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1 Hook

The current problems I’m working on all sort of come out of some work that Nir Avni and Avraham
Aizenbud did together over the past few years. Here’s the question: given a group G, what can you
say about the number of n-dimensional irreps as n grows? We know the answer for some classes of
groups (If you’re a compact simple Lie group, the number of irreps of dimension n or less grows as
nα(L)+o(1) where α(L) = rkL

|Φ+| [in particular, the term on the left is at most 1 and tends to 0 as the

dimension of L goes to infinity]) but not too much about the p-adic case: there’s a uniform lower
bound of α(G) > 1/15 and previous work of Larsen and Lubotzky showed that α(G) ≤ 3 dimG+1.

The big theorem is essentially the following:

Theorem 1.1. (A-A ’14) Let G be a semisimple algebraic group defined over Qp with Γ a compact
open subgroup of G(Qp). Then there exists a constant C independent of G such that the number of
n-dimensional representations of Γ grows slower than nC . C may be taken to be 3 dim(E8)+1 = 745.
These bounds also hold over local fields of large enough characteristic.

Additionally, the coarse moduli space of G-local systems on a smooth projective curve of genus
at least dC/2e+ 1 = 374 has rational singularities.

Recent (unpublished) work has C down to 100, and it should probably drop some more (I would
guess maybe somewhere in the 90s- this is actually a modified graph-coloring problem [don’t ask
me to describe the graphs!]). I can give you an exact table if you want:

G B(G)

An 22
BCn 22
Dn 40
G2 6
F4 18
E6 25
E7 44
E8 100

The bounds above are the best this method can do (except on E7 and E8).
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Here’s where I tell you a little about how this is proven, connect it up to some concepts we’ve talked
about in this class, and then later I’ll tell you about what I actually do (because it’s an extension
of some of the techniques of the proof).

Definition Deformation Variety. Let Γ be a group and π the fundamental group of a closed
orientable surface of genus n ≥ 2. The deformation space of π inside Γ is the set of homs from
π to Γ- we’ll call it DefΓ,n. For groups with adjectives, this deformation space inherits those
adjectives- if Γ is an algebraic/p-adic analytic/topological group, then DefΓ,n is a variety/p-adic
analytic variety/topological space.

Let G be an algebraic group defined over a local field F . The geometry of DefG,n can be
connected to the representation theorey of compact open subgroups of G(F ) and these connections
lead to results on the singularities of the deformation variety and the asymptotic representation
theory

Basically what we’re going to do is we’re going to get a souped up version of something Frobenius
did:

Theorem 2.1. Let Γ be a finite group and let n ≥ 1 an integer. For every g ∈ Γ the number of
solutions to [x1, y1] · · · [xn, yn] = g is equal to

|Γ|2n−1
∑

χ∈Irr(Γ)

χ(g)

χ(1)2n−1

To get from finite to pro-finite groups, we’ll need some notation to make things easier on
ourselves:

Definition Let Γ a group, n ≥ 1 an integer. Let ΦΓ,n : Γ2n → Γ be the map

Φ(x1, y1, · · · , xn, yn) = [x1, y1] · · · [xn, yn]

Definition Let X,Y be measure spaces with m a measure on X and f : X → Y a measurable
function. Then we call f∗m the pushforward of m along f - it’s a measure on Y defined by f∗m(A) =
m(f−1(A)) for all A ⊂ Y .

With these two definitions in mind, I can tell you the souped up version of our previous theorem
of Frobenius:

Theorem 2.2. (Souped up version of 2.1) Let Γ a finitely generated profinite group with Γ(i)i∈N a
decreasing chain of open normal subgroups with trivial intersection. Let n ≥ 2 an integer. Denote
the normalized Haar measure on Γ by λΓ and the normalized Haar measure on Γ2n by λΓ2n. TFAE:

1. The measure (ΦΓ,n)∗λΓ2n has continuous density with respect to λΓ.
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2. The series
∑

χ∈IrrΓ χ(1)2−2n converges.

If either of these hold, the density of (ΦΓ,n)∗λΓ2n is given by

g 7→
∑

χ∈Irr(Γ)

χ(g)

χ(1)2n−1

Condition 2 above leads you to the asymptotic representation theory results. Here’s how:
For a topological group Γ, denote the number of non-isomorphich continuous complex irreps with
dimension at most n by Rn(Γ). If Γ is fg profinite, a necessary an sufficient condition for Rn(Γ)
being finite for all n is that every finite-index subgroup of Γ has a finite abelianization (this condtion
is called FAb). Some examples of these things are compact opens in semi-simple algebraic groups
over local fields.

For polynomially bounded Rn(Γ), ie there exists a constant C such that for all n we have
Rn(Γ) ≤ CnC we can introduce the representation zeta function:

ζΓ(s) =
∑
χ∈IrrΓ

χ(1)−s

which is defined for s ∈ C with Re(s) ≥ C + 1.
By a theorem of Jaikin-Zapirain, we have that ζΓ(s) has meromorphic continuation to the whole

complex plane, and there’s a rational number α(Γ) such that Rn(Γ) = nα(Γ)+o(1). This α(Γ) is the
maximum of the real values of the poles of ζΓ(s), but we don’t know it’s exact value. We can get
some bounds on it via studying the deformation variety, though.

