
MATH 448: RESHETIKHIN–TURAEV INVARIANTS

FRIDAY, JANUARY 15, 2016

THEO JOHNSON-FREYD

With some luck, today we will describe the Jones/Ocneanu1 presentation of the HOMFLYPT
polynomial.

1. Whence “Hecke”?

Last time I described what I called the Hecke algebra, which is the algebra H =
⋃
Hn with

generators T1, T2, . . . and relations

TiTi+1Ti = Ti+1TiTi+1(Braid)

T 2
i = (q − 1)Ti + q(Hecke)

There was a question last time of why this is called “Hecke” and what was the relation with the
“Hecke operatorss” on modular forms.

Hecke was interested in the following general question. Suppose G is a group and H ⊆ G is
a subgroup. I will assume them finite — you can do it with much more general groups, but you
have to think a bit about functional analysis. We talked already about the group algebra CG.
It is isomorphic to the convolution algebra of G, which is the algebra structure on O(G) = CG
with multiplication (φ ? ψ)(g) =

∫
g′∈G φ(gg′)ψ((g′)−1), where φ, ψ : G → C. You can describe

this as follows. There are three maps G × G → G, given by projection onto the two factors and
multiplication. So you can “push forward” a function on G×G along the multiplication map, and
that’s convolution. (Technically you should think of this as a “pull push”.)

What Hecke did was to study convolution not just on G but on spaces of double cosets X =
H\G/H. Then O(H\G/H) ⊆ O(G) as the subset of functions satisfying φ(g) = φ(hgh′) for

h, h′ ∈ H. Consider the space X(2) = H\G×H G/H, where G×H G means the set of pairs (g, g′)
modulo (gh, g′) = (g, hg′) for h ∈ H. This has three maps to X = H\G/H, again given by the two
projection maps and the multiplication.

X ×X ← X(2) → X

Pulling back along the projection maps O(X)⊗O(X) = O(X ×X)→ O(X(2)) and then pushing

forward along the multiplication map O(X(2))→ O(X) defines a “convolution” operation m∗(p
∗⊗

q∗) on O(X), which you can check is an associative algebra.
HG,H = O(H\G/H) with this “convolution” multiplication is the Hecke algebra for H ⊆ G.

Why would you want to do this? A similar “convolution” defines an action of HG,H on O(G/H),
where G/H is the usual coset space (e.g. G/H = Sn if G = SO(n) and H = SO(n − 1)), which
commutes with the natural G-action. In some (e.g. finite) situations, HG,H = EndG(O(G/H)).

Now what’s the connection with our other Hecke algebras?

Exercise 1. The “Hecke algebra” for elliptic curves (i.e. the algebra of Hecke operators) in char-
acteristic p ends up being this construction with G = GL2(Qp) and H = GL2(Zp). It is abelian.

The “Hecke algebra” we’re interested in is in some sense even deeper:

1Vaughan F. R. Jones. Hecke Algebra Representations of Braid Groups and Link Polynomials. Annals of Mathe-
matics, Second Series, Vol. 126, No. 2 (Sep., 1987), pp. 335–388. http://www.jstor.org/stable/1971403

1

http://www.jstor.org/stable/1971403


2 THEO JOHNSON-FREYD

Exercise 2. Let G = GLn(Fq) and H = the Borel subgroup of (all) upper-triangular matrices
(arbitrary diagonal). Then the corresponding Hecke algebra is the algebra Hn,q presented above,
where q now is the order of the finite field we’re working over.

If you know about classical and reductive groups over finite fields, you can of course play this
game for other things replacing GLn. And the limit H =

⋃
Hn is like “GL∞”.

Exercise 3. If G is not finite but Lie, you have to think more about the pushforward. Let’s work
with constructible functions as the meaning of “O”, and then pushforward is integration against
the Euler characteristic. Set G = GLn(C) and H = the Borel of upper-triangular matrices. Then
the Hecke algebra is the q 7→ 1 limit, i.e. the symmetric group.

In both exercises, an important part of the proof is that the set of double cosets B\G/B is
parameterized by the Weyl group, for any reductive group G.

