harder part is to prove that this is if and only if. The argument goes in the
following way. We first construct some finite-dimensional quotient, which is like a maximal
finite-dimensional quotient, but in general, eg. in the characteristic-p case or in super algebras,
it is not simple. In many representation theories, as soon as you don’t have semisimplicity,
very probably this guy is not simple. For example, in the characteristic-p case, the dual to
this quotient has a nice geometric structure coming from Borel-Weil-Bott theory.

In any case, let’s construct it:

5. For each β ∈ Π, we define m(β) = 2(λ,β)
(β,β) ≥ 0. Then we define a homomoprhism

ϕβ : M
Ä
λ− (m(β) + 1)β

ä
→M(λ

How is this homomorphism constructed? If v is the highest vector on the LHS and w is the
highest in M(λ), then we will send v 7→ F

m(β)+1
β w. So this has the required weight, and the

only thing we have to check is that it is killed by all the Eαs. But if α 6= β, this is trivial,
because they commute, and if α = β, this is an sl(2) calculation that we already did.

6. So, assume that λ ∈ P+. Then we define L̃(λ) = M(λ)/
∑

Im(ϕβ). We will prove two things
about it. First, look at the set of weights P (L̃(λ)). It is invariant under the W -action, where
W is the Weyl group of our root system. From this it follows more or less immediately that
dim L̃(λ) < ∞. Because it’s the same argument: every µ ∈ P (L̃(λ)) is ≤ λ, and also by
W -invariance w(µ) ≤ λ. So you pick up λ, consider the orbit under W ; its convex hull is a
polytope and all weights are inside it. **And the multiplicities are all finite because
it is a quotient of M(λ).**

So why the W -invariance? It suffices to show that the set of weights is invariant under each
simple reflection. But this is an sl(2) statement. As soon as we can show that M is a direct
sum of finite-diemnsional Uqαsl(2) representations, we are done. And this is equivalent to
showing that the generators Eα, Fα act locally nilpotently. **I think we want to write
L̃(λ) as a direct sum, not M .**

Claim: Eα, Fα act locally nilpotently on L̃(λ).

Proof: For Eα, we have ENα Mµ ⊆Mµ+Nα, and so for sufficiently large N , we win.

And for Fα — that follows from Serre’s relation. So far, everything could have happened
with Ũ , but actually here we need some sort of nilpotency of an adjoint action. Indeed, we
see that FNα Fβ, if r = 1 − aαβ, then for N > r we have FNα Fβ ∈

∑r−1
j=0 KF jαFβFN−jα . Why?

When N = r, this is the Serre relation, and then just do induction — you multiply on the
left by Fα, then apply the Serre relation to the F r part to push it through.

Ok, so if v is a highest vector, then L̃(λ) is spanned as a vector space by Fβ1 · · ·Fβkv. By
the way, this is not absolutely trivial — it follows from the triangular decomposition, without
which it would be not true. And so what we want, we want to show that if we pick up FNα
for N sufficiently large, it kills this. So we use the calculation from the previous paragraph.
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We go by induction on k. For k = 0 it is the definition of L̃(λ). And then what we do is try
to move FN to the right, and we use the calculation. �

So there are a few things that are left. We look at all finite-dimensional modules, because we would
like to construct the dual algebra to Uqg.

Lemma 33.1 Let u ∈ U . If u ∈ Ann F1, then u = 0.

Proof: Let L̃(λ) be as above — it is finite-dimensional. Then consider also the highest-weight
module L̃(λ)ω, where ω is the Cartan involution from last time. Then we have

u|L̃(λ)⊗L̃(µ)ω = 0

and so
u(vλ ⊗ wµ) = 0, (33.1)

and this is true for all dominant λ, µ.

Now, choose a basis {x1} in U+, and {yj} a basis for U−, and all we want from this basis is that
it be homogeneous: yj ∈ Uµj for some µ for each j. Then let’s write u =

∑
ai,ν,iyjKνxi. Then as

in the previous class, let’s assume that wt(xi0) is maximal such that aj,ν,i0 6= 0 for some j, ν. Then
we apply this u to equation 33.1, and we end up with, for fixed i0,∑

aj,ν,i0q
(wt(xi0 )+λ−µ,ν) = 0 (33.2)

Anyway, you do this calculation exactly as we did last time, and there is something you have to do
to use the fact that the decreasing operators act freely. So to do this, we take λ, µ large enough.
See, if (λ, α) is very large, then we might need to use that condition. But anyway, we end up
getting equation 33.2 for all λ, µ ∈ P+ that are sufficiently large.

But by a change, we can write this as
∑
bj,ν,i0q

(λ−µ,ν) = 0. But then we use a theorem by Artin
that distinct characters of an (abelian) group are linearly independent. So that applies that the as
are 0.

Question from the audience: What on q did we use here? Answer: Only that it is not a root
of unity. If it is not, then the different characters q(−,ν) are all honestly distinct. �

Next time we will prove that L̃(λ) = L(λ), and this requires the transcendence of q.

Lecture 34 April 16, 2010

Recall that for each weight λ we have two modules: L(λ) is the unique simple quotient of M(λ),
and L̃(λ) is the quotient of M(λ) by Fm(α)+1

α v, i.e. it is the maximal finite-dimensional quotient of
M(λ). We will prove:

Theorem 34.1 If q is transcendental over Q, then L(λ) = L̃(λ), and chL(λ) is given by the Weyl
character formula.

110



Recall that the weight-space decomposition defines the character chV =
∑
µ∈P (V ) dimVµe

µ. In
fact, Theorem 34.1 is true provided q is not a root of unity, but we will not do that part.

Proof: We let q be a polynomial variable, writing it differently from q ∈ C the constant — we
think of q as q.

Suppose that K = Q(q), and define A to be the subalgebra Q[q , q−1] ⊆ K. Then let V be any
quotient of L̃(λ) — we are interested in V = L(λ) and V = L̃(λ). Then V is spanned by F Ivλ for
finitely many I — only finitely many F Ivλ are non-zero. Let VA be the A submodule generated by
F Ivλ.

Since A is a principle ideal domain, VA is a free finitely-generated A module. The following is also
easy to check: if we pick up Eα, Fα,Kα, and also [Kα, n] def= Kαqn−q−nK−1

α

qα−q−1
α

**not a commutator;

notation from [7]**, then VA is invariant under all these operators. The most difficult part of
checking this is the Eα part, and for this it suffices to do an sl(2) calculation.

Now, what happens if we compute VA ⊗A K? Then of course we get V back. And in fact this is
even true on each weight space: VA,µ ⊗A K = Vµ.

Now we will do the following trick: we will specialize q to 1. We set V̄ = VA ⊗A C, where A
acts on C by q = 1. Then it is just a C vector space. We write eα, fα, kα, hα the operators on V̄
corresponding to Eα, Fα,Kα, and [Kα, 0]. Then kα = 1, and

hαvµ =
q(µ,α) − q−(µ,α)

q(α,α)/2 − q−(α,α)/2
vµ =

2(µ, α)
(α, α)

vµ

Then hα, eα, fα also satisfy the classical Serre’s relations for g, because we take the quantum Serre
relations and set q 7→ 1. Moreover [hα, eβ] = 2(β,α)

(α,α) eβ.

But then we see that V̄ is a representation of g, and so L̃(λ) = L(λ) because they are both
the irreducible representation of g with height λ. But this implies that dim L̃(λ)µ = dimL(λ)µ.
Therefore they coincide: the result is proven for K = Q(q).

Finally, let K be arbitrary **containing Q(q)**. Then we can construct the modules L(λ)Q(q)

and L̃(λ)Q(q). Then if q is transcendental over Q, the proof above shows that these modules are the
same. Now we do the base extension V Q(q) 7→ V Q(q) ⊗Q(q) K, where we have Q(q) ⊆ K a subfield.
But the point is that when you do the base extension, things play well: suppose that F ⊆ E is a
field extension and V is a simple module over an algebra RF over F, and that EndRF(V ) = F. Then
V ⊗FE is still irreducible. So therefore L(λ)Q(q)⊗Q(q) K is an irreducible module, and hence L(λ)K,
but L̃(λ)Q(q) ⊗Q(q) K = L̃(λ)K. �

Corollary 34.2 If q is transcendental, then the category F of finite-dimensional U -modules is
semisimple.

