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1. Requirements on resulting vector space

As a consequence of geometric quantization, we hope to get a 3-maniold invariant, or equivalently a
3-dimensional TQFT functor. There are 2 properties we might expect.

• Independent of choices : we might require that it does not depend on choices such as a metric,
complex structre etc. on Σ., even though we used them to construct Z(Σ).

• Action of mapping class group : we want Z(Σ) to have a mapping class group action. Why? Recall
our definition of TQFT functor(Sean’s talk). It is a functor Z : Bord23 → V ectC which is cobordism
generated, involutive, and multiplicative. Here Bord23 is a category whose objects are smooth closed
oriented surfaces and morphisms are isotopy classes of smooth oriented compact cobordism between
surfaces. Now suppose we are given an orientation preserving diffeomorphism f : Σ → Σ, and a
3-manifold M with boundary ∂M = Σ. Recall that Z(M) is a vector in Z(Σ). Gluing M to Σ× [0, 1]
via f gives a new 3-manifold whose boundary is Σ, which again corresponds to a vector in Z(Σ)
udner Z. Thus f extends to a linear automorphism of Z(Σ). This implies that we have an action of
Diff+(Σ) on Z(Σ). Since morphisms of Bord23 are defined upto isotopy, in fact we have an action
of mapping class group MCG(Σ) on Z(Σ).

Our goal is to construct such Z(Σ).

2. Kahler structure on the moduli space

We have seen that the moduli space M of flat connections over a closed riemann surface Σ admits
a symplectic structure. The sympectic form is induced from the symplectic form ω̃ on the space of all
connections A, which is defined as follows.

ω̃(A,B) =
∫

Σ
< A,B >

where A,B ∈ Ω1(Σ, adP ). Here we identified A with Ω1(Σ, adP ). M is obtained as a symplectic quotient
of A where the moment map is given by curvature F and the gauge group is G. Denote the induced symplectic
form on M by ω. We will apply a procedure of geometric quantization via Kahler polarization to (M, ω).
In fact, we will quantize (M, kω) for any positive integer k.

To talk about a Kahler structure onM, we need to specify a complex structure onM. We give a complex
structure on M as follows. Pick a complex structure J on Σ. J induces a complex structure on A, say JA.
We can check that (A, JA, ω̃) is Kahler. Note that the action of G on A extends to an action of GC, the
complexification of G, on (A, JA).

The complex structure JA induces a complex structure on A as follows. Fix any A ∈ M and Ã ∈orbit
of A in F−1(0). Then TAM' TÃF−1(0)/T (g). Here T (g) is a subspace of TÃF

−1(0) generated by G. One
can check that

TÃF
−1(0)/T (g) ' TÃA/Tc(gC).

at least for finite dimensional symplectic quotient. Since the right hand side has a complex structre which
is induced from A, so is TAM. However it is not clear that with this complex structre, (M, ω) is Kahler.

To see this, assume G = U(n) for a while. Let M be a complex manifold. Recall that there is a bijection
between {connection on U(n) principal bunlde P over M} and {connection on rank n Hermitian vector
bundle E over M which is compatible with metric}. We will think of a connection as an element of the right
hand side for a while.
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Note that E is just a smooth complex vector bundle. If there is a holomorphic structre E on E, then it
defines an operator ∂̄E : Ωp,q(E) → Ωp,q+1(E) satisfying Leibniz rule. Also note that by taking (0, 1) part,
any connection A on E defines ∂̄A : Ωp,q(E)→ Ωp,q+1(E) which satisfies the Leibniz rule.

Definition 2.1. A partial connection is a C-linear operator ∂̄ : Ω0,0(E)→ Ω0,1(E) which satisfy the Leibniz
rule.

Any partial connection extends to a family of operators from Ωp,q(E) to Ωp,q+1(E). Holomorphic structres
and connections induce partial connections. Question : Given a parital connection, how can we know that
it is induced from a connection or a holomorphic structure?

Lemma 2.2. For any partial connection ∂̄ on E, there exists a unique connection A such that ∂̄A = ∂.

Proof. Let α be a connection 1-form of ∂. Define connection 1-from of A by α − α∗. It actually defines a
connection and unitarity imposes that this is the only possibility. �

Theorem 2.3. A partial connection ∂ on a smooth complex vector bundle E over M comes from a holo-
morphic structure if and only if ∂2 = 0.

