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1. Introduction

Let M be a compact oriented 3-manifold. Chern-Simons theory with gauge
group G (that we will take to be compact, connected, and simply-connected) on M
is the data of a principal G-bundle π : P →M together with a Lagrangian density
L : A → Ω3(P ) on the space of connections A on P given by

LCS(A) = 〈A ∧ F 〉+
2

3
〈A ∧ [A ∧A]〉.

Let us detail the notation used here. Recall first that a connection A ∈ A is
a G-invariant g-valued one-form, i.e. A ∈ Ω1(P ; g) such that R∗gA = Adg−1 A,
satisfying the additional condition that if ξ ∈ g then A(ξP ) = ξ if ξP is the vector
field associated to ξ. Notice that A , though not a vector space, is an affine space
modelled on Ω1(M,P ×G g). The curvature F of a connection A is is the g-valued
two-form given by F (v, w) = dA(vh, wh), where •h denotes projection onto the
horizontal distribution kerπ∗.

1 Finally, by 〈−,−〉 we denote an ad-invariant inner
product on g.

The Chern-Simons action is now given

SSC(A) =

∫
M

LSC(A)

and the quantities of interest are expectation values of observables O : A → R

〈O〉 =

∫
A /G

O(A)eiSSC(A)/~.

Here G is the group of automorphisms of P → Σ, which acts by pullback on A – the
physical states are unaffected by these gauge transformations, so we integrate over
the quotient A /G to eliminate the redundancy. In [Wit89] Witten consider the

Date: Winter 2016.
1Here [− ∧−] and d are given by a combination of the wedge product and commutator.
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following observable: let C be a closed oriented curve in M and V be an irreducible
representation of G. Then we define the Wilson line

WC,V (A) = trV exp

∫
C

A.

Witten computed the expectation values

〈
∏
i

WCi,Vi
〉

for (Ci, Vi) pairs of curves and G-irreps, and recovered in the case of M = S3

the Jones polynomial and its generalizations. Moreover, taking M to be an arbi-
trary 3-manifold and taking no curves, we obtain invariants of 3-manifolds that are
effectively computable.

The goal of these notes is to provide some background on geometric quantization
which Pyongwon will use to tell us about a rigorous procedure for obtaining quan-
tum Chern-Simons theory on a compact oriented 2-manifold Σ without resorting
to the path integral formalism. To do this, we will use geometric quantization, a
method of quantizing a symplectic manifold to obtain a Hilbert space. We will
follow the constructions of [ADPW91].

2. Classical versus quantum

Recall that the data of a classical mechanical system can be encoded as sym-
plectic geometry. A symplectic form on a manifold M is a nondegenerate closed
two-form ω ∈ Ω2(M). By nondegenerate we simply mean that ωp is a nondegener-
ate skew-symmetric bilinear form for each p ∈M , or more globally, that ω induces
an isomorphism TM → T ∗M . A symplectic manifold is then a pair (M,ω), and it
is not hard to see that dimM must be even. Let us fix some notation: by Xf we
mean the unique vector field corresponding to the one-form df :

ιXf
ω = df.

Then we have a Poisson bracket {−,−} on C∞(M) given by

{f, g} = ω(Xf , Xg),

under which C∞(M) forms a Lie algebra. Notice that the bracket is also a bideriva-
tion. We say that C∞(M) forms a Poisson algebra (over R).

Consider, for concreteness, a free particle in Rn. The associated symplectic
manifold (R2n,

∑
dqi ∧ dpi) represents the phase space of the system – all posible

states (q, p) of the particle. The observables in this formulation are simply smooth
functions on M . The energy, for instance, is given H(q, p) = |p|2/2m.

In quantum mechanics, on the other hand, the phase space is given as a (complex)
Hilbert space H (or more precisely the projectivized space PH) and observables
correspond to selfadjoint operators. In particular, one computes the expectation
value of a given observable as

〈O〉 =

∫
H
O(ψ)eiS(ψ)/~,

where S : H → R is the action of the system.
Notice that there is a canonical procedure for obtaining a classical system from

a quantum one: take ~ → 0. Very roughly speaking, as ~ becomes small the
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exponential in the integral above oscillates wildly and the integral is dominated by
contributions from the classical locus δS = 0.

The problem of quantization, then, is the converse question: does a classical
system determine a quantum system? This is an interesting question to ask be-
cause often in physics one starts with a classical theory such as electromagnetism
(a classical field theory) and wishes to obtain a quantum theory such as quan-
tum electrodynamics (a quantum field theory). Unfortunately, as the saying goes,
“quantization is an art, not a functor.” But let us be more precise and describe
exactly what we mean by quantization (at least for our purposes).

