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My goal today is to describe the (Iwahori–)Hecke algebra in some detail, following papers of
Jones1. We’re working towards the HOMFLYPT polynomial.

1. The Hecke algebra

Last time we found ourselves interested in the Braid group Bn, with presentation

〈T1, . . . , Tn−1|TiTi+1Ti = Ti+1TiTi+1〉
The relation is called the braid relation. Among its quotients is the symmetric group, which which
you force T 2

i = 1.

Exercise 1. All the generators Ti are in the same conjugacy class. Therefore the one-dimensional
representations of Bn are parameterized by a single number λ ∈ C×, with Ti 7→ λ.

More generally, in any representation all the Tis have the same spectrum.

Rather than looking just at two-dimensional representations, the next thing after one-dimensional
representations are those in which the spectrum of the Tis is just two numbers a, b 6= 0 (not zero
since the Tis are invertible).

Remark 1.1. This really is the next thing because, like any good physicist or functional analyst, I
am assuming that “representation” includes the word “unitary.” The unitary representation theory
of anything is completely reducible, meaning that every subobject is a direct summand, because
you can always take the orthogonal complement of any subrep. Anyway, if si acts with a single
eigenvalue, it’s acting as a scalar, because unitary things are always diagonalizable (because of
complete reducibility), and so the representation is a direct sum of one-dimensional reps. 3

Remember that the group algebra of a (discrete) group G is the ring CG with basis G and
multiplication extending that of G by linearity. I am going to completely confuse groups with their
algebras. The reason is that they have the same representation theory — Rep(G) = Mod(CG) —
and the way you study anything in mathematics is through its representations.

Then note that the braid relation is homogeneous, and so Ti 7→ λTi is an automorphism of Bn
for any λ ∈ C×. So up to rescaling, I can set one of the eigenvalues to whatever I want. I will set
one of them to −1 and the other to q ∈ C×. Then the equation imposing that a diagonalizable
(unitarity!) matrix T has eigenvalues −1, q is:

(Hecke) T 2
i = (q − 1)Ti + q

Definition 1.2. The Hecke algebra Hn,q is the quotient of (the group algebra of) the Braid group
Bn by the relation (Hecke). 3

The reason for the normalization is so that Hn,q=1 is the symmetric group, or rather its group
algebra.

Proposition 1.3 (PBW-type theorem for Hecke algebras). dimHn,q = n!.

1Vaughan F. R. Jones. In and around the origin of quantum groups. http://arxiv.org/abs/math/0309199
— Hecke Algebra Representations of Braid Groups and Link Polynomials. Annals of Mathematics, Second Series,

Vol. 126, No. 2 (Sep., 1987), pp. 335–388. http://www.jstor.org/stable/1971403
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I will prove the claim except for perhaps finitely many values of q, but actually the claim holds
for all q, as established in Wenzl’s thesis2.

Proof. Note first that T−1i = q−1(Ti − q + 1), so we can work just with polynomials in the Tis.
Think about the symmetric group. You can draw a permutation by connecting each element

of {1, . . . , n} with where it goes by a straight line. Choose a way to resolve triple (and higher)
crossings: you find a minimal length word for each element of the symmetric group. Of course, the
elements of the symmetric group are the basis for its group algebra.

How do you multiply (in the symmetric group) in this basis? You stack your pictures and try
to straighten out the kinks. The point is that when you do this: (1) stacking the pictures adds
the lengths of the presenting words; (2) you spend a lot of time applying the braid relations, which
do not change length; (3) occasionally you apply a relation s2i = 1, which lowers the length. In
particular length never increases, and you can always get to a minimal-length word (satisfying
whatever choice you made about triple- etc.- points).

So now take your words in the sis as your basis for Hn,q. You can multiply just as before, except
now occasionally instead of using s2i = 1 you use the Hecke relation — it still reduces the length.

So that shows that your words are a spanning set forHn,q. It could happen, I guess, that for some
qs, they are linearly dependent. Certainly this cannot happen when q ≈ 1 (since it doesn’t happen
when q = 1), and the point is that “q ≈ 1” actually means a Zariski open set containing 1. Why
Zariski open? Because it’s an algebraic problem. Non-empty Zariski-open sets are cofinite. �

Remark 1.4. Similar arguments show that for q ≈ 1, Hn,q is semisimple with representations
indexed by the same Young diagrams as for the symmetric group. In fact, by Wenzl’s thesis,
everything works except when q is a root of unity (of order at most something depending on n). 3

2. Connection to YBE

Now here’s how to find solutions to (YBE):

Step 1: Use T 2
i = (q − 1)Ti + q to find Ri = αTi such that Ri +R−1i = κ for some κ ∈ C.

