SOME BACKGROUND ON GEOMETRIC QUANTIZATION

NILAY KUMAR

Contents

1.	Introduction	1
2.	Classical versus quantum	2
3.	Geometric quantization	4
References		6

1. INTRODUCTION

Let M be a compact oriented 3-manifold. Chern-Simons theory with gauge group G (that we will take to be compact, connected, and simply-connected) on Mis the data of a principal G-bundle $\pi: P \to M$ together with a Lagrangian density $\mathscr{L}: \mathscr{A} \to \Omega^3(P)$ on the space of connections \mathscr{A} on P given by

$$\mathscr{L}_{\mathrm{CS}}(A) = \langle A \wedge F \rangle + \frac{2}{3} \langle A \wedge [A \wedge A] \rangle.$$

Let us detail the notation used here. Recall first that a connection $A \in \mathscr{A}$ is a *G*-invariant \mathfrak{g} -valued one-form, i.e. $A \in \Omega^1(P; \mathfrak{g})$ such that $R_g^*A = \operatorname{Ad}_{g^{-1}} A$, satisfying the additional condition that if $\xi \in \mathfrak{g}$ then $A(\xi_P) = \xi$ if ξ_P is the vector field associated to ξ . Notice that \mathscr{A} , though not a vector space, is an affine space modelled on $\Omega^1(M, P \times_G \mathfrak{g})$. The curvature *F* of a connection *A* is is the \mathfrak{g} -valued two-form given by $F(v, w) = dA(v_h, w_h)$, where \bullet_h denotes projection onto the horizontal distribution ker π_* .¹ Finally, by $\langle -, - \rangle$ we denote an ad-invariant inner product on \mathfrak{g} .

The Chern-Simons action is now given

$$S_{\rm SC}(A) = \int_M \mathscr{L}_{\rm SC}(A)$$

and the quantities of interest are expectation values of observables $\mathscr{O}: \mathscr{A} \to \mathbb{R}$

$$\langle \mathcal{O} \rangle = \int_{\mathscr{A}/\mathscr{G}} \mathcal{O}(A) e^{i S_{\rm SC}(A)/\hbar}$$

Here \mathscr{G} is the group of automorphisms of $P \to \Sigma$, which acts by pullback on \mathscr{A} – the physical states are unaffected by these gauge transformations, so we integrate over the quotient \mathscr{A}/\mathscr{G} to eliminate the redundancy. In [Wit89] Witten consider the

Date: Winter 2016.

¹Here $[- \wedge -]$ and d are given by a combination of the wedge product and commutator.

NILAY KUMAR

following observable: let C be a closed oriented curve in M and V be an irreducible representation of G. Then we define the *Wilson line*

$$W_{C,V}(A) = \operatorname{tr}_V \exp \int_C A.$$

Witten computed the expectation values

$$\langle \prod_i W_{C_i, V_i} \rangle$$

for (C_i, V_i) pairs of curves and *G*-irreps, and recovered in the case of $M = S^3$ the Jones polynomial and its generalizations. Moreover, taking *M* to be an arbitrary 3-manifold and taking no curves, we obtain invariants of 3-manifolds that are effectively computable.

The goal of these notes is to provide some background on geometric quantization which Pyongwon will use to tell us about a rigorous procedure for obtaining quantum Chern-Simons theory on a compact oriented 2-manifold Σ without resorting to the path integral formalism. To do this, we will use *geometric quantization*, a method of quantizing a symplectic manifold to obtain a Hilbert space. We will follow the constructions of [ADPW91].