Proof: It is sufficient to consider the category F1 of modules of type 1. In fact, it is sufficient to
show that there is no nontrivial extension of two irreducible modules L(λ) and L(µ). So suppose
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that we have an exact sequence

0→ L(µ)→M → L(λ)→ 0

and we want to show that it splits. There are 3 + ε cases:

1. µ = λ. Then dimMλ = 2, but the module is semisimple over U0, so Mλ = Kvλ⊕Kv′λ, where
vλ is the highest weight vector of L(µ) = L(λ) ↪→M , so build the submodule in Mλ generated
by v′λ, and it must be isomorphic to L(λ), and so we have the splitting.

2. µ < λ, then dimMλ = 1, and in fact we do understand that if M 6= L(λ) ⊕ L(µ), then
Mλ must generated M . Hence M is a finite-dimensional quotient of M(λ), so it must be a
quotient of L̃(λ) = L(λ), and we get a contradiction.

3. If λ < µ, then we go to the dual modules, and reduce to the previous case. We consider

0→
Ä
L(λ)∗

äω → ÄM∗äω → ÄL(µ)∗
äω → 0

The ∗ switches the subs and quotients, but also switches the weight spaces, and the ωs just
switch the weight spaces, and so

Ä
L(λ)∗

äω
= L(λ).

4. If λ, µ are incomparable, then λ is not a weight of L(µ), but it is a weight of M , and so
UMλ ∩ L(µ) = {0} by reducibility over U0, and hence M = L(µ) ⊕ UMλ is the desired
splitting. �

This is a standard style of argument by the way. It works for category O, for Kac-Moody algebras,
etc.

Recall that we had an isomorphism of vector spaces U = U− ⊗ U0 ⊗ U+. Then we also had the
weight decomposition:

U =
⊕

µ,ν∈Q+

U−−µ ⊗ U0 ⊗ U+
ν

Corollary 34.3 dimU+
µ = dimU−−µ by the Cartan involution. Moreover, when q is transcendental:

dimU+
µ = P(µ) =

∣∣∣{µ =
∑

mββ s.t. mβ ∈ Z≥0 and β ranges over all of ∆+}
∣∣∣

In the classical case, we have U = Ug, and Corollary 34.3 follows from the PBW decomposition.

Proof: Let λ be much bigger than µ. Then we know that L(λ) = L̃(λ), and moreover L(λ)λ−µ =
U−−µvλ. The idea is that we start at λ, and begin quotienting, but if λ is large enough, then λ− µ
is relatively close to λ, and in particular is not quotiented by anything.

But dimL(λ)λ−µ is given by the Weyl character formula, and it is P(µ) by the classical theory. �
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Finally, we look at the center and the Harish-Chandra formula.

We have U =
⊕
Uµ, and in particular we have U0 ⊇ U0 = K[Kµ]µ∈Q. Let Z be the center of

U . Then U0 is precisely the centralizer of U0, and so Z ⊆ U0. Moreover, if u ∈ U0, then by the
triangular decomposition u =

∑
wt I=−wt J aIµJF

IKµE
J . Let π(µ) =

∑
a∅µ∅Kµ. Then this defines

a map U0 → U0, and this restricts to π : Z → U0, the Harish-Chandra homomorphism. If you
think about it, this exactly corresponds to what we did in the classical case.

Lemma 34.4 1. If z ∈ Z, then z|M(λ) = λ(π(z))id.

2. π : Z → U0 is a homomorphism of rings.

What do we mean λ(π(z))? We have λ ∈ P , and so we define λ : U0 → K by λ(Kµ) = q(λ,µ).

Proof: 2. is immediate from 1. For 1., since z is central, it suffices to look at the highest vector,
and zvλ =

∑
a∅µ∅q

λ,µvλ. �

Lemma 34.5 π is injective.

Proof: Suppose that π(z) = 0. Then z|L(λ) = 0, so by semisimplicity z = 0 on any finite-
dimensional module, but we proved that the annihilator of all finite-dimensional modules is 0. �

Lecture 35 April 19, 2010

Today we will try to prove the analog of Harish-Chandra theorem. We recall what we finished last
time: We constructed a map π : Z → U0, and we know that if z ∈ Z, then z|M(λ) = λ(π(z))id. We
also know that π is injective. We want to describe the image of the map. As in the classical case,
we will get invariant polynomials, under the shifted Weyl group action.

For this, then, it is convenient to consider the shifted map γ−ρ ◦ π, where for γ ∈ P , we define
γν(Kµ) = q(ν,µ)Kµ.

Lemma 35.1 γ−ρ ◦ π(Z) ⊆ (U0)W .

Proof: We use the same idea as in the classical case. We have already constructed a nontrivial
map φα : M(sα(λ+ ρ)− ρ)→M(λ). Then:

λ(π(z)) =
Ä
sα(λ+ ρ)− ρ

ä
π(z) (35.1)

(λ+ ρ)
Ä
γ−ρ ◦ π(z)

ä
= sα(λ+ ρ)

Ä
γ−ρ ◦ π(z)

ä
(35.2)

γ−ρ ◦ π(z) =
∑

aµKµ (35.3)

sα
Ä
γ−ρ ◦ π(z)

ä
=
∑

bµKµ (35.4)∑
aµq

(λ+ρ,µ) =
∑

bµq
(λ+ρ,mu (35.5)

where the last identity is for all λ ∈ P+. But then aµ = bµ. �
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Lemma 35.2 Define U0
ev =

¶
〈Kµ〉 s.t. µ ∈ 2P ∩Q

©
. Then γ−ρ ◦ π(Z) ⊆

Ä
U0

ev

äW
.

Proof: Let σ : Q→ Z/2. Then recall that we defined a one-dimensional representation σ̃ : U → K
by σ̃(Eα) = σ̃(Fα) = 0 and σ̃(Kµ) = σµKµ. Then it is clear that σ̃ reserves the center, and it
commutes with the Harish-Chandra map: γ−ρ ◦ π ◦ σ̃ = σ̃ ◦ γ−ρ ◦ π. So let γ−ρ ◦ π(z) =

∑∑
aµKµ,

and then γ−ρπ(σ̃(z)) =
∑
aµσ(µ)Kµ. But both of these sums must be W -invariant, and so that

implies that aµ = awµ, and also aµσ(µ) = σ(wµ)awµ. So if we take w to be a reflection sα, then
sα(µ) = µ−mµ(α)α, where mµ(α) = 2(µ,α)

(α,α) . So then it’s clear that we must have mµ(α) ∈ 2Z, and
so µ ∈ 2P . �

Our aim is the following theorem:

Theorem 35.3 γ−ρ ◦ π : Z →
Ä
U0

ev

äW
is an isomorphism.

To do this, our first goal is to construct an invariant form on U . Recall that U≥0 = U0U+ and
U≤0 = U−U0 are Hopf subalgebras. We will first construct a homomoprhism U≤0 → (U≥0)∗ of
associative algebras.

Recall that in our notation every element of U≥0 can be written as EIKµ. So we will define the
image fα, kλ of Fα,Kλ under the above map by:

fα(EIKµ) =

0 if I 6= α
−1

qα−q−1
α

if I = α
(35.6)

kλ(EiKµ) =

{
0 if I 6= ∅
q−(λ,µ) if I = ∅

(35.7)

It is then not very difficult to check that this is well-defined as a map Ũ≤0 → (U≥0)∗: you must
only check that kλfαk−λ = q−(λ,α)fα and that kλkµ = kλ+µ.

So we have obtained a pairing Ũ≤0 ⊗ U≥0 → K, which satisfies

〈y1y2, x〉 = 〈y1 ⊗ y2,∆x〉 (35.8)
〈y, x1x2〉 = 〈∆y, x2 ⊗ x1〉 (35.9)

Notice that in equation 35.9, we have switched the order. To check equation 35.9, it is sufficient to
check when y is a generator, and then use equation 35.8, which is by construction.