Incidentally, the “elliptic curve” case is roughly the “ŜL2” version of this, where ŜL2 is the first
affine Kac–Moody group.

My impression of the history is that Jones was the one to first really notice that the braid group
representations arising in (quantum or) statistical mechanics were the same as the ones that the
Hecke algebraists had been studying in order to understand finite groups of Lie type.

2. Ocneanu’s trace

Ok, I turn now to my main story. Remember that last time we proved:

Lemma 2.1. The map Hn ⊕ Hn ⊗Hn−1 Hn → Hn+1 given by x ⊕ y ⊗ y′ 7→ x + yTny
′ is an

isomorphism of Hn-bimodules. �

Theorem 2.2 (Ocneanu). For each ζ ∈ C, there is a unique linear functional tr on H satisfying

(1) Cyclicity: tr(ab) = tr(ba)
(2) tr(1) = 1
(3) tr(wTn) = ζ tr(w) for w ∈ Hn.

Proof. By Lemma 2.1, there is a unique not-necessarily-cyclic linear functional on H defined induc-
tively by tr(1) = 1 and tr(xTny) = ζ tr(xy) for x, y ∈ Hn. Clearly if a tr as in the theorem exists,
then it satisfies these formulas. So it suffices to show that this definition is in fact cyclic.

So I take a, b ∈ Hn+1 and I want to show tr(ab) = tr(ba). By Lemma 2.1, I can write a, b each as
a sum of terms in Hn and terms of the form a′Tna

′′ for a′, a′′ ∈ Hn. If both a, b ∈ Hn I’m already

done. If one of them is, then I have tr(ab′Tnb
′′)

?
= tr(b′Tnb

′′a) for a, b′, b′′ ∈ Hn, but this follows by
the definition and the cyclicity in Hn. So the only case to consider is

tr(a′Tna
′′b′Tnb

′′)
?
= tr(b′Tnb

′′a′Tna
′′)

for a′, a′′, b′, b′′ ∈ Hn.
Now,

tr(a′Tna
′′b′Tnb

′′) = tr(Tna
′′b′Tnb

′′a′)

by the case already established, since a′ 7→ a ∈ Hn and Tna
′′b′Tnb

′′ 7→ b ∈ Hn+1, and also

tr(a′′b′Tnb
′′a′Tn) = tr(b′Tnb

′′a′Tna
′′)

for the same reason. So the only case to handle is

tr(TnxTny)
?
= tr(xTnyTn)

for x, y ∈ Hn.



MATH 448: RESHETIKHIN–TURAEV INVARIANTS FRIDAY, JANUARY 15, 2016 3

Appeal to Lemma 2.1 yet again. Expand x, y ∈ Hn as a summand in Hn−1 and summands of
the form x′Tn−1x

′′. For the two summands in Hn−1, the problem is trivial. We’ve reduced the
problem to two cases:

tr(Tnx
′Tn−1x

′′Tny)
?
= tr(x′Tn−1x

′′TnyTn), x′, x′′, y ∈ Hn−1(†)

tr(Tnx
′Tn−1x

′′Tny
′Tn−1y

′′)
?
= tr(x′Tn−1x

′′Tny
′Tn−1y

′′Tn), x′, x′′, y′, x′′ ∈ Hn−1(‡)
In (†), commuting Tn past x′, x′′, y, the LHS simplifies to

tr(Tnx
′Tn−1x

′′Tny) = tr(x′TnTn−1Tnx
′′y) = tr(x′Tn−1TnTn−1x

′′y) = ζ tr(x′T 2
n−1x

′′y)

= ζ(q − 1) tr(x′Tn−1x
′′y) + ζq tr(x′x′′y)

whereas the RHS simplifies to

tr(x′Tn−1x
′′TnyTn) = tr(x′Tn−1x

′′T 2
ny)