2. Classical versus quantum

Recall that the data of a classical mechanical system can be encoded as symplectic geometry. A symplectic form on a manifold M is a nondegenerate closed two-form $\omega \in \Omega^2(M)$. By nondegenerate we simply mean that ω_p is a nondegenerate skew-symmetric bilinear form for each $p \in M$, or more globally, that ω induces an isomorphism $TM \to T^*M$. A symplectic manifold is then a pair (M, ω) , and it is not hard to see that dim M must be even. Let us fix some notation: by X_f we mean the unique vector field corresponding to the one-form df:

$$\iota_{X_f}\omega = df$$

Then we have a Poisson bracket $\{-, -\}$ on $C^{\infty}(M)$ given by

$$\{f,g\} = \omega(X_f, X_g),$$

under which $C^{\infty}(M)$ forms a Lie algebra. Notice that the bracket is also a biderivation. We say that $C^{\infty}(M)$ forms a Poisson algebra (over \mathbb{R}).

Consider, for concreteness, a free particle in \mathbb{R}^n . The associated symplectic manifold $(\mathbb{R}^{2n}, \sum dq^i \wedge dp^i)$ represents the phase space of the system – all posible states (q, p) of the particle. The observables in this formulation are simply smooth functions on M. The energy, for instance, is given $H(q, p) = |p|^2/2m$.

In quantum mechanics, on the other hand, the phase space is given as a (complex) Hilbert space \mathcal{H} (or more precisely the projectivized space $\mathbb{P}\mathcal{H}$) and observables correspond to selfadjoint operators. In particular, one computes the expectation value of a given observable as

$$\langle \mathcal{O} \rangle = \int_{\mathcal{H}} \mathcal{O}(\psi) e^{iS(\psi)/\hbar},$$

where $S : \mathcal{H} \to \mathbb{R}$ is the action of the system.

Notice that there is a canonical procedure for obtaining a classical system from a quantum one: take $\hbar \to 0$. Very roughly speaking, as \hbar becomes small the

exponential in the integral above oscillates wildly and the integral is dominated by contributions from the classical locus $\delta S = 0$.

The problem of quantization, then, is the converse question: does a classical system determine a quantum system? This is an interesting question to ask because often in physics one starts with a classical theory such as electromagnetism (a classical field theory) and wishes to obtain a quantum theory such as quantum electrodynamics (a quantum field theory). Unfortunately, as the saying goes, "quantization is an art, not a functor." But let us be more precise and describe exactly what we mean by quantization (at least for our purposes).

Definition 1 (Dirac). Let (M, ω) be a symplectic manifold. A quantization of M is a complex Hilbert space $(\mathcal{H}, \mathcal{O})$ with selfadjoint operators \mathcal{O} , together with an \mathbb{R} -linear map $\hat{\bullet} : C^{\infty}(M) \to \mathcal{O}$ such that $\hat{1}$ is the identity operator on \mathcal{H} and

$$[\hat{f}, \hat{g}] = -i\hbar \widehat{\{f, g\}}$$

Unfortunately, it is unclear how to do this in general without making ${\cal H}$ unphysically large. 2

Before we begin discussing the procedure of geometric quantization, which will approximate the notion of quantization above, let us see how it applies to the case of Chern-Simons theory. Recall that the phase space of Chern-Simons theory is the space $\mathscr{A}^{\flat}/\mathscr{G}$ of flat connections on Σ up to gauge transformation. There is a natural symplectic structure on \mathscr{A}^{\flat} inherited from the symplectic structure of \mathscr{A} via Marsden-Weinstein reduction. Since \mathscr{A} is an affine space modelled on the vector space $\Gamma(\Sigma, P \times_G \mathfrak{g})$, the tangent space to \mathscr{A} at any connection is said vector space. There is thus a natural symplectic form on \mathscr{A} given

$$\omega_{\mathscr{A}}(\alpha,\beta) = \int_{\Sigma} \langle \alpha \wedge \beta \rangle.$$

In order to describe how this symplectic form descends to \mathscr{A}^{\flat} , we recall some details of symplectic reduction. Let G be a Hamiltonian group action on (M, ω) . That is, the G action satisfies:

- (1) G acts through symplectomorphisms;
- (2) if $\xi \in \mathfrak{g}$, the one form associated to the vector field ξ_M is exact:

$$\iota_{\xi_M}\omega = d\kappa(\xi),$$

for $\kappa(\xi) \in C^{\infty}(M)$;

(3) the associated comment map $\kappa:\mathfrak{g}\to C^\infty(M)$ is a Lie algebra homomorphism.