Now we would like to remove the ∼. To do this, we must check that for all x ∈ U≥0:

〈u−αβ, x〉 = 0 (35.10)

And to check equation 35.10, we recall that ∆u−αβ = u−αβ ⊗K−rα K−1β + 1 ⊗ u−αβ, and then use
the multiplicativity to reduce to the case when x is a generator.

So these are all required calculations, but we skip them.

So therefore we have: 〈, 〉 : U≤0 ⊗ U≥0 → K.
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Lemma 35.4 This 〈, 〉 is nondegenerate.

Proof: The maps behave nicely with respect to weights — everything is graded by the action of
the torus. So we will show that U−−µ ⊗ U+

µ → K is nondegenerate. These are finite-dimensional
spaces, and by the Cartan involution that switches them they are the same dimension. Fix y ∈ U−µ .
So it suffices to show: if 〈y, x〉 = 0 for every x ∈ U+

µ , then y = 0.

We will do this inductively on the order of the weight µ. It is a trivial check on simple roots. So,
suppose 〈y, x〉 = 0 for every x. Then we do also have

〈y,Eαx〉 = 〈y, xEα〉 = 0 (35.11)

for every x ∈ U+
µ−α. But one can prove by induction that we have something like this:

∆y = y ⊗K−1
µ +

∑
α∈Π

rα(y)⊗ FαK−1
µ−α + · · · = 1⊗ y +

∑
α∈Π

Fα ⊗ r′α(y)K−1
α + . . . (35.12)

So then from equations 35.11, 35.12, 35.8, and 35.9 we get:

〈rα(y), x〉 = 〈r′α(y), x〉 = 0 (35.13)

Then by the inductive assumption, rα(y) = r′α(y) = 0.

We leave the following calculation as an exercise:

Eαy − yEα =
Kαrα(y)− r′α(y)K−1

α

qα − q−1
α

(35.14)

So then we see that yEα = Eαy. We claim that this implies y = 0. Indeed, look at L(λ) with
sufficiently large highest weight. Then look at yvλ: if y 6= 0, then yvλ 6= 0 by the Character
formula. But then yvλ generated a proper submodule in L(λ) by the commutativity, and this is a
contradiction.

(Here in principle we used that q is transcendental, as we only proved the description of L(λ) in
that case. But in fact our description holds more generally when q is not a root of unity.) �

Notice that in the classical case we never have a Hopf pairing like 〈, 〉 : U≤0 ⊗ U≥0 → K, because
both are cocommutative but neither is commutative. On the other hand, just thinking of them
as algebras and then constructing such a pairing from the Killing form leads to Drinfeld’s double
construction, which is a way to define Uqg.

In fact, now we will define a map on the whole space using the Killing form. Suppose we have
y ∈ U−−ν , y′ ∈ U−−ν′ , x ∈ U+

µ , x′ ∈ U+
µ′ . Then we define the pairing (, ) by:Ä

yKνKλx, y
′Kν′Kλ′x

′
ä def= 〈y′, x〉〈y, x′〉q(2ρ,ν)q−(λ,λ′)/2 (35.15)

Here λ, λ′ are another pair of roots. We have assumed that q1/2 ∈ K.

Then equation 35.15 is non-zero only if µ = ν ′ and µ′ = ν. Then it is clear that equation 35.15
defines actually a pairing by linearity on all of U =

⊕
U−−η ⊗ U0 ⊗ U+

ξ .
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Lemma 35.5
Ä
ad(u)a, b

ä
=
Ä
a, adS(u) b

ä
We will not check this, but the hint is that it is sufficient to check for generators u = Eα, Fα,Kα.

Question from the audience: I still don’t understand why you have written equation 35.15 as
you have, with the Kλs, etc. Answer: Multiplicitation by Kλ is clearly invertible, so it doesn’t
matter. We chose this one to make the exponents on the right-hand side nice.

The pairing in equation 35.15 is not symmetric, but it almost is. We have (a, b) = q(2ρ,µ−ν)(b, a),
where a ∈ U−ν U0U+

µ and b ∈ U−µ U0U+
ν .

Now we are ready to construct the matrix coefficients. Let M be a finite-dimensional U -module,
f ∈M∗, m ∈M , and cf,m(u) def= 〈f, um〉.

Lemma 35.6 Suppose that 2P (M) ⊆ Q. Then there exists a unique u ∈ U such that (u, a) =
cf,m(a) ∀a ∈ U .

Proof: Uniqueness is trivial, because the pairing is nondegenerate; the important part is existence.
And for this it is sufficient to check for irreducible M , supposing semisimplicity, and its sufficient
to check for f,m weight vectors, because then we just do the summing. So assume that f ∈ M∗γ
and m ∈Mδ.

Now suppose that a = yx, where y ∈ U−−µ and x ∈ U+. Then in order for cf,m(a) 6= 0, we must
have δ + ν − µ+ γ = 0. Now we pick up a specific weight η = −2(δ + ν), and the condition on M
implies that η ∈ Q. Then by nondegeneracy of the pairing, we do have a u0 ∈ U−−νKηU

+
µ such that

cf,m(yx) = (u0, yx).

Now, actually, we can put any weight in place of Kη. The trick is to check that it is consistent.

〈f, ykλxm〉 = q(δ+ν,λ)〈f, yxm〉 (35.16)

(u0, yKλx) = q−(η,λ)/2(u0, yx) (35.17)

And in order to be consistent, we must have (δ + ν, λ) = −(η, λ)/2, which we do have.

So what have we done? For any weights µ, ν, we have constructed (uµ,ν0 , a) = cf,m(a) for all
a ∈ U−−µU0U+

ν .

But the point is that for any finite-dimensional module, the set of weights for which cf,m(a) 6= 0 is
finite. So just take u =

∑
uµν0 , and we are done and out of time. �

Next time we will prove Theorem 35.3.

Lecture 36 May 21, 2010

Today we prove the Harish-Chandra theorem:

Theorem 36.1 γ−ρ ◦ π : Z →
Ä
U0

ev

äW
is an isomorphism
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Proof: We already know that γ−ρ ◦ π is injective. Recall how we proved the surgectivity in the
classical case: we studied invariant polynomials. We will do something similar this time, and the
shift by ρ will be very natural.

Last time, we saw that matrix coefficients come from the universal enveloping algebra: if λ ∈ P+

such that 2λ ∈ Q, then there exists a unique zλ such that (u, zλ) = trL(λ)(uK−2ρ). We claim now
that zλ ∈ Z. Indeed, consider the following diagram:

U End(L(λ))

K
φ 7→tr(K−2ρφ)

Here U is a U -module under the adjoint action, so that poth arrows are U -module homomorphisms.
We will show that the above diagram commutes.

So, let u ∈ U , and ∆u =
∑
u1
i ⊗ u2

i . Let φ ∈ EndL(λ). Then we want to show:

tr
Ä∑

u1
i φS(u2

i )K
−1
2ρ

ä
= ε(u) tr

Ä
φK−1

2ρ

ä
(36.1)

As usual, it suffices to check on generators. For Kα it is easy. So let u = Eα. Then Eα(φ) =
Eαφ−KαφK

−1
α Eα. We want to show tr

Ä
Eα(φ)K−1

2ρ

ä
= 0. But (2ρ, α) = (α, α), and so:

tr
Ä
EαφK

−1
2ρ − q

(α,α)KαφEαK
−1
α K−1

2ρ

ä
= tr

Ä
EαφK

−1
2ρ −KαφK

−1
2ρ EαK

−1
α

ä
= 0 (36.2)

So this means that the shifted trace is the correct notion of trace in the quantum case, because the
usual trace is not a homomorphism of U -modules, but this shows that the shifted trace is.

So, we have:

ε(u) (x, zλ) =
Ä
ad(u)x, zλ

ä
=
Ä
x, adS(u) zλ

ä
(36.3)

adS(u) zλ = ε(u) zλ = ε
Ä
S(u)

ä
zλ (36.4)

ad(u) zλ = ε(u) zλ (36.5)

and this happens if and only if zλ ∈ Z.

So, for each λ ∈ P+ such that 2λ ∈ Q, we construct such a zλ ∈ Z.