Proof. See section 2.2.2. of [2]. �

To summarize, we have a bijection between {holomorphic structure on E} and A1,1 :={ unitary connec-
tions whose curvature is of (1,1) type}. Indeed, a holomprhic structure E defines a partial differential, and
by the lemma this partial differential defines a unitary connection. Its curvature satisfies F 0,2 = ∂2 = 0 and
F 2,0 = −(F 0,2)∗ = 0 hence of (1, 1) type. Conversely, any element in A1,1 defines a partial connection ∂̄A,
and ∂̄2

A = 0 since curvature of A is (1,1) type. By the theorem, ∂̄A comes from a holomorphic structure on
E.

Also note that a holomorphic structure on E correspond to a holomorphic structure on comlexified prin-
cipal GC bundle PC over M .

If M = Σ, riemann surface with complex structure J , any connection has a curvature of (1,1) type. Thus
we have A/GC=moduli space of holomorphic structure on PC →M . We may write this space as MJ .

By the theorem, we have a map i :M→MJ from the moduli space of flat connections to moduli space
of holomorphic structures. Geometric invariant theory says following. See e.g. [4]

Theorem 2.4. • MJ is a complex projective variety.
• i is a diffeomorphism
• symplectic form on M becomes a Kahler form on MJ under i.

analogy : X = Cn+1 − {0}, G = GL1(C) = KC acts on X where K = U(1). There is a momoent map
µ : X → Lie(K) = R. X/G is a complex projective variety CPn which can be seen as a symplectic quotient
µ−1(1)/K = S2n+1/U(1) = CPn. X(resp. K, G, X/G, µ−1(1)/K) correspond to A(resp. G, GC, MJ , M).

So far we have talked about U(n), but the theorem is true for other nice Lie groups. That is, A/GC
is a moduli space of holomorphic structure on complexified principal bundle, i is a diffeomorphism, MJ is
Kahler and the symplectic form onM is a Kahler form onMJ . Note that we have an isomorphism between
tangent spaces which mentioned before: TAM' TÃA/T (gC).

We have an another observation: isotopic compelx structures J and J ′ give the same complex structure
on M. Suppose f is an orientation preserving diffeomorphism which is isotopic to the identity such that
f∗J ′ = J .

We have a following diagram. f∗ : M′J → MJ is a pull back of holomorphic structure. If we identify

M with Hom(π1(Σ), G)/G, then i−1
J ◦ f∗ ◦ iJ′ is just the identity because a diffeomorphism isotopic to the

identity induces the identity map between fundamental groups. Thus a complex sturcture ofMJ depend on
a compelx structure J on Σ only up to isotopy.

Hom(π1(Σ), G)/G

f∗=id

��

M
iJ′ //

i−1
J ◦f

∗◦iJ′
��

MJ′

f∗

��
Hom(π1(Σ), G)/G M iJ //MJ
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So we have : M× T → T where T is the Teichmuller space, and whose fiber at J is a Kahler manifold
MJ . All fibers are M as a symplectic manifold, but with different Kahler structre. We have many choices
which is parametrized by Teichmuller space to apply Kahler polarization.

3. Determinant Line bundle

In this section, we will find the prequantum line bundle to apply geometric quantization. Reference for
this section is [5]. We saw that a holomorphic structure E on E defines an operator ∂̃ : Ω0,0(E)→ Ω0,1(E).
Consider all of these operators. We can identify

space of ∂ operators ' Ω0,1(E) ' Ω1(EndE) ' A
We define 1-dimensional C vector space associated to an element in Ω0,1(EndE).

Definition 3.1. For any D ∈ Ω0,1(EndE), define LD = Λ(KerD)∗ ⊗ Λ(CokerD)

Here Λ denotes the top exterior power. Note that since we are working over Riemann surfaces, KerD
and CokerD are E-valued Dolbeualt cohomology. i.e. KerD ' H0,0(Σ, E), CokerD = H0,1(Σ, E). Hence
they are finite dimensional by the Hodge theorem.

We defined a 1-dimensional complex vector space correspond to each point in Ω0,1(EndE). There is a way
to give a trivialization so that the family of LD forms a holomorphic line bundle over Ω0,1(EndE), hence on
A after choosing complex sturcture on Σ. This line bundle is called the determinant line bundle. We may
write the determinant line bundle as L.