Definition 1 (Dirac). Let (M,ω) be a symplectic manifold. A quantization of M
is a complex Hilbert space (H,O) with selfadjoint operators O, together with an

R-linear map •̂ : C∞(M)→ O such that 1̂ is the identity operator on H and

[f̂ , ĝ] = −i~{̂f, g}.

Unfortunately, it is unclear how to do this in general without making H unphys-
ically large.2

Before we begin discussing the procedure of geometric quantization, which will
approximate the notion of quantization above, let us see how it applies to the case
of Chern-Simons theory. Recall that the phase space of Chern-Simons theory is
the space A [/G of flat connections on Σ up to gauge transformation. There is
a natural symplectic structure on A [ inherited from the symplectic structure of
A via Marsden-Weinstein reduction. Since A is an affine space modelled on the
vector space Γ(Σ, P ×G g), the tangent space to A at any connection is said vector
space. There is thus a natural symplectic form on A given

ωA (α, β) =

∫
Σ

〈α ∧ β〉.

In order to describe how this symplectic form descends to A [, we recall some
details of symplectic reduction. Let G be a Hamiltonian group action on (M,ω).
That is, the G action satisfies:

(1) G acts through symplectomorphisms;
(2) if ξ ∈ g, the one form associated to the vector field ξM is exact:

ιξMω = dκ(ξ),

for κ(ξ) ∈ C∞(M);
(3) the associated comoment map κ : g → C∞(M) is a Lie algebra homomor-

phism.

Then there exists a G-equivariant moment map µ : M → g∗ determined by

κ(ξ)(p) = µ(p)(ξ).

The fundamental result of symplectic reduction is that if a Hamiltonian action of
G is free and proper then µ−1(0)/G0 is a symplectic manifold with symplectic form
ω0 uniquely characterized by π∗0ω0 = ι∗0ω.

Let us return to Chern-Simons theory.

Exercise 2. Make sense of the statement that F : A → Ω2(Σ, P ×G g) provides a
moment map for the G -action on A .

2In fact, there are various no-go theorems in the literature, c.f. Gronewald-van Hove.
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In view of the exercise above the theory of reduction yields a symplectic structure
on the moduli of flat connections F−1(0)/G = A [/G . Thus the story of geometric
quantization is indeed applicable.3

3. Geometric quantization

In this section we follow [Woo92] and [Hal13].
The first step in the geometric quantization of a symplectic manifold (M,ω) is

prequantization, which assigns to M a line bundle with connection whose curvature
is ω. The prequantum Hilbert space is then taken to be the square-integrable
sections of this line bundle.

There is, of course, an obvious line bundle: the trivial one. Can we get away with
this? Consider the space L2(M) of square-integrable smooth complex functions on
M . This space has a natural inner product given by

〈ψ,ψ′〉 =

∫
M

ψ̄ψ′ε,

where ε = (ω/2π~)n is a volume form. There is an obvious quantization of f ∈
C∞(M) to

ψ 7→ −i~Xfψ.

Unfortunately this will send constants to the zero operator. There is an immediate
correction:

ψ 7→ (−i~Xf + f)ψ.

This quantization is no longer a Lie algebra homomorphism, so we add yet another
term

ψ 7→ (−i~Xf + f − iιXf
λ/~)ψ,

where λ is a one-form such that dλ = ω. This prescription works, but now depends
on λ, which need not exist in general. The way out is to replace the trivial bundle
with a Hermitian bundle together with a connection whose curvature is ω. The key
fact is as follows.

Theorem 3. There exists a Hermitian line bundle L→ M and a Hermitian con-
nection ∇ : H0(M,L) → H0(M,L ⊗ T ∗M) on L with curvature ~−1ω if and only
if (2π~)−1ω ∈ H2(M,Z). In this case, the choice of (L,∇) is parameterized by
H1(M,U(1)).

Using this, we can define prequantization.

Definition 4. Let (M,ω) be a integral symplectic manifold. Then a prequantum
bundle is a choice of line bundle L → M and connection ∇ on L with curvature
~−1ω. The prequantum Hilbert space is the space Hpre of square-integrable sections
of L together with the obvious inner product. The operator associated to f ∈
C∞(M) is given by

f̂ψ = (−i~∇Xf
+ f)ψ.

Example 5. Consider M = R2n with coordinates (q, p) and its usual symplectic
form ω = dqi∧dpi. The integrality of ω is clear because M is exact, ω = d(pidq

i) =
dλ. In this case the trivial line bundle with connection ∇v = v + ιvλ provides a

3Exercise: why is the form integral?
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prequantum line bundle. Notice that Xqi = ∂/∂pi and Xpi = −∂/∂qi. Hence we
find

q̂iψ =

(
qi − i~ ∂

∂pi

)
ψ

p̂iψ = i~
∂

∂qi
ψ.