Pick up now an arbitrary torus element Kµ ∈ U0. Then we can use the above identity to evaluate
**?** under the homomorphism:Ä

Kµ, zλ
ä

=
Ä
Kµ, φ(zλ)

ä
= trL(λ)Kµ−2ρ =

∑
ν∈P (L(λ))

dimL(λ)ν q(ν,µ−2ρ) (36.6)

And we do know (Kν ,Kµ) = q−(ν,µ)/2. So let π(zλ) =
∑
aνKν and we have:Ä

Kµ, π(zλ)
ä

=
∑

aνq
(−ν,µ)/2 =

∑
dimL(λ)ν′ q(ν′,µ−2ρ) (36.7)
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But equation 36.7 works for any **?** and so we use Artin’s independence of characters, and,
recalling the shift, we have:

π(zλ) =
∑

dimL(λ)−ν/2 q
(ν,ρ)Kν (36.8)

and if we do the shift we get right of the q, and so:

γ−ρ ◦ π(z) =
∑

dimL(λ)−ν/2Kν =
1

StabW λ

∑
w∈W

K−w(λ) +
∑
µ�λ

cµK−µ (36.9)

for some coefficients cµ. So equation 36.9 is some lower-triangular property. So we can start with
0 and proceed by induction.

So from all this it follows that γ−ρ ◦ π(zλ) spans
Ä
U0

ev

äW
, and hence we have surjectivity. �

We think the most remarkable part is that the 2ρ appears quite naturally when we do the quantized
trace. We wonder if a similar proof exists in the classical case.

36.1 R-matrices and the group algebra

Now we plan to talk a little bit about R-matrix and the group algebra.

We keep our assumption that q is transcendental. Then we know that our category F of finite-
dimensional Uqg modules is semisimple. So in principle we can pick up two modules, take their
tensor product, and decompose it, and it is pretty clear that the decomposition will be the same
as in the classical case. But we know that the L(λ)s over Uqg have the same characters as over Ug.
So this implies that M1⊗M2

∼= M2⊗M1, and that the decomposition of M1⊗M2 into irreducibles
is isomorphic to the classical case. In the classical case, the isomorphism M1 ⊗M2

∼= M2 ⊗M1

is trivial, because if the Hopf algebra is cocommutative then P : m1 ⊗ m2 7→ m2 ⊗ m1 is a
homomorphism of algebras. But in the quantum case it is not, so we look for a homomorphism
R : M1 ⊗M2

∼→M2 ⊗M1, which clearly depends on the modules.

We will pick R = P ◦ Θf , where Θf ∈ EndK(M1 ⊗M2). How to construct Θf? It will be some
twist of some other element Θ. We start with constructing this other Θ: it will be some formal sum
of tensor products in U . In fact, we will have Θ ∈ U− ⊗̂U+, where ⊗̂ is some completed tensor
product, and it won’t matter which because on any given finite-dimensional module the sum will
truncate.

So, let µ ∈ Q+. Last time we discussed a pairing 〈, 〉 : U−−µ ⊗ U+
µ → K. So choose a basis {yµi } for

U−−µ and its dual basis {xµi } for U+
µ . Then consider the formal expression:

Θ =
∑
µ

∑
i

yµi ⊗ x
µ
i (36.10)

Then we claim that only for finitely many µs does the right-hand side of equation 36.10 act non-
trivially. Question from the audience: So there is no U0 component? Answer: No. It is going
to be later on, in the form of this f .
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So what is f? We take f : P × P → K, such that — we never remember signs, but think this is
right —

f(λ+ ν, µ) = q−(ν,µ) f(λ, µ) (36.11)

f(λ, µ+ ν) = q−(ν,λ) f(λ, ν) (36.12)

Then equations 36.11 and 36.12 do not uniquely determine f . We could take f(λ, µ) = q−(λ,µ), but
this sometimes requires

√
q to exists.

Then pick some f , and construct f̃ : M1 ⊗M2 →M1 ⊗M2 by

f̃(m1 ⊗m2) = f(λ, µ)m1 ⊗m2 m1 ∈ (M1)λ, m2 ∈ (M2)µ (36.13)

Then we set Θf = Θ ◦ f̃ .

Proposition 36.2 R = P ◦Θf : M1 ⊗M2 →M2 ⊗M1 is an isomorphism of U -modules.

Proof: As usual, we will skip some calculations.

M1 ⊗M2 M1 ⊗M2

M1 ⊗M2 M1 ⊗M2

∆(u)

Θf Θf

∆op(u)

We claim that τ : U → U given by τ(Eα) = Eα, τ(Fα) = Fα, and τ(Kα) = K−1
α is a homomorphism

U → Uop. I.e. we define ∆τ (u) = τ∆τ(u), and we claim that (∆u)Θ = Θ∆τ (u).

Let’s prove this claim. It is sufficient to check on generators, whence:

(Kλ ⊗Kλ)Θµ = Θµ(Kλ ⊗Kλ) (36.14)

(Eα ⊗ 1)Θµ + (Kα ⊗ Eµ)Θµ−α = Θµ(Eα ⊗ 1) + Θµ−α(K−1
α ⊗ Eα) (36.15)

(1⊗ Fα)Θµ + (Fα ⊗K−1
α )Θµ−α = Θµ(1⊗ Fα) + Θµ−α(Fα ⊗Kα) (36.16)

You can check this: it is like checking that the Casimir is central if you do it in coordinates.

We also clim that ∆τ (u)f̃ = f̃∆op(u) on M1⊗M2. This is very simple: you check on weight vectors
and when u is a generator.

Question from the audience: What is Θµ? Answer: It is a piece. Θ =
∑
µ
∑
i . . . , so Θµ is

the µ piece. Question from the audience: So what is the equality (∆u)Θ = Θ∆τ (u)? Is it
in a completion? Answer: We’d rather not introduce a completion. We assert it is true on any
finite-dimensional module. It ammounts to the calculation above. �
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So, we have constructed the R-matrix. It isn’t quite unique: it depends on a choice of f : P×P → K
satisfying equations 36.11 and 36.12.

So what can you do? You can study the braid relations. Say you have three modules M1,M2,M3.
Then there are two ways to get an isomorphism M1 ⊗M2 ⊗M3

∼= M3 ⊗M2 ⊗M1:

M1 ⊗M2 ⊗M3

M1 ⊗M3 ⊗M2 M3 ⊗M1 ⊗M2

M3 ⊗M2 ⊗M1

M2 ⊗M1 ⊗M3 M2 ⊗M3 ⊗M1

R23

R12

R23

R12

R23

R12

And in fact it doesn’t matter which way you go: R23 ◦R12 ◦R23 = R12 ◦R23 ◦R12. In fact, if you
have more modules, M1 ⊗M2 ⊗M3 ⊗M4, then of course R12 ◦ R34 = R34 ◦ R12. So the point is
that you have a braid group action, but the weird thing: R2

12 6= id.

Lecture 37 April 23, 2010

We begin by recalling some material from last time, and then restrict our attention to V = V1,1 the
standard representation of Uqsl(2). Then look at V ⊗V , with the basis e1⊗e1, e1⊗e2, e2⊗e1, e2⊗e2.
Then we will write down an isomorphism R : V ⊗ V → V ⊗ V of Uqsl(2) modules in this basis as
the matrix:

R =

á
q 0 0 0
0 0 1 0
0 1 q−1 − q 0
0 0 0 q−1

ë
Then Ri,i+1 = id⊗ · · · ⊗R⊗ · · · ⊗ id gives an action of the braid group on V ⊗n. Note that in the
specialization q 7→ 1, R is the usual flip map.