Then there exists a G-equivariant moment map $\mu: M \to \mathfrak{g}^*$ determined by

$$\kappa(\xi)(p) = \mu(p)(\xi).$$

The fundamental result of symplectic reduction is that if a Hamiltonian action of G is free and proper then $\mu^{-1}(0)/G_0$ is a symplectic manifold with symplectic form ω_0 uniquely characterized by $\pi_0^*\omega_0 = \iota_0^*\omega$.

Let us return to Chern-Simons theory.

Exercise 2. Make sense of the statement that $F : \mathscr{A} \to \Omega^2(\Sigma, P \times_G \mathfrak{g})$ provides a moment map for the \mathscr{G} -action on \mathscr{A} .

²In fact, there are various no-go theorems in the literature, c.f. Gronewald-van Hove.

NILAY KUMAR

In view of the exercise above the theory of reduction yields a symplectic structure on the moduli of flat connections $F^{-1}(0)/\mathscr{G} = \mathscr{A}^{\flat}/\mathscr{G}$. Thus the story of geometric quantization is indeed applicable.³

3. Geometric quantization

In this section we follow [Woo92] and [Hal13].

The first step in the geometric quantization of a symplectic manifold (M, ω) is *prequantization*, which assigns to M a line bundle with connection whose curvature is ω . The prequantum Hilbert space is then taken to be the square-integrable sections of this line bundle.

There is, of course, an obvious line bundle: the trivial one. Can we get away with this? Consider the space $L^2(M)$ of square-integrable smooth complex functions on M. This space has a natural inner product given by

$$\langle \psi, \psi' \rangle = \int_M \bar{\psi} \psi' \varepsilon,$$

where $\varepsilon = (\omega/2\pi\hbar)^n$ is a volume form. There is an obvious quantization of $f \in C^{\infty}(M)$ to

$$\psi \mapsto -i\hbar X_f \psi.$$

Unfortunately this will send constants to the zero operator. There is an immediate correction:

$$\psi \mapsto (-i\hbar X_f + f)\psi.$$

This quantization is no longer a Lie algebra homomorphism, so we add yet another term

$$\psi \mapsto (-i\hbar X_f + f - i\iota_{X_f}\lambda/\hbar)\psi,$$

where λ is a one-form such that $d\lambda = \omega$. This prescription works, but now depends on λ , which need not exist in general. The way out is to replace the trivial bundle with a Hermitian bundle together with a connection whose curvature is ω . The key fact is as follows.

Theorem 3. There exists a Hermitian line bundle $L \to M$ and a Hermitian connection $\nabla : \mathrm{H}^{0}(M, L) \to \mathrm{H}^{0}(M, L \otimes T^{*}M)$ on L with curvature $\hbar^{-1}\omega$ if and only if $(2\pi\hbar)^{-1}\omega \in \mathrm{H}^{2}(M,\mathbb{Z})$. In this case, the choice of (L, ∇) is parameterized by $\mathrm{H}^{1}(M, U(1))$.

Using this, we can define prequantization.