Theorem 2.3. (A-A ’14) Let G be semi-simple algebraic group defined over a finitely generated
field k of characteristic 0. TFAE:

1. (1, · · · , 1) is a rational singularity of DefG,n = (ΦG,n)−1(1).

2. ΦG,n is flat with rational singularities.

3. For every non-archimedean local field F containing k and every compact open Γ ⊂ G(F ), we
have α(Γ) < 2n− 2.

4. For every finite extension k′/k, there is a local field F ′ containing k′ and compact open
Γ ⊂ G(F ) such that α(Γ) < 2n− 2.

Something else that you can use this representation zeta function to do is an analogue of a
computation of Witten:

Theorem 2.4. (A-A ’14) Let G a semisimple algebraic group defined over a non-archimedean field
F of characteristic 0 with Γ ⊂ G(F ) a compact open subgroup and Σ a compact orientable surface.
The collection of Γ-local systems on Σ is in bijection with DefΓ,n/Γ, where Γ acts by conjugation.

Restricting to the open homomorphisms, ie those ρ ∈ DefΓ,n such that the closure of ρ(π1(Σ))
is open in Γ, we obtain an open, dense, Γ-invariant subset of DefΓ,n and the quotient DefopenΓ,n /Γ is
a p-adic analytic manifold with volume

|Z(Γ)| · (µ(Γ))2n−2 · ζΓ(2n− 2)
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Another result in the spirit of this class that you can give is the following, having to do with
the coarse moduli space of G-bundles on projective curves of high enough genus:

Theorem 2.5. Let G a semi-simple algebraic group over a field k of characteristic 0 and n an
integer such that n ≥ B(G)/2 + 1, where B(G) = maxg|Lie(G)⊗k(B(g)). Then the map ΦG,n : G2n →
G is flat with rational singularities.

In particular, the deformation variety, which is equal to Φ−1(1), has rational singularities if n ≥
B(G)/2+1. By a theorem of Boutout, the categorical quotient DefG,n/G has rational singularities.
When k = C, and we take a fixed smooth projective curve Σ of genus n, the Riemann-Hilbert
correspondence tells us that analytically, this quotient of our deformation variety is isomorphic
to the coarse moduli space of G-principal bundles with a connection on Σ. Since the notion of
rational singularities only depends on the underlying analytic variety, I can the specialize to flat
connections.

Something else you might care about is that this volume formula gives you some information
about topological field theories- particularly, Dijkgraaf-Witten TQFTs (this is essentially the finite-
group version of Chern-Simons theory). Let G be a group scheme over Zp with a semisimple
generic fiber. Consider the D-W TQFTs Zr with gauge groups G(Z/pr) and trivial Lagrangian (ie
pick [0] ∈ H2(B(G(Z/pr)),R/Z)). For any compact orientable surface Σ we have that Zr(Σ) =
ζG(Z/pr)(−χ(Σ)) where χ(Σ) is the Euler characteristic. If Σ has genus at least B(G×SpecZp SpecQp),
then the limit limr→∞ Zr(Σ) exists.

3 Sinker

By now I’ve thrown up several TFAE statements and I haven’t really provided any idea of how you
prove any of these statements. The key piece of the puzzle comes in talking about pushforwards of
smooth measures. Here’s some relevant definitions:

Definition Let X be a smooth d-dimensional variety over a non-archimedean local field F . Let
O ⊂ F be the ring of integers.

1. A measure m on X(F ) is called smooth if every F -point has an analytic neighborhood U and
analytic diffeomorphism f : U → Od such that f∗m is a Haar measure on Od.

2. A measure on the F -points of X is called Schwartz if it’s smooth and compactly supported.

3. We say that a measure on X(F ) has continuous density if there’s a smooth measure m and
a continuous function f : X(F )→ C such that µ = f ·m.

Nir and Rami covered this question for p-adic maps and pushforwards of p-adic measures. The
statement is as follows:

Theorem 3.1. Let X and Y be smooth irreducible varieties over a local field F of characteristic
0, and let ϕ : X → Y .
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1. Assume that ϕ is flat with rational singularities. Then, for every Schwartz measure m on
X(F ), the pushforwards ϕ∗m has continuous density.

2. Conversely, assume that for every finite extension F ′/F and every Schwartz measure m′ on
X(F ′), the measure ϕ∗m

′ has continuous density. Then ϕ is flat with rational singularities.

Additionally, if ϕ is flat with rational singularities and ωX is a nowhere-vanishing regular top
differential form on XF with ωY a regular and nowhere-vanishing regular top differential form on
YF with f : X(F )→ C a Schwartz function, the density of ϕ∗(f |ωX |) with respect to |ωY | is given
by

ϕ∗(f |ωX |)
|ωY |

(y) =

∫
(ϕ−1(y)∩X)(F )

f ·
∣∣∣∣ ωXϕ∗ωY

|(ϕ−1(y)∩X)(F )

∣∣∣∣
(in particular, the integral on the right hand side converges.)