Now recall the classical situation. Then the symmetric group Sn acts on V ⊗n, and the action
commutes with the sl(2)-action. Indeed, Sn is the centralizer of Usl(2), and in fact this works
for any sl(m). This gives Schur-Weyl duality: we can decompose V ⊗n =

⊕
Vν ⊗ Wν , where ν

ranges over Young diagrams with n boxes and not more than m rows, Wν is the corresponding
representation of Sn, and Vν is the corresponding representation of sl(m). The point is that Sn acts
only on Wν and sl(m) acts only on Vν — since we have a dual pair Sn and sl(m) (each centralizes the
other), actually K[Sn]⊗Usl(m) acts on V ⊗n, and the decomposition is as modules of these. Notice
that the highest weights of Vν can be read from the difference of the lengths of the rows.
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Now, the point is that Sn has its usual presentation

〈σ1, . . . , σn−1 s.t. σiσj = σjσi, j 6= i± 1 σiσi+1σi = σi+1σiσi+ 1 σ2
i = 1〉 (37.1)

We will see that something similar happens in the quantum case.

Now, the Rs satisfy R2 = (q−1 − q)R + 1, and so we define σ̄i = qR−1
i,i+1. Then these satisfy the

braid relations, which are the first two relations of equation 37.1, and alsoÄ
σ̄i − q2

äÄ
σ̄i + 1

ä
= 0 (37.2)

Then we define the Hecke algebra Hq
def= K[σ̄1, . . . , σ̄n−1]/braid relations and equation 37.2. It is

straightforward to check that Hq and K[Sn] have the same dimension.

Theorem 37.1 Uqsl(m) and Hq form a dual pair in V ⊗n, i.e. each centralizes the other.

37.1 Quantum function algberas

Now we let g be a semisple Lie algebra. We define Kq[G] to be the Hopf algebra of matrix coefficients
cf,m for all finite-dimensional representations of Uqg. If you want a non-simply-connected one, you
take the corresponding lattice and the subcategory.

Now, how to know that Kq[G] is closed under multiplication? Let M1,M2 be finite-dimensional
representations of Uqg, and look at M1 ⊗M2. Then for fi ∈ M∗i and mi ∈ Mi, and for ∆u =∑
u1
j ⊗ u2

j , then:

cf1⊗f2,m1⊗m2(u) =
¨
f1 ⊗ f2,

∑
u1
jm1 ⊗ u2

jm2

∂
=
∑ ¨

f1, u
1
jm1

∂ ¨
f2, u

2
jm2

∂
=

=
∑

cf1,m1(u1
j ) cf2,m2(u2

j ) (37.3)

So this tells you that cf1,m1cf2,m2 = cf1⊗f2,m1⊗m2 , and the multiplication in Kq[G] corresponds to
the comultiplication in Uqg.

So let M1,M2 be finite-dimensional representations of Uqg, with bases {e1
1, . . . , e

1
n} and {e2

1, ,̇e
2
m}.

Then we define the coefficients Rpqij by R(e1
i ⊗ e2

j ) =
∑
Rpqij e

2
p ⊗ e1

q , where R is from yesterday.
Then for the matrix coefficients c1

ij , c
2
ij corresponding to our basis, we see that:∑

pq

Rrspqc
1
qic

2
pj =

∑
pq

Rpqij c
2
rpc

1
sq (37.4)

Question from the audience: Remind me what all these things are? Answer: Rrspq are complex
numbers, and caij are complex-valued functions of u, i.e. elements of Kq[G].

Now, what we do know about Uqsl(2) is that the representation theory is generated by the two-
dimensional defining representation, and so the algebra Kq[SL(2)] of matrix coefficients is generated
by the matrix coefficients for this defining rep V . I.e. we know generators for Kq[SL(2)]. Indeed,
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picking our basis, we have the generators c11, c12, c21, c22, and we know the R-matrix is R11
11 =

R22
22 = q−1, R21

12 = R12
21 = 1, and R21

21 = q−1 − q, and all the rest are 0. And so by just applying
equation 37.4, we get almost all the relations for Kq[SL(2)]. Indeed, the only one we miss is the
determinant.

So how to get the determinant relation that detq = c11c22−qc21c12 = 1? It is that inside V ⊗V there
is a trivial representation K(e1⊗e2−qe2⊗e1), which is the quantum analog of V ⊗V = S2V ⊕Λ2V .
Indeed, we see that:

(c11e1 + c12e2)⊗ (c21e1 + c22e1)− q(c21e1 + c22e2)(c11e1 + c12e2) =
= (c11c22 − qc21c12)e1 ⊗ e2 + (c12c21 − qc22c11)e2 ⊗ e1 (37.5)

And so wee see that c11c22 − qc21c12 = 1 in our new definition of Kq[SL(2)]. We still do not know
why these conditions (the ones from long ago) are all the relations.

Lecture 38 April 26, 2010

38.1 Kashiwara crystal bases

We restrict our attention to the case when q is transcendental over Q. Actually, we will work over
the transcendental extension K = Q(q). Inside this we have a ring A ⊆ Q(q), which consists of
all fractions f(q)

g(q) , where f, g ∈ Q[q] are polynomials and g(0) 6= 0. A is a local ring with unique
maximal ideal (q), and K is the field of fractions of A.

So, let M be a finite-dimensional Uqg module, and pick α ∈ Π. Let Uα = Uqαsl(2); this is an sl(2)
inside Uqg. Then over Uα we completely understand the structure of M . We assume it is type-1.
Then we have M =

⊕
L(ni), where each L(ni) is a chain of length ni.

Then we need the divided powers F (j)
α = F jα/[j]qα !. Then we see that for each α ∈ Π, any x ∈ M

has a unique decomposition as x =
∑
F

(j)
α xj , where Eαxj = 0 for each j. It’s clear that this

decomposition doesn’t depend on anything — no basis. If xj is a weight vector of weight µ, then
xj ∈Mµ+jα.

Then we define the Kashiwara operators:

F̃αx =
∑

F (j+1)
α xj (38.1)

Ẽαx =
∑

F (j−1)
α xj (38.2)

Then it is clear that F̃αẼα = x − x0, where x0 is the only vector killed by Ẽα, and ẼαF̃αx =
x− F (r)

α xr. Here r = (µ, α∨), and α∨ = 2α/(α, α).

Then we will now define a lattice over A, which is invariant under these Kashiwara operators. In
particular, we say that an A-module M̃ in M is an admissible lattice if:
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1. M̃ ⊗A K = M

2. M̃ =
⊕
M̃λ, where M̃λ = M̃ ∩Mλ

3. M̃ is invariant with respect to Ẽα, F̃α.

We remark that these operators play well under homomorphisms. If φ : M → N is a homomorphism
of U -modules, then F̃α, Ẽα commute with φ.

Therefore, given φ : M ∼→ N , we see that φ(M̃) is admissible iff M̃ is admissible. Moreover,
M1 ⊕M2 ⊆ M̃1 ⊕ M̃2 is admissible iff each M̃i is admissible.

So, we can consider M̃/qM̃ , and since ×q : M → M is a U -isomorphism, then Ẽα, F̃α are well-
defined on M̃/qM̃ .

So, we define a crystal base of M to be a pair: an admissible lattice M̃ and a basis B of M̃/qM̃
over A. We require the following conditions:

1. B =
⋃
λ∈P (M)Bλ, where Bλ = B ∩ (M̃λ/qM̃λ).

2. F̃αB ⊇ B ∪ {0} and ẼαB ⊇ B ∪ {0}, for each α ∈ Π.

3. If b1, b2 ∈ B, then b2 = Ẽαb1 iff F̃αb2 = b1.

So the idea is that to describe the action of Ẽ, F̃ in a crystal base, you need only to use a crystal
graph, which explains how F̃ acts. The vertices for the graph are the elements of B, and we have
a directed edge colored by the root α for the F̃α action: b1

α→ b2 iff F̃αb1 = b2. So for example, for
sl(2) we have only one color, and the irreducible graphs look like chains • → • → · · · → •.

We now spend some time proving that these graphs are essentially unique.

Theorem 38.1 Let vλ ∈ L(λ) be a highest weight vector. Pick up all possible non-zero guys
of the form F̃α1 · · · F̃αrvλ. Then let L̃(λ) be spanned by these {F̃α1 · · · F̃αrvλ}, and let B(λ) =
{F̃α1 · · · F̃αr v̄λ ∈ M̃/qM̃ s.t. F̃α1 · · · F̃αr v̄λ 6= 0}, where we write v̄λ to remember that this is already
an element of the quotient. Then (L̃(λ), B(λ)) is a crystal base for L(λ).

