Quantum Homotopy Groups Histor Categorical Tools for Quantum Phases of Matter Perimeter Institute, 21 March 2024 Theo Johnson-Freyd, Perimeter & Dalhousie Based on joint work in progress with David Reutter http://categorified.net/Quantur Honotopy.pdf these slides: Sponsor message: TQFT Spring School, 20-25 Meg, St. John's NL http:// categorified.net/TQFT2024/

Classical homotopy groups:
Any space
$$X \longrightarrow group T_{\Sigma_1} X$$
.
 $\begin{cases} :P \times is \\ :utherety \\ Ruite \end{cases}$
 $\pi_2 X, \pi_3 X, ... : \pi_{\Sigma_1} X \rightarrow Ab6p, x \mapsto \pi_x(X, x)$
 $reiD signa model us and Neumann boundary$
The signa model "Knows" the homotopy $gps:$
 $H\left(\int S^{t} \times D^{n-tt} \right) = \int [\pi_x(X, x)]$ as a thole of:
 $Dirichlet Le. for xeX \\ Neumann Scielsector \qquad A = S^{t} \times (ochys)^{n-tt}$

Goal: Think of every not D TRFT w/ b.c. as a "signa - del w/ Neumann b.c" for some "quantum space" " extract homotopy gps of this "quantum space".

The quantum fundamental gooid fair is of!
Sppose Q is a (at less) once-extended open-close and TQFT
The 1-category Q(Dⁿ⁻¹) is symmetric monoidal if
$$n \ge 3$$
.
 $main s^{n-2}$ $main all (main s)$ $main all (main s)$
Tanakian Philosophy: Every symmetric monoidal category (C, $main s)$
should be thought of as Rep(I) for some goold I = "spect".
[Points of I]= [fibre functors C - Vec].
Think of these as choices or mybe inter be."
 $main bc.$ "
Motivating calculation: If Q is a signa model with Neuran here
then Q(D⁻²) = Rep(Trep target space).

So in an arbitrary open-closed TQFT, define $\pi_{\leq_1}Q := \text{Spec } Q(D^{-2})$

The quantum higher homotopy gps
Classically,
$$\pi_{c}X$$
 is an abelian gp [47 an action by $\pi_{c1}X$, $\pi_{c1}X$]
Quantize: Commutative and cocommutative Hopf of internal to $\operatorname{Rep}(\pi_{c1}X)$]
So I'm after Hopf algebra objects internal to $\operatorname{R}(D^{n-1})$.
Strategy: Take a solid non-anifold ($\mathcal{M}^{n}, \partial \mathcal{M}^{n-1}$). Take a
"bite" and of the boundary. Apply Q. This gives an object of $\operatorname{R}(D^{n-1})$.
Theorem: $(S^{K} \times D^{n-K}) \times \operatorname{bite}$ is a Hopf alg in D^{n-1} .
Multiplication = $(S^{K} \times \operatorname{chaps}^{n+1-K}) \times \operatorname{bite}$ chaps:= solid parts.
Comultiplication = $(\operatorname{parts}^{K+1} \times D^{n-K}) \times \operatorname{bite}$ es. $\int = \operatorname{chaps}^{2}$.
"CPT: antipode = $(\operatorname{reflect} \operatorname{one}) \times (\operatorname{reflect} \operatorname{one})$, then untwist framings
The bite makes $S^{K} \times D^{n-K} \cong S^{K}$ into a based sphere. $\operatorname{parts}^{K+1} = \pi_{K}$ composition

Interpretation: X=vac, Y= some QFT, f= Neuman b.e., g= Dirichtet b.c., f= "Neum A Dir"

A homomorphism between Fiderius (-Hopf) algebras doesn't have a
(ategorical adjoint, but it does have a **linear adjoint** lefted
by the Frobenius pairings. In the twisted case, the adjoint is
olf by some invertible objects:

$$\begin{pmatrix} f \\ h \end{pmatrix}^{\dagger} := A \begin{pmatrix} f \\ h \end{pmatrix}^{\dagger} = A \begin{pmatrix} f \\ h \end{pmatrix}^{\dagger} =$$

(Twister) Frabenius - Hopf exact sequences

Poposition: If A -> B -> C is a sequence of finite gps which is exact at B. then the square of group algebras KA KB is FHBC. The converse (FHBC=) mildle-exact) L LKg holds if |Ker(g) ≠0 in K (e.g. : f KB is regular) K → KC Definition: A sequence ... > A > B > C >... of Hopf algebras in a braided monoidal category should have A 315 C at each entry. A sequence of (fuisted Fraberius) Hopf algebras is Foll-Hopf exact if these squares are FHBC. Example: If A -> B -> C is FH exact at B and A and C are regular, then B = 1 is the trivial Hopf algebra. FH exactness is not very strong in the irregular case.

The quantur Puppe seguence Given a fibre bundle F->Y , get a LES of TIE, Y-equivariant homotopy gps ... $\rightarrow \pi_{\kappa} \vdash \neg \pi_{\kappa} \vee \neg \pi_{\kappa} \times \rightarrow \pi_{\kappa-1} \vdash \neg \dots$ Quinter encoding: X mi signa model a/ Neur b.c. ×××× J m) another b.c., a corner YY This is a relative open-closed TQFT. Main Theorem: Every relative open-closed TQFT produces a FHLES of guntur homotopy gps. Exple: Calculate for Dulk The Hopf algebras end up measuring fusion rings of observables in bulk + boundary. The differential measures the Hopf Link. Corollary: Bulk is invertible (=> "higher S-metrix".