= (q − 1) tr(x′Tn−1x
′′Tny) + q tr(x′Tn−1x

′′y) = ζ(q − 1) tr(x′Tn−1x
′′y) + ζq tr(x′x′′y)

where at the line breaks I applied the Hecke relation.
In (‡), similar application of the braid relation and the definition of tr gives

tr(Tnx
′Tn−1x

′′Tny
′Tn−1y

′′) = ζ tr(x′T 2
n−1x

′′y′Tn−1y
′′),

tr(x′Tn−1x
′′Tny

′Tn−1y
′′Tn) = ζ tr(x′Tn−1x

′′y′T 2
n−1y

′′)

which agree by the Hecke relation and the definition of tr on terms of the form x′′′Tn−1y
′′′, x′′′, y′′′ ∈

Hn−1. �

3. Connection to knots

The goal is to get invariants of knots. Ocneanu’s trace is a conjugation-invariant of braids. The
relation between knots and braids is given by the following classical theorem of Alexander and
Markov2:

Theorem 3.1 (Alexander). Every oriented link is the closure of a braid.
(Markov) Suppose that b ∈ Bn and b′ ∈ Bn′ are braids whose closures are equivalent as oriented

links. Then b and b′ are related by some sequence of “moves” of two types. Namely, for each b ∈ Bn,
the allowed moves are

“Type 1” or “conjugation”: b! gbg−1 for some g ∈ Bn.
“Type 2” or “stabilization”: b! bt±1n ∈ Bn+1. �

I’ve called the generators of Bn “ti” with lower case t, because I now do want to distinguish them
from the generators of Hn.

The proof of the “Alexander” part is a good exercise (Hint: Maypole dance). The “Markov”
part is proved similarly to the Reidemeister theorem: a Markov-1 move is like a Reidemeister-2 or
Reidemeister-3 move, and a Markov-2 move is like a Reidemeister-1 move. If you understand how
to prove the Reidemeister theorem, then you should try Markov’s theorem as an exercise.

It’s a solved problem to decide (via algorithm) if two braids are related by conjugation. It’s a
hard open problem to decide if two braids are related by Markov moves, because Type 2 moves can
make the calculation very large.

Suppose you want to construct an invariant of links. Theorem 3.1 implies it’s enough to define
a functional on the braid group(s) invariant under Type 1 and Type 2 moves. A trace on an
algebra is a linear functional such that tr(ab) = tr(ba), or equivalently (if the algebra is spanned by
invertibles) a conjugation-invariant linear functional — so Type 1 invariance is just being a trace
on the braid group.

2A. A. Markov, Uber die freie Aequivalenz geschlossener Zopfe, Mat. Sb. 1 (1935), 73–78



4 THEO JOHNSON-FREYD

Now note the similarity between the Type 2 moves and item (3) from Theorem 2.2. To make
Ocneanu’s trace into a Type 2 invariant, we just need to use not the canonical map π : ti 7→ Ti
from the braid group to the Hecke algebra, but some rescaling thereof πλ : ti 7→ λTi such that
tr(wλTi) = tr(w(λTi)

−1). Then the two Type 2 moves act the same, and our link invariant will
take b ∈ Bn to (ζλ)−n+1 tr(πλ(b)). (In functional analysis, π is the usual name for a representation.
The “+1” in the exponent is so that 1 ∈ B1 maps via our invariant to 1.) Indeed, given b ∈ Bn,

(ζλ)−n+1 tr(πλ(b))
?
= (ζλ)−(n+1)+1 tr(πλ(btn)) = (ζλ)−(n+1)+1 tr(πλ(b)λTn) = (ζλ)−(n+1)+1+1 tr(πλ(b)) X

What is this λ? tr(wλTi) = λζ tr(w), whereas

tr(wλ−1T−1i ) = λ−1 tr(w(q−1Ti + q−1 − 1)) = λ−1(q−1ζ + q−1 − 1) tr(w)

and so
λ =

√
q−1 + (q−1 − 1)ζ−1

Given a link L, let P (L) = (ζλ)−n+1 tr(πλ(b)) denote its invariant defined as above, where b is
any braid whose closure is L. P (L) is called the HOMFLYPT invariant of L.


	1. Whence ``Hecke''?
	2. Ocneanu's trace
	3. Connection to knots