Question from the audience: In the classical case, I could start with a highest weight vector
and try to make a graph? Answer: Yes, you can try, but it is not going to work: the idea is that
as soon as you introduce the parameter q, then you can look at leading terms, etc. — in M̃ , q
acts as 0. Whereas in the classical case, F1F2vλ and F2F1vλ may have dependency. Here, they are
either the same, or one is 0.

The idea is that we will construct certain representations for which we can prove Theorem 38.1 by
hand, and then also prove that crystal bases play well with tensor products and decomposition into
sums of irreducibles. We say that λ is nice if Theorem 38.1 holds for λ.

We begin with some examples: Theorem 38.1 is true for sl(2), more or less by definition. On the
other hand, we can take M , and pick any sl(2), and if we prove that for any sl(2) we have a crystal
base, then it is a crystal base for the whole thing, because if you check the properties 1–3 above
for each α, then you are done.
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Example 38.2 (Minuscule representation) Classically, the idea is that the weights are all on
one orbit: L(λ) is minuscule if P (L(λ)) = Wλ. For example, if you pick up sl(n), then every
fundamental representation is minuscule. In general, the number of minuscule representations is
exactly the number of elements in the quotient P/Q. Because what you do is pick up a class in
P/Q, and then pick a minimal dominant weight in that class, and that gives you all the minuscule
representations. So we say that a minimal dominant weight in µ+Q is a minuscule weight.

So, let µ ∈ P (λ) and α any simple root. Then (µ, α∨) = 0 or ±1. The idea is that in a minuscule
representation, there is no problem to choose a basis, because the eigenbasis is unique up to pro-
portionality if we require that W act well. So we construct the following basis: {xµ}, with xλ = vλ,
and

Eαxµ =

{
xµ+α, (µ, α∨) = −1
0, (µ, α∨) = 0, 1

(38.3)

Fαxµ =

{
xµ−α, (µ, α∨) = 1
0, (µ, α∨) = 0, 11

(38.4)

So we have Ẽα = Eα and F̃α = Fα, and we claim that
∑
Axµ is an admissible lattice and {x̄µ} is

a crystal base.

For example, for the standard representation of sl(3), the picture is • α1→ • α2→ •. ♦

Then the idea is that we will start with the minuscule representations, and start tensoring them.
This is good enough for sl(n), because the fundamental representations include everything. But in
general it is not enough: there are no nontrivial minuscule representations for E8, G2.

Example 38.3 Suppose that λ is the dominant short root. Then P (L(λ)) = Wλ ∪ {0}. If all the
roots are the same length, this is the adjoint representation. We define ∆sh to be the set of all
short roots, and Πsh to be the set of simple short roots. Then we will construct our basis to be:

{xβ s.t. β ∈ ∆sh} ∪ {hα s.t. α ∈ Πsh}

For example, for sl(n), this is clearly a basis for the adjoint representation. In general, we have the
relations:

Eαxα = 0 Fαxα = hα F (2)
α xα = x−α F (3)

α xα = 0 (38.5)

and if β 6= ±α, then (β, α∨) = 0,±1, and so Eαxβ, Fαxβ are the same as in the minuscule case:

Eα

Ç
hβ +

(β, α∨)
[2]qα

hα

å
= 0 Fα

Ç
hβ +

(β, α∨)
[2]qα

hα

å
= 0 (38.6)

For the second one, you start with hα = Fαxα, and work with it: Eαhα = EαFαxα = Kα−K−1
α

qα−q−1
α

xα =

(qα + q−1
α )−1xα, because Kαxα = q2

αxα. And Eαhβ = EαFβxβ = FβEαxβ, and remember that
Eαxβ = 0 if (α, β) = 0 or xβ+α otherwise, and then when we apply Fβ, we subtract β, and so
FβEαxβ = xα or 0.
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Then the claim is that from this, we get something nice: by a little calculation, (β,α∨)
[2]α

= (β,α∨)
q2α+1

qα ∈
qA, and so:

0 = Ẽα

Ç
h̄β +

(β, α∨)
[2]qα

h̄α

å
= Ẽαh̄β (38.7)

So we claim that
∑
α∈Πsh

Ahα +
∑
µ∈∆sh

xµ is an admissible lattice, and {x̄µ, h̄α} is a crystal base.

Oh, notice that here we see the difference between Bn and Cn. In Bn, we get the standard
representation, and for Cn the second exterior power of the standard representation. ♦

Question from the audience: Can you draw the graph for the seven-dimensional representation
of G2, please? Answer: Sure:

Lecture 39 April 28, 2010

We continue to work with crystal bases, trying to prove Theorem 38.1. There are certain things
we have to check.

Lemma 39.1 Let M̃ be an admissible lattice, and suppose we have a weight vector x =
∑
F

(j)
α xj.

If x ∈ M̃µ, then xj ∈ M̃ for all j. Moreover, if Ẽαx ∈ qM̃ , then xj ∈ qM̃ for all j > 0.

So, what are we saying? Each of these canonical elements — the Eα highest vectors — we are
saying that they are in M̃ , so that everything is involutive.

Proof: x− F̃αẼαx = x0 ∈ M̃ , and so we do now the increasing operator: Ẽαx =
∑
F

(j−1)
α xj ∈ M̃ ,

and so x1 ∈ M̃ , and you proceed by induction.

For the second statement, the lattice qM̃ is admissible, so Ẽαx =
∑
F

(j−1)
α Ẽαxj , so from this we

claim that we have Ẽαxj ∈ qM̃ , but this is just for j > 0, and so xj ∈ qM̃ and we are done. �

Now we look at a description of highest weight vectors.

Basically, we are interested in the quotient M̃/qM̃ . Suppose that S ⊆ M̃/qM̃ , and we define
HW(S) def= {x ∈ S s.t. Ẽαx = 0 ∀α ∈ Π}.

Lemma 39.2 Let (M̃,B) be a crystal base. Then:

1. Any b ∈ B can be obtained by the α operators from some highest weight, i.e. it can be written
as

b = F̃α1 · · · F̃αrb′

for some b′ ∈ HW(B).
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2. For each λ ∈ P (M), the corresponding weight space HW(M̃λ/qM̃λ) is generated as a vector
space by HW(Bλ). For this, remember that B =

⊔
Bλ by definition.

3. If HW(Bλ) 6= ∅, then λ is dominant.

Proof: 1. We can always find some sequence so that b′ = Ẽαr · · · Ẽα1b ∈ HW(B). And on B,
Ẽα and F̃α are sort of inverses: if they are both not zero, they are. So b = F̃α1 · · · F̃αrb′.

2. Suppose that x ∈ HW(M̃λ/qM̃λ). Then x =
∑
cbc. Now apply Ẽα. Some of the bs are killed,

but those that are not killed are distinct. So throw away the zero ones: Ẽαx =
∑
cbẼαb, and

the non-zero Ẽαb are nonzero and so linearly independent. But therefore cb = 0 for these.

3. Finally, the condition that λ is dominant is just a condition on sl(2), so what we have to do
is check that (λ, α∨) ≥ 0 ∀α ∈ Π, but we know that this is true for sl(2). �

Now, recall from last time that λ is nice if L(λ) has a crystal base (L̃(λ), B(λ)), where what
we do is pick up a highest weight vector vλ, and define L̃(λ) =

∑
AF̃α1 · · · F̃αrvλ, and B(λ) =

{F̃α1 · · · F̃αrvλ}. Last time we showed that all weights for sl(2) and all small weights for g are
nice.

Proposition 39.3 If λ is nice, then HW(B) = Bλ. Moreover, if (L̃, B) is some other crystal base,
then there exists a ∈ K such that L̃ = aL̃(λ) and B = aB(λ).

Proof: Let us prove first the first sentence. See, if you start with the highest weight vector, you can
get all vectors, but by lemma 39.2.2, we can go back. Now for the second sentence, we know that
Bλ = {avλ}. And L̃ 3 avλ. Because it is obvious that we must have a unique element in L̃ of weight
λ. So if λ is nice, then by definition any other element of the base can be obtained by applying the
operators, and since the lattice is invariant under **?**, then L̃ =

∑
AF̃α1 · · · F̃αravλ. �

Question from the audience: Can you remind me what K is? Answer: q is transcendental
and K = Q(q).

