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1. Introduction

My goal today is to braid back together the various lectures we’ve had so far. I won’t try to
set up the results completely precisely, aiming instead for intuition and outline, and I’ll stick to
the SU(2) case. The best results in the literature are due to Andersen and Ueno, who prove that
in the SU(n) case the RT/BHMV tqft is isomorphic to a tqft coming from geometric quantization
and conformal field theory. Those papers are very recent, and depend on quite a lot of work, and
no one has written up similar results away from type-A. According to a MathOverflow discussion
between Jørgen Andersen and André Henriques, the result for all types (so at least covering all
connected simply connected compact groups) can be extracted with some care from the existing
literature — you patch together results by a whole lot of authors. Oh, and the tori and the finite
groups are easier, so probably you could piece together everything. Probably there needs to be a
book covering all details.

2. Geometric set-up

So, anyway, where to start? Let Σ be an oriented surface, and G = SU(2). There is a space
LocG(Σ) of G-local systems on Σ, which is of mathematical interest (because G-bundles are in-
teresting, and flat ones are...). This space is really a derived stack, but for most of its life it’s
been a singular manifold. It carries a symplectic structure and a prequantum line bundle — these
are canonical once you pick a generator of H4(BG) and an orientation of Σ, via what we now
understand as a transgression (or “AKSZ”) construction. (You pull back something from BG to
Σ× LocG(Σ), and then integrate over Σ.) In physics, LocG(Σ) is called the “classical phase space
for Chern-Simons theory”. See, the Chern-Simons functional has as its critical points the flat con-
nections, so in physics “Chern-Simons” and “flat bundle” mean the same thing (critical points =
solutions to EOM, because the Euler–Lagrange equations are dCS = 0). The physical theory is
one of a “pure gauge field” (meaning there’s no “matter” fields, i.e. nothing for the gauge bundle
to act on) with this “action”. It’s a general property of Euler–Lagrange theory that critical loci
over cylinders are symplectic.

We want to quantize this theory, because that will be something about “quantum flat bundles”
or “local systems for a quantum group” or something like that, and because quantization tends to
be interesting. To do this, we need to break some symmetry in the system. In physical language, we
“couple to gravity”, meaning that we fix some background metric on Σ. As Pyongwon explained,
any such choice gives a Kahler quantization. Now let the metric vary: the quantizations package
together into a vector bundle over Teichmuller space TΣ, whose corresponding projective bundle
is flat. (To actually put a projectively flat connection, you need to pick a Lagrangian in H2(Σ).)
The generator of H4(BG) determined a prequantum line bundle L; k times the generator gives

the prequantum line bundle L⊗k, and its quantization I will call H(k), which is a bundle over
Teichmuller space.

By definition, Teichmuller space is the space of complex structures on a surface Σ. I.e. complex
curves with topology Σ. There are natural families of complex curves. For example, you could
pick a simple closed cycle on Σ, and squeeze it down to a point. Conformally, that’s the same as
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stretching the “neck” through that cycle to be very long. The limiting object is a nodal curve. This
defines a boundary of Teichmuller space, in which you go out to these nodal curves. Andersen and
Ueno showed that the vector bundle H(k) extends out to this boundary, and the projectively-flat
connection projectively-extends (by which I mean that it blows up, but not very badly, and only

as a scalar, so the flat connection on PH(k) extends.)

3. Bohr–Sommerfeld description

Last week I gave an independent description of the values of H(k) on the 0-dimensional locus
in ∂TΣ, i.e. where Σ has degenerated to a bunch of thrice-punctured P1s linked together. The
Kahler polarization used in the bulk of TΣ degenerates to a real polarization, and I described the
corresponding Hilbert space in terms of Bohr–Sommerfeld orbits.

At level k, these were indexed by assignments of numbers 0, . . . , k to each of the cutting circles
(i.e. the nodal points). (For other groups G, the indices range over positive weights of height
bounded by k.) These were subject to a condition from each pair of pants (P1). Suppose the
indices on the three ends are i1, i2, i3. Then the conditions are that i1 + i2 + i3 is even and at most
2k and that i1, i2, i3 solve the triangle inequalities. These are called the Clebsch–Gordon rules.

As a reality check, let’s see that number of Bohr–Sommerfeld points is independent of the pants
decomposition. (It would have to be if we are going to have a vector bundle, since this number is
the dimension of Hilbert space.) How should we calculate? There is a particularly simple lattice
model that calculates this. Namely, replace nodal Σ with a trivalent graph, and consider a model in
which spins are assigned to edges and the spins are numbers 0, . . . , k. Let’s say that the Boltzmann
weights are assigned to the vertices, and are 0 or 1 depending on whether the Clebsch–Gordon rules
are satisfied. Then the partition function is the number of Bohr–Sommerfeld points.

But now note that this lattice model satisfies the following simple property *I=H*. Corollary:
the partition function only depends on the genus. Exercise: write down that formula. It’s the
Verlinde formula.