Step 2: Define Ri(x) = κ−1(xRi + x−1R−1i ).

Then if you have a representation of Hn,q on V⊗n where Ti = 1⊗ · · · ⊗ 1⊗ T ⊗ 1⊗ · · · ⊗ 1 with
the T acting in the i, i+ 1th spots, you get the desired R-matrices.

Connecting back, we have such a representation:

Exercise 2. Recall the Temperley–Lieb algebra T Ln,δ generated by U1, . . . , Un−1 with U2
i = δUi and

UiUi±1Ui = Ui. Find the (essential unique) homomorphism Hn,q → T Ln,δ of the form Ti 7→ αUi+β,
where I mean you need to find α, β, δ as functions of q.

Recall from last time that, with δ = −t− t−1, we had a favorite representation of T Ln on (C2)⊗n

in which Ui acted by

Ui 7→ id⊗ · · · ⊗ id⊗


0
−t−1 1

1 −t
0

⊗ id⊗ · · · ⊗ id

Pull this representation back to Hn,q and use it to find a solution to YBE. Check that the solution
is the one Rx,t from last time.

2H. Wenzl, Representations of Hecke algebras and subfactors, Thesis, Univ. of Pennsylvania (1985).
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3. A useful lemma

Set Hn = Hn,q. There are obvious inclusions Hn ↪→ Hn+1 given by Ti 7→ Ti. Set H =
⋃
nHn

along these inclusions. This is the algebra we’re after. Why? Because last week we were interested
in a certain linear functional on T L, and this week we’ll study the pullback of that functional to
H. A linear functional on H is just a system of functionals, all compatible, on the Hns.

To build such a system, we need to understand how Hn looks from the point of view of Hn−1.
Note that there is a linear map

Hn ⊕Hn ⊗Hn−1 Hn → Hn+1

given by
x⊕ y ⊗ y′ 7→ x+ yTny

′.

This is well-defined because in the tensor product, you quotient by yz ⊗ y′ = y ⊗ zy′ if z ∈ Hn−1,
and this doesn’t bother the map because [z, Tn] = 0 if z ∈ Hn−1.

Note that this map is obviously a map of Hn-bimodules.

Lemma 3.1. The map Hn ⊕ Hn ⊗Hn−1 Hn → Hn+1 given by x ⊕ y ⊗ y′ 7→ x + yTny
′ is an

isomorphism of Hn-bimodules.

What I’m saying is that every w ∈ Hn+1 has a presentation as w = x + yTny
′ for x, y ∈ Hn,

unique up to yzTny
′ = yTnzy

′ for z ∈ Hn−1.

Proof. First, count dimensions: the RHS is (n + 1)!, whereas the LHS is n! + n!2/(n − 1)! =
n! + n · n! = (n+ 1)n! = (n+ 1)!.

Thus it suffices to prove surjectivity, i.e. check that any w can be written x + yTny
′, without

checking uniqueness — uniqueness follows from the dimension count.
A generic element of Hn+1 is a (sum of) word(s) in the Tis. If there are no or one Tn, we’re

done. Suppose that you have more than one Tn. Then somewhere in the word you have TnwTn
for w ∈ Hn. It suffices to rewrite this with only one Tn; then, repeating if necessary, we can keep
reducing the number of Tns until we’re ≤ 1.

By induction, w (is a sum of words each of which) has at most one Tn−1. If w ∈ Hn−1, i.e. if it
does not have any Tn−1s, then TnwTn = T 2

nw = (q − 1)Tnw + qw by the Hecke relation, and we’ve
reduced the number of Tns. If w has a Tn−1 in it, then w = w′Tn−1w

′′ (or rather is a sum of such
things) and TnwTn = w′TnTn−1Tnw

′′ = w′Tn−1TnTn−1w
′′ by the braid relation, and we’ve reduced

the number of Tns. �
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