A straightforward computation reveals that [q̂i, p̂i] = −i~ = −i~{̂qi, pi}, as desired.
On the other hand, there is something strange going on: our “wavefunctions” de-
pend on both p and q, which is why q̂i has an unfamiliar ∂/∂pi term. Usually in
quantum mechanics, we work with wavefunctions depending only on the qi or only
on the pi, with the two perspectives related via the Fourier transform.

The previous example shows that, even in the case of a particle in R2n, the
prequantum Hilbert space constructed by prequantization is morally twice as large
as it should be. The next step of geometric quantization, polarization, restricts
the space of functions on M that we quantize. On T ∗M , for example, one has the
vertical and horizontal polarizations, which yield the usual position and momentum
Hilbert spaces. Polarization is a rather delicate and involved procedure, so we only
sketch the beginning of the story.

Definition 6. A polarization on (M,ω) is an integrable Lagrangian subbundle
P ↪→ TM ⊗ C. Then, if L → M is a prequantum line bundle and P is a polar-
ization, we define the quantum Hilbert space H to be the set of square integrable
sections that are covariantly constant along P, i.e.

H = {s ∈ L2(M,L) | ∇Xs = 0, X ∈P}.

Example 7. Consider M = T ∗R = R2 with coordinates (q, p) and the trivial
prequantum line bundle (L = M × C,∇v = v + iιvλ), where λ = pdq. There is
an obvious polarization of R2 by contangent fibers so that the polarized sections
satisfy ∇∂/∂pψ = 0, i.e. (

∂

∂p
+ iι∂/∂ppdq

)
ψ =

∂ψ

∂p
= 0.

Hence H consists of square-integrable sections depending on q. Unfortunately there
are no such sections as ∫

R2

ψ(x)ψ(x) dxdp =∞

unless ψ = 0.
Alternatively one could choose another polarization, taking the zero section and

its translates, upon which the polarized sections satisfy ∇∂/∂qψ = 0, which one can

solve to find that ψ(q, p) = ψ(p, 0)e−iqp. Again, these will not be square-integrable.
To actually obtain square-integrable sections we would, roughly speaking, have

to cut down our base manifold from T ∗R to R. Hence even after polarization we
do not necessarily obtain the Hilbert spaces familiar to physicists.

Remark 8. Polarizations need not exist! There is a class of compact 4-dimensional
symplectic manifolds admitting no polarizations at all, c.f. [Got87].

Recall that a Kähler manifold (M,J, ω) is a symplectic manifold together with an
integrable almost complex structure J : TM → TM (with J2 = − id) compatible
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with the symplectic structure: ω(Jv, Jw) = ω(v, w). The complexified tangent
bundle now splits TM ⊗ C = T 1,0M ⊕ T 0,1M along the eigenvalues ±i of J ⊗ C.
The canonical Kähler polarization on (M,J, ω) is simply the subbundle T 1,0M ⊂
TM ⊗ C, i.e. the holomorphic tangent bundle.

Now, prequantization of (M,J, ω) yields a hermitian line bundle L→M equipped
with a hermitian connection ∇ with curvature given by the Kähler form ω. The
connection extends linearly to ∇C : H0(M,L)→ H0(M,L⊗T ∗M ⊗C), and we can
define the Kähler polarized sections of L to be s ∈ H0(M,L) such that ∇Xs = 0
for all X ∈ H0(M,T 0,1M), that is, sections that are covariantly holomorphic. The
quantum Hilbert space H is then the space of square-integrable Kähler polarized
sections.

Exercise 9. Show that, in the Kähler case, L has a natural holomorphic structure,
and H is simply the space of square-integrable holomorphic sections.

There are a number of undesirable features of this story. While it can be shown
that there always exist nonzero local polarized sections, there need not always exist
global square-integrable polarized sections. Moreover, the question of what the
operators on H are now becomes quite subtle. For instance, it only makes sense to
consider the subset of the prequantization operators preserving H ⊂ Hpre.

Example 10. Consider M = R2 with complex coordinates z = q + ip, z̄ = q − ip.
Recall that the prequantum line bundle in this case is the trivial line bundle with
connection ∇v = v + ιvλ, where λ = pdq. Some computation reveals that the
polarized states are of the form

ψ(q, p) = F (z)e−p
2/2~ = F (z)e−Im(z)2/~,

where F is an arbitrary holomorphic function. Those ψ which are square-integrable
form what is known to functional analysts as the Segal-Bargmann Hilbert space.
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