Now we choose an inner product on E and Σ. This will induce inner products on Ω0,q(E) so that we can
define an adjoint D∗ for each D. Also we have induced inner products on KerD and CokerD = KerD∗.
This will give an inner product on LD. But we do further. Definte zeta function of D∗D by ζ(s) =

∑
λ−s

where the sum is taken over eigenvalues of D∗D. ζ(s) is holomorphic for Re(s)� 0 and it can be continued
to a meromorphic function on C. We define an inner product on LD as an inner prouct on LD induced
from KerD and KerD∗ times exp(ζ ′(0)). We consider the connection on the line bundle L → A which is
compatible with this metric.

Theorem 3.2. The curvature of the connection is equal to the symplectic form on A.

Restict L to flat connections. Taking quotient by gauge group, we have a line bundle LM over M.
Abusing notation, we may write L for LM . So far we have talked about a vector bundle. We can do the
same procedure to principal bundles by fixing a representation of G and considering associated vector bundle.

One might worry about that the determinant line bundle depend on a choice of complex sturcture on
Σ. However we can choose canonical one. Indeed, we know that prequantum line bundles are parametrized
by H1(M, U(1))(Nilay’s talk), and for a compact semisimple G, H1(M, U(1)) is finite.1. Thus we have a
map from the Teichmuller space T to H1(M, U(1)) which sends a complex sturctre J to the determinant
line bundle associated to J . Since T is connected and H1(M, U(1)) is finite, image is singleton. This is
the prequnatum line bundle we want. Now we have a vector bundle, which we will call prequnatum bundle,
Hpr = Γ(MJ ,L)× T over T .

4. Main theorem

Now we can apply a geometric quantization via Kahler polarization to each L → MJ . Varing over T ,
we have a bundle whose fiber at at J is a space of holomorphic sections of L →M. This is in fact a vector
bundle. That is, each fiber has the same dimension.

Recall that we want to quantize (M, kω) for every positive integer k. To do this, we consider prequantum
line bundle L⊗K . We can show the following.

Proposition 4.1. dimH0(MJ ,L⊗K) does not depend of J .

Proof. For simplicity, we assume that k is large enough. By Riemann-Roch theorem,
∑

(−1)idimHi(M,L⊗k)
is a topological invariant. By Serre duality, we have Hi(M,L⊗k) ' Hn−i(M,K ⊗ L⊗−k). c1(KL⊗−k) =
c1(K) − kc1(L) and c1(L) = ω. Thus if k is large, K ⊗ L⊗−k is negative. By Kodaira vanishing theorem,
Hn−i(M,K ⊗ L⊗−k) = 0 for i > 0. So H0(M,L⊗k) is topological hence does not depend on J . �

1[1], p.819.
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Mapping class group action. Fix a principal bundle P over Σ. After choosing an element of H4(BG,Z),
one can define R/2πZ valued Chern-Simons functional S for 3-manifolds with boundary. Since S is R/2πZ-
valued, eiS is well defined. Let Aut(P ) be the automorphism group of P , not necessarily base preserving.
We define ρ : Aut(P ) × A → U(1) by ρ(Φ, A) = eiS(M0,P0,A0). Here M0(resp.P0, A0) is a 3-manifold with
boundary(resp. principal bundle, connection) obtained by identifying gluing two P × I → Σ× I via Φ. As
a result of gluing, we have again a 3-manifold with boundary of topological type Σ× I. Let Aut(P )′ be the
subgroup Aut(P ) consisting of lifting of diffeomorphisms of Σ which are isotopic to the identity. Then ρ
induces a map Aut(P )/Aut(P )′×A → U(1). Note that ΓΣ,P := Aut(P )/Aut(P )′ is the subgroup of mapping
class group, whose elements are diffeomorphisms fixing topological type of P . After taking restriction and
quotient, we have a ΓΣ,P ×M → U(1) which gives an action of ΓΣ,P on the line bundle L. Now we can
state the main theorem.

Theorem 4.2. M : moduli space of flat connections of G → P → Σ. L : prequnatum line bundle with
an action of ΓΣ,P . T : Teichmuller space of Σ. Let quantum bundle HQ be the vector bundle whose fiber
at J ∈ T is H0(MJ ,L). There is a projectively flat connection on the bundle HQ which is invariant under
ΓΣ,P action. In particular, we get a projective representation of ΓΣ,P .

A connection is projectively flat if its curvature R(X,Y ) is constant multiplication at each point for all
vector fields X,Y . Recall that in geometric quantization, multiplication by constant has no effect hence only
projectivization is canonically defined. This theorem implies that we can identify all vector spaces obtained
by geometric quantization of MJ for all J . Hence we can say that the space of projectively flat sections of
the bundle HQ is the vector space obtained by geometric quantization of Chern-Simons theory via Kahler
polarization.
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