So what can go wrong? We start with the highest vector, and then hope that we can get everywhere,
and if we can then the crystal base is unique up to endomorphisms. In fact, Proposition 39.3
applies to any representation whose irreducible components are nice. See, from the beginning, the
construction of the base is not unique, because you have to pick a highest weight vector, but up to
rescaling the highest weight vector it is unique.

Theorem 39.4 Let M be a finite-dimensional representation of U such that M =
⊕
L(λi) and all

λi are nice. Suppose that (M̃,B) is a crystal base for M . Then there exists φi : L(λi) → M such
that M̃ =

⊕
φi
Ä
L̃(λi)

ä
and B =

⊔
φi
Ä
B(λi)

ä
.

Proof: We use induction on the number of components. You order the components so that λ1

is not less than λ2 and so on in the standard order: i.e. we let λ1 be weakly maximal. Then we
do know that Bλ1 contains only highest weight vectors: HW(Bλ1) = Bλ1 . Now pick up b1 ∈ Bλ1

and start generating. Then b1 = vλ1 for some highest weight vector with highest weight λ1, and a
choice of such a vector determines φ1 : L(λ1)→M . But then we do know that {F̃αr · · · F̃α1b1} ⊆ B,
and by uniqueness theorem this is φ1(B(λ1). So we take B r φ1(B(λ1)), and take the sublattice
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generated by it. We take the natural map M̃ → M̃/qM̃ , and let Ñ be the preimage of the sublattice
generated by b ∈ B rB(λ1). Then you can proceed by induction. �

So for sl(2) we know everything: every irrep is nice, so every rep is.

Now we come to the interesting part, which is to study the behavior of crystal bases under tensor
products.

Theorem 39.5 Let (M̃1, B1) and (M̃2, B2) be the crystal bases for M1,M2. Then
Ä
M̃1⊗M̃2, B1⊗

B2

ä
is a crystal base for M1 ⊗M2.

But here in fact this is not the usual tensor product: M1⊗M2 is the Kashiwara tensor product, in
which we take not the usual comultiplication but the twisted comultiplaction

∆′ = (ωτ ⊗ ωτ)∆(ωτ)

in which ω is the Cartan involution and τ is a certain antiautomorphism introduced earlier. In
formulas:

∆′(Eα) = Eα ⊗K−1
α + 1⊗ Eα (39.1)

∆′(Fα) = Fα ⊗ 1 +Kα ⊗ Fα (39.2)
∆′(Kµ) = Kµ ⊗Kµ (39.3)

and in fact we would like formulas for the divided powers

∆′(E(r)
α ) =

r∑
i=0

q−i(r−i)α E(i)
α ⊗ E(r−i)

α K−iα (39.4)

∆′(F (r)
α ) =

r∑
i=0

q−i(r−i)α F (i−r)
α Ki

α ⊗ F (i)
α (39.5)

Question from the audience: So why don’t I just use the original tensor product, and a different
definition of crystal base? We started with a definition that was asymmetric between Eα and Fα.
Answer: Well, then you would have to work with lowest vectors rather than highest vectors, and
probably with q−1 rather than q. But we will do it the way Kashiwara did it.

All of equations 39.1 to 39.5 are easily checked by induction.

In any case, if b ∈ B1 or B2, define eα(b) def= max{r s.t. F̃ rαb 6= 0}, and fα(b) = max{r s.t. Ẽrαb 6= 0}.
Then the theorem not only tells you that you have a crystal base, but it also tells you the recipe
by how the operators act. They act by simple formulas:

F̃α(b⊗ b′) =

{
F̃αb⊗ b′, if fα(b) > eα(b′)
b⊗ F̃αb′, if fα(b) ≤ eα(b′)

(39.6)

Ẽα(b⊗ b′) =

{
F̃αb⊗ b′, if fα(b) ≥ eα(b′)
b⊗ F̃αb′, if fα(b) < eα(b′)

(39.7)
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Question from the audience: Should we switch the definitions of e and f? Shouldn’t e go with
E? Answer: We think this is correct. We match our notation to [7].

Example 39.6 Let g = sl(3). If you take the standard representation V and multiply it by itself
— the crystal basis for V is terribly simple • • • . Then for V ⊗ V we get:

•

•

•

•

•

•

•

•

•

whereas for V ⊗ V ∗ you get:

•

•

•

•

•

•

•

•

•

These show hands-on the decompositions V ⊗2 = S2(V )⊕∧2(V ) and V ⊗ V ∗ = sl(3)⊕ 1. ♦

Finally, let’s mention that the proof can be reduced to the sl(2) case. Because (M̃,B) is a crystal
base iff it is for each Uα. And so it suffices to consider L(m)⊗L(n). And this case can be restricted
further, to the case of L(1)⊗L(n), because what you do is you realize L(m+1) as a direct summand
of L(m)⊗ L(1).

Next time is our last day; we will try to finish the proof.

Lecture 40 April 30, 2010

Today we prove the theorem we formulated last time:

Theorem 40.1 Let (M̃1, B1), (M̃2, B2) be crystal bases. Then (M̃1 ⊗ M̃2, B1 ⊗ B2) is a crystal
base for M1 ⊗M2, where the tensor product is given by the actions:

F̃α(b1 ⊗ b2) =

{
F̃αb1 ⊗ b2, fα(b1) > eα(b2)
b1 ⊗ F̃αb2, fα(b1) ≤ eα(b2)

(40.1)

Ẽα(b1 ⊗ b2) =

{
F̃αb1 ⊗ b2, fα(b1) ≥ eα(b2)
b1 ⊗ F̃αb2, fα(b1) < eα(b2)

(40.2)

Proof: So in principle it is sufficient to prove it in sl(2), because we have Uqαsl(2) ↪→ Uqg, and
q is transcendental. We will begin with the case when M1 = L(1) and M2 = L(m), and take
x ∈ L(1) and y ∈ L(m) highest vectors. Then we have M1⊗M2 = L(m+ 1)⊕L(m− 1), where the
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highest vectors are z0 = x⊗ y and z1 = x⊗Fy− qm[m]Fx⊗ y — the latter is a simple calculation.
Moreover, qm[m] ∈ qA.

Second, using the formulas equations 39.1 to 39.5, which are conveniently not erased, we see that:

F (r)z0 =

{
qrx⊗ F (r)y + Fx⊗ F (r−1)y, 0 < r < m+ 1
Fx⊗ F (m)y, r = m+ 1

(40.3)

F (r)z1 = [r + 1]qrx⊗ F (r+1)y − qm[m− r]Fx⊗ F (r)y (40.4)

Then the point is that all the coefficients belong to A, and [r + 1]qr = 1 mod q, and the terms
with qr vanish in the quotient by (q).

So we see that F (i)x⊗ F (j)y generate and admissible lattice, and moreover we do have:

F̃
Ä
x̄⊗ F̃ iȳ

ä
=

{
F̃ x̄⊗ ȳ, i = 0
x̄⊗ F̃ i+1ȳ, i > 0

(40.5)

F̃
Ä
F̃ x̄⊗ F̃ iȳ

ä
= F̃ x̄⊗ F̃ i+1ȳ (40.6)

If you like, you can think about this in terms of pictures. We have:

•

•

•

•

•

•

•

•

• • • •

• · · ·

• · · ·

· · ·

L(1)

L(m)

So this does it when M2 = L(m) and M1 = L(1).