Definition 4. Let (M, ω) be a integral symplectic manifold. Then a *prequantum* bundle is a choice of line bundle $L \to M$ and connection ∇ on L with curvature $\hbar^{-1}\omega$. The *prequantum Hilbert space* is the space \mathcal{H}^{pre} of square-integrable sections of L together with the obvious inner product. The operator associated to $f \in C^{\infty}(M)$ is given by

$$\hat{f}\psi = (-i\hbar\nabla_{X_f} + f)\psi.$$

Example 5. Consider $M = \mathbb{R}^{2n}$ with coordinates (q, p) and its usual symplectic form $\omega = dq^i \wedge dp^i$. The integrality of ω is clear because M is exact, $\omega = d(p_i dq^i) = d\lambda$. In this case the trivial line bundle with connection $\nabla_v = v + \iota_v \lambda$ provides a

³Exercise: why is the form integral?

prequantum line bundle. Notice that $X_{q^i} = \partial/\partial p^i$ and $X_{p_i} = -\partial/\partial q^i$. Hence we find

$$\hat{q}^{i}\psi = \left(q^{i} - i\hbar\frac{\partial}{\partial p_{i}}\right)\psi$$
$$\hat{p}_{i}\psi = i\hbar\frac{\partial}{\partial q^{i}}\psi.$$

A straightforward computation reveals that $[\hat{q}^i, \hat{p}_i] = -i\hbar = -i\hbar \{q^i, p_i\}$, as desired. On the other hand, there is something strange going on: our "wavefunctions" depend on both p and q, which is why \hat{q}^i has an unfamiliar $\partial/\partial p_i$ term. Usually in quantum mechanics, we work with wavefunctions depending only on the q^i or only on the p_i , with the two perspectives related via the Fourier transform.

The previous example shows that, even in the case of a particle in \mathbb{R}^{2n} , the prequantum Hilbert space constructed by prequantization is morally twice as large as it should be. The next step of geometric quantization, polarization, restricts the space of functions on M that we quantize. On T^*M , for example, one has the vertical and horizontal polarizations, which yield the usual position and momentum Hilbert spaces. Polarization is a rather delicate and involved procedure, so we only sketch the beginning of the story.

Definition 6. A polarization on (M, ω) is an integrable Lagrangian subbundle $\mathscr{P} \hookrightarrow TM \otimes \mathbb{C}$. Then, if $L \to M$ is a prequantum line bundle and \mathscr{P} is a polarization, we define the quantum Hilbert space \mathcal{H} to be the set of square integrable sections that are covariantly constant along \mathscr{P} , i.e.

$$\mathcal{H} = \{ s \in L^2(M, L) \mid \nabla_X s = 0, X \in \mathscr{P} \}.$$

Example 7. Consider $M = T^*\mathbb{R} = \mathbb{R}^2$ with coordinates (q, p) and the trivial prequantum line bundle $(L = M \times \mathbb{C}, \nabla_v = v + i\iota_v\lambda)$, where $\lambda = pdq$. There is an obvious polarization of \mathbb{R}^2 by contangent fibers so that the polarized sections satisfy $\nabla_{\partial/\partial p}\psi = 0$, i.e.

$$\left(\frac{\partial}{\partial p} + i\iota_{\partial/\partial p}pdq\right)\psi = \frac{\partial\psi}{\partial p} = 0.$$

Hence \mathcal{H} consists of square-integrable sections depending on q. Unfortunately there are no such sections as

$$\int_{\mathbb{R}^2} \overline{\psi(x)} \psi(x) \, \mathrm{d}x \, \mathrm{d}p = \infty$$

unless $\psi = 0$.

Alternatively one could choose another polarization, taking the zero section and its translates, upon which the polarized sections satisfy $\nabla_{\partial/\partial q}\psi = 0$, which one can solve to find that $\psi(q, p) = \psi(p, 0)e^{-iqp}$. Again, these will not be square-integrable.

To actually obtain square-integrable sections we would, roughly speaking, have to cut down our base manifold from $T^*\mathbb{R}$ to \mathbb{R} . Hence even after polarization we do not necessarily obtain the Hilbert spaces familiar to physicists.

Remark 8. Polarizations need not exist! There is a class of compact 4-dimensional symplectic manifolds admitting no polarizations at all, c.f. [Got87].