This theorem is obvious enough if ϕ is smooth- that’s certainly a sufficient condition. Finding
a necessary condition is difficult- Nir and Rami showed that rational singularities is also sufficient
for the p-adic case, and a little stronger. You’d also like to know if the theorem would work over
archimedean fields- R or C. These are the questions I’m thinking about.

If I have time, here’s my favorite/an instructional example: consider f : A2 → A1 given by
(x, y) 7→ x2 + y2. I’ll compute the density function for both R and C. Actually, I won’t quite
compute the density function, we’ll just investigate the places it could blow up and become non-
continuous with respect to the standard measure on A1 given by |dx|.

To do this computation, it’s enough to look at the singular points of x2 +y2. In our case, this is
just the origin. Over R, the preimage of any point under the map x2 + y2 is bounded, so it doesn’t
really matter how I cut off the measure- I’ll use a measure which is equal to the usual one inside
the unit square and zero outside of a small open ball containing the unit cube. The density at 0 is

given by limε→0
V ol(0≤x2+y2≤ε)
V ol(−ε≤x≤ε) = lim πε

2ε = π
2 .

Over C, I can make the coordinate change z = x + iy and w = x − iy. This makes my map
(w, z) 7→ wz. Again, I’ll cut off my measure on A2 with coordinates w, z to be 0 outside of some
small ball around U = {(a + ib, c + id)| − 1 ≤ a, b, c, d ≤ 1} and the standard measure inside of

that closed set. The density at 0 is given by limε→0
V ol({−ε≤|wz|≤ε}∩U)

V ol(|x|<ε) = lim 4π2(4ε+4 log(ε))
πε = ∞

(I might have accidentally dropped a constant or something, but the point is that the log term
doesn’t go away and causes the whole thing to blow up).

On the one hand, if the archimedean version of Nir/Rami’s theorem is true, it’s clear that
this doesn’t have rational singularities, since over C the density of this measure blows up (there’s
other reasons to believe it doesn’t have rational singularities- it’s not normal, etc). But you’d love
to know why it doesn’t blow up over R and to be able to explain this reasonably- so you need
something more. You’d also love to be able to give an analogue of the integral formula (perhaps
with conditions on when it converges), too.

Here’s a start for the x2+y2 case. To find the differential form ωX
ϕ∗ωY

, we need to find a differential

form so that when we wedge with d(x2 + y2) = 2xdx + 2ydy, we get the standard top form on
A2. Here’s a candidate: ydx−xdy

2(x2+y2)
. Now we have to figure out how to integrate this in a reasonable
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fashion over x2 + y2 = 0, though- there’s several problems here. First of all, the denominator is
identically zero on that variety, and second of all you’re asking me to integrate a 1-form on a point
with 2-d tangent space.

So what’s the correct move? Well, in the p-adic rational singularities case, the correct move
is to replace the singular locus with a strong resolution of singularities- since you have rational
singularities, you know that your form extends to 0 along the exceptional divisor, and you can just
do your integration. Here, you’d like to do the same thing- replace A2 with it’s blowup, Bl0A2,
and then do the computation there.

Something’s still not right, though- in this blowup, the strict transform of the variety x2+y2 = 0
has no real points. If you take the limit of the real points of x2 + y2 = ε as ε→ 0, you see you end
up on the P1- this is bad news, since for any smooth differential form, it’s value on the exceptional
divisor must be 0. Boo!

But wait- our differential form had log poles. Making the substitutions x = x, y = xz (this
corresponds to pulling back to the total space of the blowup minus the y-axis) and then sending
x→ 0, we get the differential form dz

1+z2
. Integrating this from −∞ to∞ we get π

2 , which is exactly
what we expect.

On the other hand, why couldn’t we have just chosen dy
2x? If you do the same procedure, you

end up with xdz+zdx
2x = dz+ zdx

x , which doesn’t behave so well with setting x = 0 (you might argue
that the fractional part cancels and so you only get dz, but this wouldn’t really give the correct
answer either- you’d get infinity).

The conjecture would be that if you had log-canonical singularities (a limit of rational singular-
ities) and your differential form on the fibers had at most log-poles that weren’t visible to your field
of definition, the integral would converge. There’s major gaps here, though (there’s a reduction
step in the proof that is vastly more complicated in archimedean cases than non-archimedean cases,
for example, and you’d need some results about being able to choose differential forms with log
poles in a certain way over log-canonical varities, etc.).

4 Citations

If you’re interested in the precise formulation of most of the statements I’ve talked about above,
the paper you want to read is Representation Growth and Rational Singularities of the
Moduli Space of Local Systems by Avraham Aizenbud and Nir Avni, arXiv:1307.0371. I
somehow screwed up BibTex and I need to submit these notes now, so my bad.
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