Now we consider M1 ⊗ (M2 ⊗M3). Then we have:

F̃ (b1 ⊗ b2 ⊗ b3) =


F̃ b1 ⊗ b2 ⊗ b3, f(b1) > e(b2 ⊗ b3)
b1 ⊗ F̃ b2 ⊗ b3, f(b1) ≤ e(b2 ⊗ b3) and f(b2) > e(b3)
b1 ⊗ b2 ⊗ F̃ b3, f(b1) ≤ e(b2 ⊗ b3) and f(b2) ≤ e(b3)

(40.7)

Then we need also to consider (M1⊗M2)⊗M3. We will again have three cases: f(b1⊗ b2) > e(b3)
and f(b1) > e(b2); f(b1 ⊗ b2) > e(b3) and f(b2) ≤ e(b3); f(b1 ⊗ b2) ≤ e(b3). But there are simply
formulas for calculating:

f(b1 ⊗ b2) =

{
f(b1)− e(b2) + f(b2), f(b1) > e(b2)
f(b2), f(b1) ≤ e(b2)

(40.8)

e(b1 ⊗ b2) =

{
e(b1)− f(b2) + e(b2), f(b1) ≥ e(b2)
e(b2), f(b1) < e(b2)

(40.9)
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So then you see you can proceed by induction.

But then there are a number of things you have to do **I missed a bunch of what VS said
but did not write**. You use that every module can be obtained as some tensor product of some
small representations.

So in principle what we want to show is that in any irreducible representation, the canonical base
is unique up to multiplication by a scalar and obtained from the highest vector.

So here there is one more notion, which is called polarization. Let σ : Uq → Uop
q be given by

σ(Eα) = qαFαK
−1
α , σ(Fα) = q−1

α KαEα, and σ(Kµ) = Kµ. Then a bilinear form (, ) : M ×M → K
is σ-invariant or contragradient if (um,m′) = (m,σ(u)m′). Such forms have a number of properties:

1. ker(, ) is an invariant subspace.

2. (Mµ,Mν) = 0 if µ 6= ν.

3. If M =
⊕
M [λi] are the isotypic components M [λi] = L(λi)⊕r, then (M [λi],M [λj ]) = 0 if

i 6= j.

4. A simple L(λ) always admits a unique-up-to-scalar σ-invariant form.

Because see why: define M∗ a Uq-module by 〈uφ,m〉 = 〈φ, σ(u)m〉 — it is the dual vector
space, but the module structure is defined via σ, not the antipode. Then L(λ)∗ is irreducible
and has the same character as L(λ), and so therefore L(λ)∗ ∼= L(λ), and we can pick (, ) to
be such an isomorphism. Uniqueness follows from the property 1.

So what we will do is fix vλ ∈ L(λ), and then there is a unique form for which (vλ, vλ) = 1
— well, actually, not unique, because you can multiply by −1, but other than that it is.

5. Recall the other comultiplication from last time — this is the comultiplication with which we
are defining ⊗. Then ∆′ ◦ σ = (σ ⊗ σ) ◦∆′.

So, if you have a form (, )1 on M1 and (, )2 on M2, then you can construct (, ) on M1 ⊗M2

by (m1 ⊗m2,m
′
1 ⊗m′2) = (m1,m

′
1)1 ⊗ (m2,m

′
2)2.

6. Let M̃ be an admissible lattice. Then we ask for (, ) such that (, ) : M̃ × M̃ → A. Then it
has a lot of nice properties:

(Ẽαm,m′) = (m, F̃αm′) mod qA (40.10)

So if we are in such a situation, then we can define a form (, )0 : (M̃/qM̃)×2 → Q. Because of this,
we can define a polarization of (M̃,B) to be a σ-invariant form (, ) on M such that (M̃, M̃) ⊆ A,
and such that B is an orthonormal basis for (, )0, i.e. (b, b′)0 = δb,b′ .

Lemma 40.2 If (M̃,B) admits a polarization, then

1. M̃ = {x ∈M s.t. (x, x) ∈ A}.

2. M̃ =
⊕
M̃ ∩M [λi], where the sum is over isotypic components.
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We will skip the proof of 1. For 2., note that if x ∈ M̃ , we can write it as
∑
xλi , and so (xλi , xλi) ∈ A,

and so xλi ∈ M̃ ∩M [λi].

So we already know that the small representations admit crystal bases. And we can show that this
crystal base admits a polarization:

Proposition 40.3 Let L(λ) be a small representation. I.e. it is spanned by {xµ, hα}, where µ ∈
W ·λ and α ∈ Πsh — you need the hα only if L(λ) is not minuscule. So by brute force, you construct
your form, and check that it works:

(xµ, xν) = δµ,ν (hµ, xν) = 0 (40.11)

(hβ, hγ) =


1 + q2

β, β = γ

qβ, (β, γ) 6= 0
0, (β, γ) = 0

(40.12)

And then {x̄µ, h̄α} = B is an orthonormal base.

So finally we study what happens when we tensor, and for this we use a classical lemma:

Lemma 40.4 Let L(λ0 be small. Then L(λ)⊗ L(λ0) has the following components:

1. L(λ+ µ) with multiplicity 1 is µ ∈W · λ0 and λ+ µ ∈ P+.

2. In the not-minuscule case: L(λ) with multiplicity #{α ∈ Πsh s.t. (λ, α∨) > 0}.

To prove lemma 40.4, we use the Weyl character formula:

chL(λ) · chL(λ0) =
1
D

∑
w∈W
µ∈Wλ0

sign(w) ew(λ+ρ)+µ +
1
D

∣∣∣Πsh

∣∣∣ ∑
w∈W

sign(w) ew(λ+ρ) (40.13)

In the minuscule case, if w(λ + ρ) + µ is not dominant, then w(λ + ρ) + µ lies on a wall. So if
**missed** then it cancels.

In the second case, it could happen that λ + ρ + µ is not dominant, and so that means that
(λ+ ρ+α) = sα(λ+ ρ). Then this guy in the first sum in equation 40.13 cancels with a guy in the
second sum. So you get the cancelation, and that gives the multiplicites in lemma 40.4.

So on the other hand, we also can play with the crystal graphs. Since we are out of time, we will
just quote the result, which you can easily recover:

Lemma 40.5 Assume that
Ä
L̃(λ), B(λ)

ä
is a crystal base with polarization. If L(λ0) is small,

then we already know that L(λ0)⊗L(λ) admits a crystal base
Ä
L̃(λ0)⊗ L̃(λ), B(λ)⊗B(λ0)

ä
. Write

B = B(λ)⊗B(λ0) and M̃ = L̃(λ0)⊗L̃(λ). Then HW(Bν) = the multiplicity of L(ν) in L(λ0)⊗L(λ).

Moreover, M̃ =
⊕
M [ν]∩ M̃ , where the sum is over isotypic components. Since B is orthonormal,

it is also a sum of isotypic components: B =
⊔
B[ν]. Then HW(B[ν]) = multiplicity of L(ν) in

L(λ0) ⊗ L(λ). But then we must have B[ν]ν = {b1, . . . , bs}. Then we star applying F̃αs: we have
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F̃α1 . . . F̃αkbi, and they are disjoint because we can go back, and they generate everything because
if not then there is another highest vector. And we know that every vector in the canonical basis
comes from some highest vector, but if it doesn’t come form this one, then we must have another
highest vector. And we know how many there are. So in particular {F̃α1 . . . F̃αkbi} generates a
copy of L(ν) in L(λ0)⊗ L(λ), and so it gives us a canonical basis of L(ν) with polarization.

That means, again, that if λ was nice, then it’s still true for any ν inside the tensor product. So
now we can do induction on the weights. �
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G-vector bundle, 58

gauge transformations, 96
group Jordan-Chevalley decomposition, 36
grouplike, 92

Hamiltonian vector field, 45
Harish-Chandra homomorphism, 22, 69, 71, 95,

113
Harish-Chandra modules, 86
Harish-Chandra theorem, 116
Hecke algebra, 121
highest vector, 8
highest weight, 8
highest-weight representation, 8
Hilbert space, 38
Hopf algebra, 87

in duality, 97
induction functor, 59
irreducible, 38
isotypic components, 130
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nice, 123, 126
nilpotent cone, 27
nilradical, 51

Ore extensions, 93
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σ-invariant, 130
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skew extension, 93
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small quantum group, 101
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standard Borel, 52
Steinberg formula, 19
superman functor, 61
support, 54
Sweedler notation, 90
symplectic leaf, 45

tautolical line bundle, 63
topologically irreducible, 38
translation functors, 77
translation principle, 77
triangular decomposition, 6
twisted differential operators, 73
Type 1, 108

unitary operators, 38
unitary representation, 38
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