4. Fusion rings

The above property tells you something more. Consider the vector space with basis {0, . . . , k}.
Then the Boltzmann weights define an associative product on this vector space, which is in fact a
commutative unital (via 0) Frobenius (via the obvious pairing) algebra.

A Fusion ring is a unital Frobenius algebra with a basis in which all structure coefficients are
nonnegative integers. Fusion rings invite categorification, because the first ones arose in Frobenius’s
work on finite groups, namely as the representation rings of finite groups. (More generally, if you
have integer Boltzman weights, you could try to find a “categorified lattice model” in which the
spins are objects of a category, and the weights are vector spaces. These arise in relation to “foam”
models, where the spins are on the 2-cells of a soap foam.) In our case, the answer clearly should
have something to do with the representations of SU(2), because those already satisfy the “infinite
k” version of the Clebsh–Gordon rules (triangle + even, no bound).

I actually already told you the (essentially unique) categorification of this ring. I described it in
terms of Temperley–Lieb algebra by setting quantum parameter q to exp(2πi/(k + 2)), and then
killing negligible morphisms. There’s a Schur–Weyl dual description: you take Jimbo’s Hopf algebra
Uqsl(2) and look just at the completely reducible finite-dimensional modules, which is a braided
monoidal subcategory, and in fact is the representation category of a certain quotient Hopf algebra
called U s.s.

q sl(2), where “s.s.” stands for “semisimplified”. (In the SU(N) case, you can do exactly
the same thing, on the Weyl side building a version of Hecke category at q = exp(2πi/(k + N))
and killing negligibles, and on the Schur side building a quotient of Uqsl(n). In the BCD types,
I think Kauffman has described the appropriate Weyl-side categories, but I don’t remember the
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details, and I’m not sure what’s been explored in exceptional types, although Kuperberg’s spiders
definitely do the case of rank 2, including exceptional type G2.)

So we get a “categorified lattice model”, and the associativity isomorphism still lets you change
the graph to a different one with the same genus. So you get a well-defined vector space depending
just on the genus — almost. A ribbon graph would give you a well-defined vector space, but the
braiding is not a symmetry, so you should think of this as assigned to just the trivalent graph, but
rather really to the surface. Also, there’s holonomy when you go around the mapping class group,
and the cutting circles are secretly picking out a Lagrangian in H1(Σ), and you pick up projective
effects when you change that.

5. Skein theory

Since we have a skein-theoretic description of the fusion category, we can get one of this vector
space. Remember that object i ∈ {0, . . . , k} corresponded to the unique idempotent on i strands
in TL category orthogonal to all U -generators of the i-strand TL algebra. Because we have a
braiding, but a nontrivial Reidemeister-1, we should think of these strands not as living on a plane
but in a 3-space, and being framed or ribbon there. Consider the solid 3-ball, which is the interior
of P1, and three marked points on the boundary. Put i1, i2, i3 strands entering the 3-ball at each
of the three marked points, and a JW-idempotent near there. Then ask: what are all ways to fill
in the 3-ball to connect these up? Naturally you can add and subtract these, by using the skein
laws, so there’s a vector space of possible ways. This vector space is precisely hom(i1 ⊗ i2, i3) in
the category (and I’m using that i∗ = i). The associativity then says that if you were to look at a
solid ball with four marked points, you’d get a skein module that you could compute as a tensor
product of the 3-marked-point skein modules in various ways.

So any filling of Σ by a handlebody, even if you didn’t pick cutting circles, gives you a skein
module, and this is the vector space we’re after. But, actually, this is precisely the vector space
assigned by BHMV construction that Sean discussed. See, he built his vector spaces by looking at
fillings, and his manifolds were allowed to have these ribbons in them, and the theorem that made
the construction tick was that actually every filling was equivalent to a handlebody, because of a
way to remove 2-handles (nothing but a certain surgery formula).

6. Conclusion

Ok, so Jeffrey–Weitsman and BHMV constructions give the same dimensions of vector spaces,
and I assert that Kahler approach does as well. This is not good enough to prove that the TQFTs
are the same. To do so, you have to work hard. The zeroth step is to make sure that everyone
makes sense on marked or punctured surfaces, where the special points are labeled, and that there
are “lattice model” rules for connecting up at the punctures. The first hard step is to make
sure that everyone satisfies the same axioms (namely, Walker’s topological version of the axioms
of a “Modular functor”). The second hard step is to prove that modular functors are uniquely
determined by their genus-zero data: if you and I agree on genus-zero marked curves, then we
agree. Finally, you need to actually build a natural isomorphism on the genus-zero parts, which
really involves careful study of Kahler quantization of LocG(P1

n), where n is the number of marked
points, including how to cut and glue. A remark for those who like operads: the point is that
there’s an intimate relationship between moduli space of curves and the framed E2 operad.
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