Recall that a Kähler manifold (M, J, ω) is a symplectic manifold together with an integrable almost complex structure $J: TM \to TM$ (with $J^2 = -id$) compatible

NILAY KUMAR

with the symplectic structure: $\omega(Jv, Jw) = \omega(v, w)$. The complexified tangent bundle now splits $TM \otimes \mathbb{C} = T^{1,0}M \oplus T^{0,1}M$ along the eigenvalues $\pm i$ of $J \otimes \mathbb{C}$. The canonical *Kähler polarization* on (M, J, ω) is simply the subbundle $T^{1,0}M \subset TM \otimes \mathbb{C}$, i.e. the holomorphic tangent bundle.

Now, prequantization of (M, J, ω) yields a hermitian line bundle $L \to M$ equipped with a hermitian connection ∇ with curvature given by the Kähler form ω . The connection extends linearly to $\nabla^{\mathbb{C}} : \mathrm{H}^{0}(M, L) \to \mathrm{H}^{0}(M, L \otimes T^{*}M \otimes \mathbb{C})$, and we can define the Kähler polarized sections of L to be $s \in \mathrm{H}^{0}(M, L)$ such that $\nabla_{X}s = 0$ for all $X \in \mathrm{H}^{0}(M, T^{0,1}M)$, that is, sections that are covariantly holomorphic. The quantum Hilbert space \mathcal{H} is then the space of square-integrable Kähler polarized sections.

Exercise 9. Show that, in the Kähler case, L has a natural holomorphic structure, and \mathcal{H} is simply the space of square-integrable holomorphic sections.

There are a number of undesirable features of this story. While it can be shown that there always exist nonzero local polarized sections, there need not always exist global square-integrable polarized sections. Moreover, the question of what the operators on \mathcal{H} are now becomes quite subtle. For instance, it only makes sense to consider the subset of the prequantization operators preserving $\mathcal{H} \subset \mathcal{H}^{\text{pre}}$.

Example 10. Consider $M = \mathbb{R}^2$ with complex coordinates $z = q + ip, \bar{z} = q - ip$. Recall that the prequantum line bundle in this case is the trivial line bundle with connection $\nabla_v = v + \iota_v \lambda$, where $\lambda = pdq$. Some computation reveals that the polarized states are of the form

$$\psi(q, p) = F(z)e^{-p^2/2\hbar} = F(z)e^{-\mathrm{Im}(z)^2/\hbar},$$

where F is an arbitrary holomorphic function. Those ψ which are square-integrable form what is known to functional analysts as the Segal-Bargmann Hilbert space.

References

- [ADPW91] Scott Axelrod, Steve Della Pietra, and Edward Witten. "Geometric quantization of Chern-Simons gauge theory". In: J. Differential Geom. 33.3 (1991), pp. 787–902. ISSN: 0022-040X. URL: http:// projecteuclid.org/euclid.jdg/1214446565.
- [Got87] Mark J. Gotay. "A class of nonpolarizable symplectic manifolds". In: Monatsh. Math. 103.1 (1987), pp. 27–30. ISSN: 0026-9255. DOI: 10. 1007/BF01302708. URL: http://dx.doi.org/10.1007/BF01302708.
- [Hal13] Brian C. Hall. Quantum theory for mathematicians. Vol. 267. Graduate Texts in Mathematics. Springer, New York, 2013, pp. xvi+554.
 ISBN: 978-1-4614-7115-8; 978-1-4614-7116-5. DOI: 10.1007/978-1-4614-7116-5. URL: http://dx.doi.org/10.1007/978-1-4614-7116-5.
- [Wit89] Edward Witten. "Quantum field theory and the Jones polynomial".
 In: Comm. Math. Phys. 121.3 (1989), pp. 351-399. ISSN: 0010-3616.
 URL: http://projecteuclid.org/euclid.cmp/1104178138.
- [Woo92] N. M. J. Woodhouse. Geometric quantization. Second. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992, pp. xii+307. ISBN: 0-19-853673-9.